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ABSTRACT

This paper presents novel Newton algorithms for the blind
adaptive decorrelation of real and complex processes. They
are globally convergent and exhibit an interesting relation-
ship with the natural gradient algorithm for blind decorre-
lation and the Goodall learning rule. Indeed, we show that
these two later algorithms can be obtained from their New-
ton decorrelation versions when an exact matrix inversion is
replaced by an iterative approximation to it.

1. INTRODUCTION

The problem of the decorrelation (or sphering) of the obser-
vations consist in finding algorithms that eliminate the sec-
ond order redundancy among the different measured com-
ponents that share a common temporal reference. Decorre-
lation of the data has several desired features: it increases
the convergence speed of many algorithms and can be em-
ployed as a preprocessing step in other algorithms that re-
strict the search in the matrix parameters space. This indeed
is the case in the Independent Component Analysis where
one tries to obtain a linear transformation of the observa-
tions that makes the outputs the most independent as pos-
sible [1, 2]. In absence of noise, a preprocessing step that
decorrelates or spheres the data, allows later to restrict one’s
attention to the unitary transformations of the data that drive
the outputs towards their mutual independence.

In general, one wish to enforce the spatial decorrelation
of the observations by modifying them the least possible
in a certain sense. Thus, it is quite natural to impose that
the decorrelating system be designed to preserve the gen-
eral orientation of the observations, i.e., to allow them to
be scaled in principal unitary directions but not to be ro-
tated. The direct solution to this problem is the Mahalanobis
or canonical transformation, i.e., the optimal decorrelation
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system is the principal square root of the sample covariance
matrix.

Much of the research in the blind spatial decorrelation
of the observations has been done in the field of the Prin-
cipal Component Analysis (PCA) [1, 3]. However, when
one is not mainly interested in obtaining the principal direc-
tions of the data, but in their decorrelation, other alternative
algorithms can be designed to perform these task. This is
the case of the Goodall algorithm [4, 5], of the Silva and
Almeida symmetric decorrelation algorithm [6] (later iden-
tified with the natural gradient algorithm for blind decorre-
lation [7, 8]) and of the Least Squares prewhitening algo-
rithms [9].

In this paper we propose a new Newton approach for the
blind decorrelation problem. We show how the natural gra-
dient for blind decorrelation and the Goodall decorrelation
algorithm can be seen as low complexity approximations of
Newton learning rules. These approximations hold true as
long as certain parameters such as the learning step size and
the initialization for the decorrelation system are properly
chosen.

Throughout this work the following notation is used:
(·)′ and (·)∗ denote the transpose and the Hermitian trans-
pose operators, respectively; ⊗ denotes the Kronecker prod-
uct between two given matrices; the vec(·) operator is an
arrangement that stacks the all the columns a matrix in a
single vector; the decorrelation system is a matrix repre-
sented by B while the inverse decorrelation system B−1 is
represented by A.

The structure of the paper is the following. Section
2 presents the signal model and the direct solution of the
decorrelation problem. Section 3 presents the proposed New-
ton approach to the blind decorrelation of real and com-
plex processes. Section 4 analyzes the global stability of
the Newton decorrelation algorithm. Section 5 establishes
the relationship between the algorithm and other classical
methods. Section 6 is devoted to the simulations and, fi-
nally, section 7 presents the conclusions.



2. SIGNAL MODEL

Let us define x[k] = [x1[k], . . . , xN [k]]′, k = 0, · · · ,M−1
as the M sample vectors of observations, each of dimension
N × 1, drawn from a wide sense stationary vector process
associated with the recorded signals by N sensors. Without
loss of generality we assume that the observation process is
zero mean and has spatially correlated components.

The objective of the spatial decorrelation problem is to
find a linear transformation B of the observations x[k] for
which the components of the transformed vector

z[k] = Bx[k] (1)

are mutually uncorrelated, i.e., being Rxx = E[x[k](x[k])∗]
the correlation matrix of the original observations, then, for
the desired decorrelation system B0 the correlation matrix
of the transformed observations is equal to the identity ma-
trix

E[z[k](z[k])∗] = B0RxxB
∗
0 = I . (2)

Since the correlation matrix Rxx is Hermitian and thus
normal, it verifies the Schur decomposition

Rxx = UΛU∗ (3)

where U is the unitary matrix (U∗U = I) whose columns
are the N linearly independent eigenvectors of Rxx and
Λ is the diagonal matrix with the associated non-negative
eigenvalues. Assuming that Rxx is non-singular, the only
analytic solution of decorrelation problem that preserves the
orientation of the principal directions of the observations
(see figure 1) is given by

B0 = R−1/2
xx = UΛ−1/2U∗ (4)

The inverse of the decorrelating system A0 = B−1
0 = R

1/2
xx

is the principal square root of the correlation matrix. Other
possible decorrelating solutions like

B1 = QR−1/2
xx , (5)

where Q is a unitary matrix different from the identity, will
sphere, but also rotate the observations modifying their gen-
eral orientation.

3. NEWTON DECORRELATION ALGORITHMS

For simplicity, we will consider first the problem of the
decorrelation of real processes. In this section we will pro-
pose two different Newton algorithms for this task. The first
one is obtained from a Newton approach in the space of the
decorrelating systems while, the later one, originates from
a similar approach in the space of the inverse decorrelating
systems.
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Fig. 1. Scaterplot of a sample set of observations before (left
figure) and after (right figure) prewhitening by the decorre-
lation system of equation (4). Note that the transformation
only scales the observations in the principal directions of
the data (shown in dash lines) but does not rotate them.

3.1. A Newton algorithm in the space of the decorrelat-
ing systems

The sufficient statistic for decorrelation is the correlation
matrix of the observations, thus, we needn’t estimate any
other parameters from the available data. A good criteria
for modeling the observations is to assume the less biased
model based on the given information, in our case, the cor-
relation matrix. From the maximum entropy principle [10],
we achieve this objective considering the process of the ob-
servations as Gaussian.

With the previous assumption, the likelihood of one sam-
ple vector of observations is easily obtained

p(x[k]|B) =
1

(2π)N/2|Rxx|1/2
e−

1
2 (x[k])′R−1

xx x[k] (6)

being the dependence with the matrix B given through the
tentative factorizations of the correlation matrix Rxx = AA′

and its inverse R−1
xx = BB′. Note that this representation

preserves the symmetry and non-negative definition of the
correlation matrix. If, for simplicity, we further model the
temporal sequence of observations as white, the normalized
log-likelihood of the whole set of data {x[0],x[1], . . . ,x[M−
1]} is given by

l(B) = −
1

2
tr

{

BR̂xxB
′
}

+
1

2
ln |B′B| −

N

2
ln(2π)

where

R̂xx =
1

M

M−1
∑

k=0

x[k](x[k])′ (7)

denotes the sample estimate of the correlation matrix of the
observations.

An iterative algorithm for the estimation of the decorre-
lating system, has the typical form

B(n+1) = B(n) + η∆
(n)
B

(8)



The Newton update ∆
(n)
B

at the iteration n is obtained sol-
ving the following system of linear equations

−(Hess l|
B(n)) vec(∆(n)

B
) = vec

(

∂l(B)

∂B

∣

∣

∣

∣

B(n)

)

(9)

Defining KN as the commutation matrix (which satisfies
KN · vec A = vec A′), after some matrix differential cal-
culus the desired gradient and Hessian matrices are obtained

∂l(B)

∂B
= −B R̂xx + A′ (10)

Hess l(B) = −(R̂xx ⊗ I) − KN (A′ ⊗ A) (11)

Substituting these results in equation (9) and solving for
∆

(n)
B

we obtain the 1st decorrelation algorithm1

B(n+1) = (1−η)B(n)+2η
(

I + B(n)R̂xx(B(n))′
)−1

B(n)

(12)
From a theoretical standpoint, other illustrative implemen-
tations of this algorithm can be obtained. Using a form of
matrix inversion lemma we find the equivalent form

B(n+1) = B(n) −
η

2

(

I +
1

2

(

B(n)R̂xx(B(n))′ − I
)

)−1

(

B(n)R̂xx(B(n))′ − I
)

B(n) (13)

Another implementation that will have some transcendence
when establishing the connection with other algorithms, is
obtained directly rewriting the 1st decorrelation algorithm
of equation (12) using two nested iterations

Â(n+1) =
1

2

(

A(n) + R̂xx(B(n))′
)

(14)

B(n+1) = B(n) + η
(

(Â(n+1))−1 − B(n)
)

(15)

3.2. A Newton algorithm in the space of the inverse decor-
relating systems

Let us consider now the Newton method in the space of the
mixing system A. We propose to obtain the square root
factorization of R̂xx finding the zeros of the function

F(A) = (A)′R̂−1
xx A − I = 0 , (16)

The Newton-Raphson update

vec∆A = −

(

∂vecF(A)

∂(vecA)′

)−1

vecF(A) (17)

is expressed in terms of the Jacobian of F(A), which is
given by

∂vecF(A)

∂(vecA)′
= (KN + IN2)(I ⊗ (A)′R̂−1

xx ) . (18)

1Note that the optimal Newton step size is η = 1.

Thus, we obtain the 2nd decorrelation algorithm as

A(n+1) = A(n) + ∆
(n)
A

= A(n) +
η

2
(R̂xx(B(n))′ − A(n)) (19)

B(n+1) = (A(n+1))−1 , (20)

Other alternative forms of expressing this algorithm are

B(n+1) =
(

I +
η

2

(

B(n)R̂xx(B(n))′ − I
))−1

B(n) (21)

and

B(n+1) = B(n) −
η

2

(

I +
η

2

(

B(n)R̂xx(B(n))′ − I
))−1

(

B(n)R̂xx(B(n))′ − I
)

B(n) (22)

It is interesting to observe that, regardless of the fact that
the 1st and 2nd decorrelation algorithms has been obtained
in different spaces, when the optimal learning step-size η =
1 is chosen, both algorithms share the same adaptation

B(n+1) = 2(I + B(n)R̂xx(B(n))′)−1B(n) . (23)

3.3. Algorithms for complex processes

In the previous section several forms of a Newton decorre-
lation algorithm has been obtained for real processes, how-
ever, complex processes are ubiquitous in Signal Process-
ing, for instance, when working in the frequency domain.

The derivation of the Newton algorithms for the com-
plex case needs a cumbersome notation and thus is omitted
here, but the net result is that the complex algorithms only
differ from their real versions in that one have to replace all
the transpose operators (·)′ by the conjugate transpose op-
erator (·)∗, also extending this change to the definition (7)
of the sample correlation matrix.

3.4. Dual forms of the algorithms

Dual forms of the algorithms can be obtained by using in-
verse relations where the role of the decorrelation system B

and the inverse system A is interchanged. A summary of
these algorithms is presented in Table 1.

4. GLOBAL CONVERGENCE

This section we studies the local and global convergence
behaviour of the proposed Newton approach when the opti-
mal step size (η = 1) is chosen. A global convergence result
is challenging since, in general, Newton algorithms do not
possess this property.

For the purpose of the analysis, we define the follow-
ing transformation G(n) = B(n)R̂

1/2
xx that maps the sample



estimate of the decorrelation solution B1 = QR̂
−1/2
xx of

equation (5) to a global orthogonal matrix Q. Note that for
a number of observations M sufficient long, by the law of
large numbers, the sample estimate of the correlation matrix
R̂

(n)
xx will converge in probability to their expectation Rxx.

The Newton algorithm of equation (23) can be rewritten
in terms of the matrix parameter G(n) as

G(n+1) = 2(I + G(n)(G(n))∗)−1G(n) (24)

Using the singular value decomposition one can factor
the global matrix as G(n) = UΛ(n)(V)∗, where U and
V are unitary matrices and Λ(n) is the diagonal matrix of
singular values. This simplifies iteration (24) as follows

G(n+1) = U(n)Λ(n+1)(V(n))∗ (25)

Λ(n+1) = 2
(

I + Λ(n)(Λ(n))∗
)−1

Λ(n) (26)

From these equations one observes that the left and right
eigenvectors of the global matrix are preserved through it-
erations while the modulo of the singular values λ

(n)
i =

[Λ(n)]ii evolve independently according to the recursion

|λ
(n+1)
i | =

2|λ
(n)
i |

1 + |λ
(n)
i |2

i = 1, . . . , N. (27)

The previous expression can be identified with the Newton-
Raphson method to find the only positive root λ = 1 of
the function F (λ) = λ − λ−1. This Newton algorithm has
global quadratic convergence and a good local convergence
rate of 1/2. In order to prove the global convergence re-
sult we introduce the following theorem whose proof can
be found in [11].

Theorem 1 Given a twice differentiable continuous func-
tion F (λ) in an interval [a, b], if the following conditions
are satisfied

(i) F (a)F (b) < 0

(ii) ∂F (λ)
∂λ 6= 0 , ∀λ ∈ [a, b]

(iii) ∂2F (λ)
∂λ2 ≥ 0 or ≤ 0 , ∀λ ∈ [a, b]

(iv)

∣

∣

∣

∣

F (c)
∂F (c)

∂c

∣

∣

∣

∣

≤ b − a

where c = arg
{

minλ={a,b}

∣

∣

∣

∂F (λ)
∂λ

∣

∣

∣

}

(28)

then the Newton-Raphson algorithm converges to the unique
solution of F (λ) = 0 for any arbitrary initialization in the
interval [a, b].

In our case, by definition, |λ| > 0 and the theorem can
be applied to the twice continuous differentiable function
F (|λ|) = |λ| − |λ|−1 in an interval [a, a−1] for any suffi-
cient small a that verifies min{1, |λ1|, . . . , |λN |} > a > 0.
It can be checked that all the four conditions hold true and,

therefore, the proposed Newton-Rapshon algorithm is glob-
ally convergent. Then, at a particular given iteration n0,
all the iterations in (27) will have converged to |λ| = 1,
value which, substituted in (26), implies that one obtains
the decorrelation solution

G(n0)(G(n0))∗ = (B(n0))R̂xx(B(n0))∗ = I (29)

5. RELATIONS WITH EXISTING APPROACHES

5.1. Natural gradient

Silva and Almeida were the first to propose in [6] a dis-
tributed technique for the symmetric orthogonalization of
the observations. The same technique was independently
justified in [7], in the context of blind source separation, and
later identified with the natural gradient algorithm for blind
decorrelation (see Chapter 4 of [1] and references therein)

B(n+1) = B(n) +
∂l(B)

∂B
BT B (30)

= B(n) − µ (B(n)R̂(n)
xx (B(n))∗ − I)B(n) .

Let us rewrite here, for convenience, the 1st decorrelation
algorithm

Â(n+1) =
1

2

(

A(n) + R̂(n)
xx (B(n))′

)

(31)

B(n+1) = B(n) + η
(

(Â(n+1))−1 − B(n)
)

(32)

and the 2nd decorrelation algorithm

A(n+1) = A(n) +
η

2
(R̂(n)

xx (B(n))′ − A(n)) (33)

B(n+1) = (A(n+1))−1 , (34)

One can observe that both algorithms need to compute the
inversion of a matrix M(n+1), being M(n+1) = A(n+1) in
the first case and M(n+1) = Â(n+1) for the second one.
This matrix inversion can be avoided replacing it by an esti-
mate resulting from an iterative improvement algorithm [12]
and, thus, obtaining an approximate algorithm. When B(n)

is not so far away from the desired inverse so that the fol-
lowing condition is satisfied

‖B(n)M(n+1) − I‖2 < 1 , (35)

one can replace the exact inversion of M(n+1) by the re-
sult of the following Newton algorithm for iterative matrix
inversion

(M(n+1))−1 ≈ 2B(n) − B(n)M(n+1)B(n) (36)

Substituting (36) in (32) and in (34), we obtain, in both
cases, the natural gradient algorithm for blind decorrelation

B(n+1) = B(n) −
η(n)

2

(

B(n)R̂(n)
xx (B(n))∗ − I

)

B(n)



Defining the update ∆NG = 1
2

(

B(n)R̂
(n)
xx (B(n))∗ − I

)

B(n),

the optimal value for η(n) in the sense of maximizing the
log-likelihood l(B) up to the second order approximation is

η
(n)
opt =

tr{∆∗
NG

∂l(B)
∂B

}

(vec∆NG)∗ Hess l(B) vec∆NG

=
2‖R̂

(n)
zz − I‖2

F

‖R̂
(n)
zz − I‖2

F + ‖R̂
1/2(n)
zz (R̂

(n)
zz − I)‖2

F

(37)

≥
2

1 + ‖R̂
(n)
zz ‖p

∀p ∈ N (38)

where the last lower bound holds true for any arbitrary p-
norm, although, one can use those simpler to evaluate such
as the 1-norm or ∞-norm. It is easy to check that (38) is a
good and simple proposal for the step-size because it satis-
fies condition (35) and also approaches to the optimal New-
ton step-size as the algorithm converges.

5.1.1. Stochastic-Newton decorrelation algorithm

Using the instantaneous estimate in the sample correlation
matrix R̂

(n)
xx = x[n]x∗[n] and setting an small step-size

η � 1, one obtains the stochastic form of the 2nd decor-
relation algorithm

A(n+1) = (1 −
η

2
)A(n) +

η

2
x[n]z∗[n] (39)

B(n+1) = (A(n+1))−1 (40)

Defining α = η/(2 − η) and using the Sherman-Morrison
formula [12] we can avoid the explicit inversion

B(n+1) = B(n) −
α

1 + α‖y[n]‖2
2

(y[n]y∗[n] − I)B(n)

−
α2

1 + α‖y[n]‖2
2

(

y∗[n]y[n] − ‖y[n]‖2
2I

)

B(n)

By assumption η � 1, then α2 � α and the algorithm is
dominated by the linear part. This part of the stochastic-
Newton algorithm coincides with the stochastic implemen-
tation of the natural gradient algorithm for decorrelation but,
what is more interesting, it also provides the form of the
learning step-size one should use

µ(n) =
η(n)

2
=

α

1 + α‖y[n]‖2
2

(41)

This normalized step-size, originally suggested by Cardoso
as a good empirical choice for a fast convergence, has been
now justified from the theoretical standpoint.

5.2. Goodall algorithm for decorrelation

The Goodall algorithm has been first proposed in [4] and
later justified in [5] as gradient-like method to maximize

l(B). The algorithm was shown to be globally convergent
for sufficient small learning step-sizes. It consists in updat-
ing the inverse decorrelation system according to

Â(n+1) = (1 − µ1)Â
(n) + µ1x[n]z∗[n] (42)

and the outputs according to

z(n+1) = µ2x[n] + (I − µ2Â
(n+1))z(n) (43)

After looking at (42) it is easy to show that the Goodall
algorithm is an approximation to the stochastic form of the
Newton decorrelation algorithms, where the inversions have
been avoided by means of the following trick. Rewriting
(43) to obtain the explicit form of the iteration in terms of
the decorrelation system

B(n+1) = B(n) + µ2Â
(n+1)

(

(Â(n+1))−1 − B(n)
)

(44)

one can see that it converges to the inverse of Â whenever
condition ‖µ2Â − I‖ < 1 be true. This implies that Â

should be positive definite and, therefore, one can regard
(44) as a preconditioned form of the update in (15) or as an
approximation to (20).

6. SIMULATIONS

Let us define the following experiment. Given five sensors
that measure one thousand spatially correlated data we com-
pute the sample correlation matrix R̂xx and use the pro-
posed algorithms to find the inverse of the principal square
root R̂1/2

xx . Figure 2 shows, for 50 random experiments, the
median Frobenious norm of the difference between the sep-
aration system B(n), at iteration n, and the desired solution.
From the figure, we can observe that the convergence of the
proposed Newton algorithms is quadratic as well as the lo-
cal convergence of the natural gradient algorithm with the
proposed step-sizes in equations (37) and (38). The fig-
ure shows that the best convergence is for the Newton al-
gorithms with step-size η = 1, however, the natural gradi-
ent algorithm with a properly chosen step-size has a conver-
gence that approaches closely to that of the Newton algo-
rithm. This experiment confirms the previously explained
connection between both algorithms.

7. CONCLUSIONS

We have proposed novel Newton algorithms for blind decor-
relation whose global convergence is guaranteed. Adaptive
and batch implementations of the algorithm have been pro-
vided. Two classical blind decorrelation algorithms appar-
ently unrelated (the natural gradient for decorrelation and
the Goodall algorithms) have been shown to approximate
these Newton algorithms through different simplification of
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a matrix inversion. This framework provides theoretical jus-
tification for the normalized learning step-sizes that guaran-
tee and speed up the convergence of these algorithms.
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