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ABSTRACT

We present a new approach to approximate joint
diagonalization of a set of matrices. The main advan-
tages of our method are computational efficiency and
generality. We develop an iterative procedure, called
LSDIAG, which is based on multiplicative updates and
on linear least-squares optimization. The efficiency of
our algorithm is achieved by the first-order approxi-
mation of the matrices being diagonalized. Numerical
simulations demonstrate the usefulness of the method
in general, and in particular, its capability to perform
blind source separation without requiring the usual pre-
whitening of the data.

1. INTRODUCTION

Joint diagonalization of a set of matrices is an impor-
tant optimization problem with various applications.
In particular, this problem lies at the heart of many
successful BSS algorithms, e.g. [1, 2, 3, 4, 5, 6, 7]. Al-
though several diagonalization techniques have been
proposed in the recent years [8, 9, 10, 11, 12], there
is still the need for efficient and universal algorithms.

Mathematically, the joint diagonalization problem
can be stated as follows: Given a set of matrices {Ck}
with C ∈ IRN×N and k = 1 . . .K, find the matrix V
such that the transformed matrices

F k = V CkV T (1)

are as diagonal as possible:

V = argmin
K∑

k=1

MD(F k), (2)

for a suitable diagonality measure MD. In this paper
we use the following measure:

MD(F k) =
∑
i�=j

(F k
ij)

2. (3)

Alternative measures can be found e.g. in [10, 11].

The particular form of the matrices C and V de-
pends on an application. For example, in the BSS prob-
lem, the matrices Ck result from the transformation of
source correlation matrices by the mixing matrix A,
e.g.

Ck = AE{s[t]s[t + τk]T }AT .

In general, Ck can be arbitrary; however, it is common
for BSS problems to consider symmetrized matrices Ck.

Some previous algorithms used additional assump-
tions, e.g. orthogonality of V [8], or positive-definiteness
of Ck [11]. Such assumptions, however, might not hold
in practice. In this contribution we propose a new algo-
rithm, which is efficient and simple to implement, and
at the same time does not make specific assumptions
on the matrices. On the other hand, orthogonality can
be utilized in our algorithm to further improve its per-
formance.

Our approach is based on a perturbation expansion
of the joint diagonalizer. We express the diagonality
criterion (3) as a function of the perturbation. This
function is still too complex to allow for an efficient
optimization. To cope with this we linearize the trans-
formation (1), which allows us to cast the optimization
problem (2) as a sparse linear least-squares problem. A
solution to the latter can be obtained in closed form
with overall complexity1 O(N ) instead of O(N 3). This
solution is iteratively improved until it converges to the
optimal diagonalizer of the given set of matrices.

A similar perturbation approach was considered in
[13] with the assumption of orthogonality of the joint
diagonalizer. In contrast, our Ansatz does not rely
on orthogonality; however, it allows one to obtain the
same result as in [13] if orthogonality is assumed. An-
other related algorithm, in which orthogonality is used
for technical reasons, i.e. to circumvent trivial solu-
tions, can be found in [12].

1Note that the size of the problem N = N2 −N is inherently
quadratic in the dimension N of the matrices.



2. GENERAL STRUCTURE OF THE
ALGORITHM

The difficulty of direct optimization of the cost function
(3) is two-fold:

1. The trivial solution V = 0 must be avoided.

2. The matrix V in question occurs up to degree 4
in the cost function.

To tackle these problems we propose an iterative scheme,
which employs some well-motivated approximations and
heuristics. In the remainder of this section we present
the general outline of the algorithm and the motivation
behind it, while computational details are deferred to
section 3.

The main ingredient of our approach is the multi-
plicative update:

V(n+1) = (I + W(n))V(n). (4)

The update matrix W(n) is constrained to have zeros
on the main diagonal in order to prevent convergence of
V(n) to the trivial solution2. The off-diagonal elements
of W(n) are computed so as to minimize the joint diag-
onality criterion for the matrices

Ck
(n+1) = V(n+1)C

k
(0)V

T
(n+1).

Let Dk
(n) and Ek

(n) denote the diagonal and off-diagonal
components of Ck

(n) respectively. In order to make op-
timization tractable we assume that the norms of W(n)

and Ek
(n) are small. Then the quadratic terms in the

expression for the new set of matrices can be ignored:

Ck
(n+1) = (I + W(n))(Dk

(n) + Ek
(n))(I + W(n))T

≈ Dk
(n) + W(n)D

k
(n) + Dk

(n)W
T
(n) + Ek

(n). (5)

With these simplifications3, and ignoring already di-
agonal terms Dk, the diagonality measure (3) can be
computed over the expressions linear in W :

F k ≈ F̃ k = WDk + DkWT + Ek. (6)

At the first iterations the approximation of the ma-
trices Ck

(n+1) may be inaccurate. Nevertheless, it makes
sense to carry out the multiplicative update (4) with
the following sanity check: if ||W(n+1)|| > ||W(n)||,

W(n+1) ← α
||W(n)||
||W(n+1)||W(n+1), (7)

2Clearly, all diagonal entries of the matrix (I + W )T (I + W )
are ≥ 1. Since the trace of a positive-definite matrix is equal to
the sum of its eigenvalues, it follows that the largest eigenvalue
is ≥ 1. Therefore ||I + W ||2 ≥ 1.

3From now on the iteration indices will be dropped in the
expressions if all quantities refer to the same iteration.

with α a small number less than but close to 1, say 0.95.
The rationale behind the condition (7) is the follow-
ing. If ||W(n+1)|| increases in comparison with ||W(n)||,
the quality of approximation of F k in (6) goes down.
Therefore one should not trust the new W too much.
On the other hand, artificially forcing ||W(n+1)|| to be
small by scaling it with some small constant would not
serve the purpose either: if the approximation qual-
ity was bad at the n-th iteration, a really small update
would not improve this quality by much. The most sen-
sible solution appears to be to scale the new W such
that ||W(n+1)|| is just slightly less than ||W(n)||. This
is precisely what is achieved by the rule (7).

Our global updating procedure is summarized as:

Algorithm 1 The LSDIAG algorithm

Ck
(0) ← Ck

x , W(0) ← 0 , n← 0
repeat

compute W(n+1) according to eq. (11) or (12)
if (n > 0) AND ||W(n+1)|| > ||W(n)|| then

W(n+1) ← α
||W(n)||

||W(n+1)||W(n+1)

end if

V(n+1) ← (I + W(n))V(n)

Ck
(n+1) ← V(n+1)C

k
(n)V

T
(n+1)

n← n + 1
until convergence

While the above pseudo-code outlines the general frame-
work, the details of computing the update matrix W
are presented in the next section.

3. COMPUTATION OF THE UPDATE
MATRIX

The key to computational efficiency of the proposed
algorithm lies in utilizing the sparseness introduced by
the approximation (6). The special structure of the
problem can be best seen in the matrix-vector notation
presented next.

The N(N − 1) entries of the update matrix W are
arranged as

w = (W12, W21, ..., Wij , Wji, ...)T . (8)

Notice that this is not the usual vectorization opera-
tion vecW , as the order of elements in w reflects the
pairwise relationship of the elements in W . In a similar
way the KN(N−1) entries of the off-diagonal matrices
Ek are arranged as

e = (E1
12, E

1
21, ..., E

1
ij , E

1
ji, ..., E

k
ij , E

k
ji, ...)

T . (9)



Finally, a large but sparse, KN(N − 1) × N(N − 1)
matrix J is built, in the form:

J =




J1

...
JK


 with Jk =




Dk
12

. . .
Dk

ij

. . .




where each Jk is block-diagonal, containing N(N−1)/2
matrices of dimension 2× 2

Dk
ij =

(
Dk

j Dk
i

Dk
j Dk

i

)
.

Now the approximate cost function can be re-written
as the familiar linear least-squares problem

L(w) =
∑

k

∑
i�=j

(F̃ k
ij)

2 = (Jw + e)T (Jw + e).

The well-known solution of this problem [14] reads

w = −(JT J)−1JT e. (10)

One can now reap the fruit of the problem’s sparseness.
Writing out the matrix product JT J yields a block-
diagonal matrix




∑
k(Dk

12)TDk
12

. . . ∑
k(Dk

ij)
TDk

ij

. . .




whose blocks are 2×2 matrices. Thus the solution (10)
consists of decoupled equations

(
Wij

Wji

)
=

(
zjj zij

zij zii

)−1 (
yij

yji

)
,

where
zij =

∑
k

Dk
i Dk

j

yij =
∑

k

Dk
j

Ek
ij + Ek

ji

2
.

The matrix inverse can be computed in closed form,
leading to the following expressions for the update of
the entries4 of W :

Wij =
zjiyji − ziiyij

zjjzii − z2
ij

Wji =
zijyij − zjjyji

zjjzii − z2
ij

.
(11)

4Note that only the off-diagonal elements (i �= j) need to be
computed and the diagonal terms of W are set to zero.

An even simpler solution can be obtained if from the
very beginning the diagonalization matrix V is assumed
to be orthogonal. This assumption is frequently made
in the literature on joint diagonalization [15, 8, 16].
Orthogonality of V implies that W is skew-symmetric,
i.e., W = −WT , and hence only one in each pair of its
entries needs to be computed. In this case the struc-
ture of the problem is already apparent in the scalar
notation, and one can easily obtain the partial deriva-
tives of the cost function. Equating the latter to zero
yields the following expression for the update of W :

Wij =

∑
k Ek

ji(D
k
i −Dk

j )∑
k(Dk

i −Dk
j )2

, (12)

which agrees with the result of Cardoso [13]. By using
formula (12) the computational cost per iteration is
reduced by half compared to (11).

4. NUMERICAL SIMULATIONS

4.1. Experiment 1

First, we demonstrate the performance of our joint
diagonalization method on artificially generated test
matrices. We use K = 15 diagonal matrices Dk of
size 5 × 5, where the elements on the diagonal have
been drawn from a uniform distribution in the range
[−1 . . . 1] (cf. [12]). These are ‘mixed’ by a random, or-
thogonal matrix A according to ADkAT to obtain the
set of matrices {Ck} to be diagonalized. This problem
serves as a standard “sanity check” of most joint diag-
onalization algorithms, since such set of matrices is by
construction perfectly diagonalizable.

We use the skew-symmetric update rule (12) and a
separate re-normalization of Ck with their respective
norms. The algorithm is initialized with the identity
matrix V(0) = I and 20 iterations have been performed.
To monitor the convergence of the algorithm we plot
the diagonalization error per iteration for 10 indepen-
dent trials as shown in Fig. 1. One can see that the
algorithm has converged to the correct solution after
at most 4 iterations in all trials. The actual running
time was less than 0.5 seconds per trial.

4.2. Experiment 2

In a second example we investigate how our algorithm
performs for a larger number of matrices and larger
dimensions.

Similar to the first experiment, we generate a diag-
onalizable set of K = 30 matrices of dimension 25×25.
The mixture is carried out by non-orthogonal random
matrices A, which requires the use of the update rule
(11). The results of this simulation are shown in Fig. 2.
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Figure 1: Diagonalization errors of the LSDIAG algo-
rithm for a perfectly diagonalizable problem.

One can see that this problem is much more diffi-
cult, and in some trials (2 out of 10) the algorithm did
not sufficiently converge after 200 iterations. These
trials are indicated by dashed lines. However it can be
seen that even in these hard cases the algorithm makes
persistent improvements at each step. Furthermore the
norm of W , as shown in the middle panel, monotoni-
cally decreases, which implies that the approximation
quality steadily improves, and the algorithm will even-
tually converge. It is also interesting to observe (Fig. 2,
lower panel) the operation of the heuristic (7) and the
impact it has on the convergence of the algorithm. In
these plots the value of the ratio ||W(n)||

||W(n+1)|| is displayed.
When this value is less than one, the heuristic (7) is
used in the update; otherwise the shown value is 1 and
the heuristic is not activated. One can see that in all
trials this heuristic has been activated for some time
intervals. Moreover, these intervals seem to be exactly
the regions where the algorithm “takes a decisive turn”
towards convergence. In the two most difficult trials,
in which full convergence is not observed during the
first 200 iterations, the heuristic can be seen to be still
active. These observations underline the importance
of the heuristic in the convergence behavior of the LS-
DIAG algorithm.

4.3. Experiment 3

Finally, we apply our method to the blind source sepa-
ration problem. For this, eight independent audio sig-
nals (shown in Fig. 4) have been mixed by an invertible
non-orthogonal random 8×8 matrix A according to the
model

x[t] = A s[t].

The problem of identifying A can be solved by joint
diagonalization if one is able to define certain matrices
that are diagonal for the source signals s[t] and ”sim-
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Figure 2: Diagonalization performance of the LSDIAG
algorithm on a large ”non-orthogonal” problem.

ilar to diagonal” for the observed mixtures x[t]. For
example one could use correlation matrices of differ-
ent segments of the data [5, 6], or matrices obtained
from spatial time-frequency distributions [17, 4, 18] or
slices of the cumulant tensor [19] and of course any
combinations thereof [20]. In this experiment we com-
pute 21 symmetrized, time-delayed correlation matri-
ces (cf. [2, 3]) of the form

Ck =
1

2(T − 1)

T−τk∑
t=1

(
x[t]x[t + τk]T + x[t + τk]x[t]T

)

with τ = [0 . . . 20] and apply our LSDIAG algorithm
with an initial V(0) = I. Figure 3 shows the evolution
of the diagonalization error over 50 iterations.

One can see in Fig. 3 that the diagonalization error
is not as small as in the first experiments, but still
reaches a sufficiently low level. Even if the error is not
zero, because the Ck matrices are no longer perfectly
diagonalizable, it indicates the good performance of our
method.

This can also be verified, if we compare the joint
diagonalizer V(50)—which is supposed to be the esti-
mated inverse of our mixing matrix A—with the true
A by showing the entries of the product V A normalized
by the maximal element in each column in Fig. 5.
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Figure 3: Diagonalization error per iteration in the BSS
experiment.

5. CONCLUSIONS

In this paper we have presented a simple and efficient
algorithm LSDIAG for joint diagonalization of a set of
matrices. The algorithm is based on the least-squares
optimization of the linearized diagonalization transfor-
mation. Although this transformation can only approx-
imately represent the diagonalization error, it contains
enough information to guide our iterative procedure to-
wards convergence. If needed, an additional heuristic
provides further impetus in this process (cf. eq. (7)).

The key to the algorithm’s efficiency is a linear
least-squares formulation which has a high degree of
sparsity and allows for an analytic solution. As a re-
sult, each of the N(N − 1) parameter updates per it-
eration can be computed in closed form. To the best
of our knowledge, such a favorable property was so far
only enjoyed by Jacobi-type methods in the orthogonal
case [8].

Moreover, when additional information is available
on the structure of the matrices involved in joint di-
agonalization, some of this information can be used to
further improve the performance of our algorithm. For
instance, it can be easily adapted to the orthogonality
of the diagonalizer.

It remains an open issue, if convergence of the LS-
DIAG algorithm, consistently observed in our experi-
ments, can be formally proved. A comprehensive ex-
perimental comparison of the new algorithm with other
existing joint diagonalization techniques is part of our
ongoing work.

The new algorithm is particularly suited to BSS ap-
plications. First, it is not limited to orthogonal diago-
nalizers and hence does not require pre-whitening of the
data. The benefit of this is that one can avoid errors
introduced by pre-whitening that cannot be compen-
sated in the later rotation step [21, 20]. The second
attractive feature of the algorithm is the use of mul-

8
7
6
5
4
3
2
1

source signals

8
7
6
5
4
3
2
1

observed mixtures

8
7
6
5
4
3
2
1

separated signals

Figure 4: Waveforms of the eight audio signals.

tiplicative updates [22, 23, 24], which ensure that the
resulting diagonalizer always belongs to the group of
invertible matrices. Finally, the algorithm scales well
with both the dimensionality and the number of ma-
trices to be diagonalized.
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Figure 5: The normalized product of the estimated
demixing matrix V(50) and the true mixing matrix A.
The closeness of this product matrix to a permutation
matrix indicates a good performance.
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