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ABSTRACT

Separation of monaural linear mixtures of ‘white’ source
signals is fundamentally ill-posed. In some situations
it is not possible to find the mixing coefficients for
the full ‘blind’ problem. If the mixing coefficients are
known, the structure of the source prior distribution de-
termines the source reconstruction error. If the prior is
strongly multi-modal source reconstruction is possible
with low error, while source signals from the typical
‘long tailed’ distributions used in many ICA settings
can not be reconstructed. We provide a qualitative dis-
cussion of the limits of monaural blind separation of
white noise signals and give a set of no go cases, fi-
nally, we use a so-called Mean Field approach to derive
an algorithm for ICA of noisy monaural mixtures with
a bi-modal source prior and demonstrate that low error
source reconstructions are possible when the bi-modal
source is close to binary. This is the first demonstration
of blind source separation in noisy monaural mixtures
without invoking temporal correlation information.

1. INTRODUCTION

Blind separation of linear signal mixtures is a fasci-
nating problem with numerous applications. The over-
complete separation problem consists in separating mix-
tures of more sources than measurements [8]. The ex-
treme situation arises when the aim is to separate two
or more signals mixed linearly into only one channel,
and is referred to as monaural or single channel sepa-
ration.
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Blind signal separation problem consist two sub-
problems: 1) Learning the mixing coefficients from a
sample of the mixture and 2) Estimating the sources.
These two aspects of the problem are often considered
together. In fact, in many EM-like algorithms one iter-
ates between solving 1) and 2). But it turns out that in
the monaural problem it is sometimes possible to learn
the mixing coefficients without being able to fully re-
cover the source signals.

A number of monaural separation schemes have
been proposed, all based on the use of temporal struc-
ture [4, 13]. In this contribution we will focus on the
harder problem of over-complete mixtures of sources
with no temporal correlation as in [8].

We show that for source signals with densities be-
longing to the so-called symmetric stable family it is
not possible to learn the mixing coefficients. For heavy
tailed signals, in general, it is not possible to recover
the sources even if the mixing coefficients are known.

Finally, we can provide a bit of good news: For
certain multi-modal source priors (e.g., binary sources)
one can in fact easily learn the mixing coefficients and
subsequently recover the source signals. In fact we
show how to use a Mean Field approach to derive an
algorithm for ICA of noisy monaural mixtures with a
bi-modal source prior and demonstrate that low error
source reconstructions are possible when the bi-modal
source is close to binary. This is the first demonstra-
tion of blind source separation in noisy monaural mix-
tures without invoking temporal correlation informa-
tion. Separation of bi-modal sources is of practical rel-
evance in telecommunications and in functional neu-
roimaging. In fMRI activation studies the observation
is a mixture of hemodynamic fluctuations, including
the response of neural tissue to on-off stimuli. Such



stimulus induced components can have bi-modal his-
tograms see [12].

2. LEARNING THE MIXING COEFFICIENTS

Let us consider monaural separation of white noise sig-
nals, i.e., signals without temporal dependencies and
without measurement noise. In particular we study the
model,
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The blind source separation problem consist of es-
timating the mixing coefficients and the sources. The
posterior distribution of mixing coefficients is given by
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In general the likelihood function will be a func-
tion of the components of �. If the source distribu-
tions are symmetric and identical, the posterior will
‘inherit’ reflection and permutation symmetries as in
conventional ICA problems [7]. Hence, in the case of
a one-dimensional mixture of two such sources there
will be four degenerate ‘peaks’ in the likelihood (and
in the posterior if the prior � ��� is symmetric).

However, under certain source distributions the pos-
terior can be more degenerate.

2.1. Symmetric stable signals

The class of symmetric 	-stable (
	
) distributions
are heavy-tailed distributions investigated as models of
impulsive noise and speech [5, 6]. The densities are
denoted 
	
��� 	� �� where � is a location parameter,

� is a scale parameter and 	 is a shape parameter and
they are defined by their closedness under addition
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The density functions for 
	
-variables can only

be written in closed form for 	 � � and 	 � �, where
we obtain the normal distribution and the Cauchy dis-
tribution:
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The addition rule implies that information about
the mixing coefficients is lost in stable mixtures: The
likelihood function for a mixture of two unit-scale sta-
ble variables (with mixing coefficients ��� ��) is a func-
tion of the combination ������ � ��������� only.

2.2. Temporally correlate d gaussian sources

In [1, 4, 13, 14] monaural separation was analyzed
in the case of temporally correlated signals, typically
speech signals. For temporally correlated and station-
ary signals the matrix

���� � 	��������� ��
 (5)

is a diagonal matrix with elements describing the
autocorrelation of the sources at lag � . Now compute
the autocorrelation function for the mixture signal
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We note that from a measurement of ���� is it not
possible to identify both � and the � source functions
�������. Hence, we conclude that an ICA approach
like the one of Molgedey and Schuster [9] is infeasi-
ble for monaural separation. Other schemes that either
makes use of higher order moments or non-stationarity
may still succeed in separating monaural mixtures. Since



our main objective here is to discuss white noise mix-
tures, we will not pursue this topic further, instead we
refer to [1, 4, 13, 14] for examples.

3. GEOMETRY OF MONAURAL WHITE
NOISE SOURCE RECONSTRUCTION

The above degeneracy is specific for stable distribu-
tions and in general we expect that the mixing coeffi-
cients are learnable from samples of a monaural mix-
ture. However, then the second problem arises: How
accurate can the source signals be recovered?.
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Fig. 1. Contours of the joint distribution of two sparse
source signals. An observation � � ���� � ���� con-
strains the possible sources to a line. The ‘true’ source
are drawn from the prior, hence, the line passes trough
at least one arm of the cross formed by a contour line.
In the two-dimensional case we see that a line deter-
mined by mixing coefficients in general position al-
ways intersects the cross in two places. The actual
values of the mixing coefficients determine which of
the two peaks in along the line is maximal, not the
measurement �, hence, we conclude that any source
reconstruction will have a large error for such sparse
source mixing problems.

To illustrate the ill-posed nature of the source iden-
tification problem we first note that if the source are
i.i.d. we are faced with a sequence of independent prob-
lems of the form: Find � from a single measurement of

�, given �. The constraint

� � � � �� (7)

defines a � � � dimensional hyperplane of solu-
tions in the �-dimensional source space. The posterior
distribution of the source signal is given by
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Let us be specific and consider first two signals
mixed in one receiving channel. In Figure 1 we show
the geometry for a sparse (Cauchy) prior. The density
contours form a ‘cross’ strongly peaked along the axes.
For two independent sparse signals, there is low prob-
ability that they are both large at the same time. The
constraint � � ���� � ���� forms a single linear re-
lation between the component of �, hence, the source
prior determines which solution we choose, say in a
maximum posteriory approach. Clearly, for a sparse
prior we see that for all � there are two ‘peaks’, along
the line. Since the source signals are drawn from the
prior we face a situation where we need to choose be-
tween two competing solutions: The ‘true’ solution
and a ’false’ solution. Note, it is the coefficients � that
determines which of the two peaks have the maximum
density value, not �, hence we can expect a high re-
construction error rate for sparse priors.

Now why does the same argument not prevent the
solution of the mixing of three signals in the binaural
(two channels) case, as e.g., considered in [8, 7]? The
scenario is depicted in Figure 2, the two measurements
form two linear contraints leading to a 1D linear man-
ifold of solutions within which the prior determines
the posterior. Since the true sources are drawn from
the prior, the line will typically intersect one of the
six ’arms’ of the density, but unlike the previous case,
there is limited probability of a second “false” solu-
tion, corresponding to the line also intersecting another
arm! It is easy to generalize this argument to higher
dimensional mixtures in two channels. Source recon-
struction with sparse sources is fundamentally ill-posed
in one-dimensional mixtures and well-posed in typical
two or higher dimensional channel case.
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Fig. 2. Iso-surface for the joint prior distribution of
three sparse sources. If we have access to two obser-
vation channels (microphones) each observation �� �
������������������ � � �� � will constrain the pos-
sible sources to a plane, hence, the likelihood function
contrains the posterior to the intersection of the two
planes forming a linear manifold of possible sources.
Since the ‘true’ sources are drawn from the prior the
line will pass trough at least one arm of the star shaped
iso-surface. However, for mixing coefficients in gen-
eral position it is not likely that the line passes through
two arms. Hence, the posterior is strongly peaked in
the vicinity of the ‘true’ sources.

4. RECONSTRUCTION OF BI-MODAL
SOURCE SIGNALS

The geometric origin of the sparse source reconstruc-
tion problem suggests that sources with a multi-modal
prior will reconstruct better. Figure 3 illustrates the sit-
uation for a quasi-binary prior formed by a mixture of
two gaussians. The prior has high density values in the
neighborhood of the four source signal combinations
���� ��� ������� ���� ��� ��������. For a typical set
of mixing coefficients � the linear constraint imposed
by the likelihood leads to a line of solutions intersect-
ing one and only one of the four ‘prior peaks’, hence
strongly selecting the correct solution.
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Fig. 3. Contours of the joint density of two source
signals with a ‘mixture of two gaussians’ priors. The
narrow widths create a ‘quasi-binary’ scenario. The
observation of � � ���� � ���� again constrains the
posterior to the intersection of the prior and the ‘like-
lihood’ line. The line only intersects one of the gaus-
sians, hence the posterior is stongly peaked a the ‘true’
source configuration ���� ��� � ������. If we observe
a noisy mixture � � �����������, the line is broad-
ened to to standard deviation of the noise process �.

4.1. Mean Field approach for noisy ICA

Using the mean-field approach of [3] we have investi-
gated the reconstruction of source signals from a noisy
mixture � � ���� � ���� � �, where the sources both
have a bi-modal prior density composed by a mixture
of two gaussians as in Figure 3. The two gaussians are
centered at ��� � and have width ��

We assume that the additive noise is gaussian, � �
� ��� ���. The probability density of the measured
data conditioned on the parameters, i.e., the likelihood
function, is obtained by noting that �� � �� � a � s�,
hence, � ����a� s� � � �a�s�� ���. Bayes theorem then
relates the source priors and the source posterior as

� �S�a� ��� x� �
� �x�a� ���S�� �S�

� �x�a� ���

where capital S is defined by S�� � �s���. Maximizing
the source posterior with respect to a and �� leads to



the following estimators

�a � �	S
	 	SS	 
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The bracket � ��� � denotes expectation with respect
to the source posterior. These expressions depend on
	S
 and 	SS	 
 approximately determined through Mean
Field Theory (MFT) using a and �� [3]. In MFT the
true source posterior is approximated by a factorized
density function. The interaction not represented di-
rectly in the factorized model is compensated by a lin-
ear term - the so-called ‘external field’, in particular
we introduce two auxiliary variables: The interaction
J � ���a	 a and the external field h � ���a	 x. From
these we define:

��� � �� � ��� (9)
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��� � (10)

and the implicit non-linear equations for the sufficient
statistics then read,
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This way we arrive at a two-step algorithm. The
first step in which a and �� are estimated using 	S
 and
	SS	 
 and a second step in which 	S
 and 	SS	 
 are
estimated using a and ��. We use the posterior means
as our posterior source estimate, i.e. �S � 	S
� In the
limit ��  �, i.e. the binary case, the posterior mean
values minimize the mean bit error rate.

We set up a simulation to demonstrate that bi-modal
monaural mixtures can be separated. The sources are
bi-gaussian with a variable width, and furthermore we
vary the additive noise level. The reconstruction error
of the recovered source signals is measured as

� �
�
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 (11)
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Fig. 4. The scaled mean square source reconstruction
error vs. the width of the bi-gaussian source distribu-
tions and the noise variance. The gaussians were cen-
tered at ���� and the widths were identical and varied
from zero (binary sources) to � � � . The mixing co-
efficients were ���� ��� � �������� ��������. The
zero error rate in the limit of low noise and narrow
source priors is achieved for mixing coefficients in
‘general position’. The sources were estimated using
the mean field approach presented [3]

where ��� �� are the ‘true’ and reconstructed sources
respectively. The scaling assures that the error be-
comes equivalent to the bit error rate for binary sources.
The reconstruction error is a function of the width of
the source distribution and the noise variance as shown
in Figure 4. For mixing coefficients in ‘general posi-
tion’ we achieve perfect reconstruction in the binary,
noise free limit.

5. CONCLUSION

In this paper we have discussed the problem of blind
source separation based on a single white noise mix-
ture signal. We have shown that in some situations it is
impossible to identify the mixing coefficients, namely



for 	-stable mixtures. In general it is possible to iden-
tify the mixing coefficients, however, it may still be
infeasible to reconstruct the source signals. A qualita-
tive analysis lead us to conclude that heavy tail signals
can only be reconstructed with a high error rate, hence,
monaural mixtures are harder than two or more dimen-
sional mixtures for simple topological reasons.

For signals with a multi-modal source distribution,
however, source reconstruction is feasible and in the
noise free limit, and in the specific case of binary sources
the reconstruction can take place without errors.
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