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ABSTRACT

The FastICA algorithm by Hyvéarinen and Oja is
a popular block-based technique for independent
component analysis and blind source separation
tasks. This paper presents a complete stationary
point analysis of the FastICA Algorithm employing
a cubic update nonlinearity for linear source mix-
tures. Our analysis shows that all of the FastICA al-
gorithm’s stationary points correspond to desirable
separating solutions when a certain moment condi-
tion on the sources is satisfied. In addition, numeri-
cal studies of the analysis equations indicate during
the initial stages of adaptation that every iteration
of the FastICA algorithm decreases the normalized
inter-channel interference by one-third or 4.77 dB.

1. INTRODUCTION

Research in the fields of blind source separation (BSS) and
independent component analysis (ICA) have uncovered nu-
merous algorithms and procedures for performing linear
decompositions of spatial and spatio-temporal information
based on their underlying statistical structures. One of the
most-used procedures for both BSS and ICA is the Fas-
tICA algorithm of Hyvérinen and Oja [1, 2]. This technique
was derived in [1] as an approximate Newton method ap-
plied to a measure of non-Gaussianity as a separation crite-
rion. The most-common implementation of this block-based
procedure is a two-stage approach. Given a sequence of
m-dimensional measurements x(n) = [r1(n) --- zm(n)]7,

1 < n < N for which a linear transformation y(n) = Bx(n)
is desired, the following steps are taken:

1. The data is first prewhitened by an (m x m) prewhitening
matrix P such that the prewhitened measurements given by

v(n) = Px(n) (1)

have uncorrelated and unit variance elements; 1.e.

% Z v(n)v' (n)

I
=

(2)

2. An iterative procedure is employed to adjust an (m x m)
orthonormal matrix Wy = [Wig -++ Wmi|T such that

ye(n) = Wiv(n) ®3)

contains the estimates of the independent sources. Each
Wi = [wilk .- -wimk]T in Wy, is adjusted using

yik(n) = wix(n)v(n) (4)

N

Wikt1) = %Zf(yik(n))v(n) = f'(yix(n))wir (n) (5)
n=1

o _ Wi(k+1)

Wi(k+1) 7”‘7”(“1)” . (6)

where f(y) is a nonlinearity, f'(y) is its derivative, and
Iwall = Q272 w};;)'/? is the Euclidean norm of the vec-
tor w;,. The vectors v?r,-(kH) are then orthogonalized with
respect to each other to obtain the updated matrix Wi1.
Although many choices for f(y) are possible, two popular
choices are f(y) = y* and f(y) = tanh(By), where 3 > 0.
The second stage of this two-stage procedure is iterated
until some convergence condition is met, at which point
B = Wy, /P is the resulting transformation.

Assume that the source mixtures satisfy the linear model

x(n) = As(n), (7)
where A is an unknown (m X m) mixing matrix, s(n) =
[s1(n) -+ sm(n)]T is the source signal vector, the elements

of s(n) are statistically-independent with zero means, and
the amplitude statistics of the elements of s(n) satisfy

E{si(n)f(si(n))} — E{si(n)}E{f'(si(n))} # 0 (8
for (m — 1) of the sources, where E{-} denotes statistical
expectation. Then, it can be shown [2] for w;; = Wy that
this procedure is locally stable about a separating solution
yielding y;x(n) = ¢ij (k)sj(n) as N — oo, where ¢;; (k) is the
(3, j)th element of the combined system coefficient matrix

Cr = W,PA. (9)

The convergence behavior of the FastICA al% orithm given
by (4)—(6) for the cubic nonlinearity f(y) =y~ was further
analyzed in [1]. This analysis developed averaged evolution
equations for the coefficient ratios cijx/ciix given their ini-
tial values ¢;jo/ciio and and the kurtoses k; of the sources
defined for 1 < < m as

ki = Bfsi(n)} - 3(E{si(n)})". (10)
This analysis cleverly avoids the use of the normalization
condition by employing coefficient ratios. This analysis does
not give an indication of how fast the procedure reduces the
inter-channel interference (ICI) given by

m

m Zc?ﬂc
icr, = Y | -1 (11)

max ¢
i=1 | 1<j<m



Clearly, information of this sort would help practitioners
judge the abilities of the algorithm as well as the number
of iterations needed by each single-unit procedure to obtain
adequate separation performance.

In this paper, we explore further the properties of the sta-
tistical analys1s of the FastICA algorlthm s behavior for the
case f(y) = y* under the linear mixing model in (7) with
statistically-independent sources given in [1]. Given this
analysis, we prove that all locally-stable stationary points
of the FastICA algorithm under unit-norm constraints cor-
respond to desirable separating solutions. We also provide
a geometrical view of the FastICA algorithm’s convergence
behavior that is simple to grasp. Numerical studies of this
analysis indicate that the FastICA algorithm with cubic
nonlinearity reduces the normalized inter-channel interfer-
ence (ICI) by one-third or 4.77 dB at each iteration inde-
pendent of the source kurtosis values. Simulations verify
the accuracy of the analytical results.

2. STATISTICAL ANALYSIS OF THE
FASTICA ALGORITHM

The technique used to analyze the behavior of the FastICA
algorithm is well-known in the adaptive signal processing
field [3]. The evolutionary behaviors of the parameters of
any adaptive algorithm can be determined by developing an
equivalent set of coefficient updates whose forms depend on
the statistics of the signals being processed. Because the
FastICA algorithm is a block-based procedure, the corre-
sponding coefficient updates derived from the analysis are
equivalent to those of the FastICA algorithm as the block
size N tends to infinity.

This analysis of the FastICA algorithm uses the expecta-
tion operator defined for M(n) dependent on s(n) as

E{M(n)} = lim —ZM(n (12)

Let s(n) contain sources that are statistically-independent
with zero means and unit variances, such that for any four
non-equal integers {i, 7,1, p} € [1, m],
E{si(n)} =0, E{si(n)s;j(n)} =0, (13)
E{s;(m}=1, Ef{si(n)s;(n)s;(n)} =0,  (14)
E{si(n)s;(n)} =0, E{si(n)s;(n)si(n)sy(n)} = 0.(15)
Define the kurtosis of each s;(n) as in (10).

The first stage of the FastICA algorithm is a prewhitening
step. As N — oo, we have that

PE{x(n)x" (n)}P" = PAE{s(n)s"(n)}A"P”(16)

= PAAPT =1, (17)

such that PA = T where I' is orthonormal; i.e. I'TT =
I'’T' = 1. Thus, we have

v(n) = Ts(n), (18)
where E{v(n)vT(n)} =L
Assume a single-unit system, in which wi = wix = Wi,

where we have suppressed the ith index for notational sim-
plicity. Define the transformed coefficient vector

Cr = FTWk (19)

such that
yr(n) = w;‘:v(n) = c{s(n). (20)

Then, by pre-multiplying both sides of (5) by I'", we can
write the FastICA algorithm update as

G = E{gdn)s(n)} - e (21)
Cr+1 = Ek+1 (22)
[[€kt1]]

where E{y2(n)} = cF E{s(n)sT (n)}cx =1 due to the unit-
norm constraint on cg.

To proceed further, we require an expression for
E{yi(n)s(n)}. The following theorem yields the necessary
result and the resulting expression for the update of cy.

Theorem 1: Let ¢, be an m-dimensional vector, and

suppose the elements of s(n) satisfy (13)—(14). Define
yr(n) = cf's(n) for 1 <n < N. Then,
E{yi(m)s(n)}y = Kf(er)+3llckll’c,  (23)

where K is a diagonal matrix whose (z,7)th element is &;
and the ith element of f(cy) is c5,.

Corollary 1.1 [first shown in [1] ]: As N — oo the single-
unit FastICA algorithm update in (4)—(6) is equivalent to
the vector update

Kf(ck)

RE (o) 24)

Ck+1

where wj, = PAcg, or the scalar update for 1 <i<m

3
KiCik

Cik+1) = (25)

Proof:  Consider the (i,j)th element of the matrix
E{s(n)yi(n)s” (n)}, given by

E{si(n)s;(n)yx(n)}

E{sZ n)s; n)Zchkcpksl n)sp(n)} (26)

=1 p=1

nMs

chkcpkE{si(n)sj (n)si(n)sp(n)}.  (27)

The expectation on the right-hand-side of (27) can be eval-
uated using (13)—(15) as

E{si(n)sj(n)si(n)sp(n)}

ifi=j#l=p
1 orifi=1l#j=p
= orifi=p#£j=1 (28)
E{si(n)} ifi=j=1=p
0 otherwise.



Table 1: The FastICA algorithm in MATLAB.

[N,m] = size(x);
W = eye(m);
v = x/chol((x’*x)/N);
for i=1:iter
y = VHW;
[W,R] = qr(v’*y.~3 - 3*WN);
end

Therefore,

m

> ZcmcpkE{sz (n)s; (n)st(n)sp(n)} = [mickk + |le|*)6

=1 p
+ 2¢cikCjk - (29)

In matrix form, we have
E{s(n)yi(n)s” (n)} =Kdiag[cxck ] + [|cx| T + 2¢cxck(30)

where diag[M] is a diagonal matrix whose diagonal entries
are the diagonal elements of M. Therefore,

E{yi(n)s(n)} = EBEfs(n)yi(n)s" (n)}cx (31)
= Kdiag[ckc Jex + 3|ck||’cr (32)
= Kf(ck) + 3||ck||2ck. (33)

The corollary follows by substituting (33) into (21) and then
recognizing that ||cx|| = 1 for all k& due to (22).

Discussion: The result in (24) yields several insights into
the structure and convergence behavior of the FastICA al-
gorithm. Specifically,

1. The convergence of each element of the combined sys-
tem vector ¢ = ATPTwy, is largely uncoupled with
respect to every other element of c;. The only cou-
pling is due to the normalization constraint ||cg|| = 1.

2. The average behavior of the FastICA algorithm can be
easily simulated for any initial combined system vector
¢ if the kurtoses {r;} of the sources are known and
the sources satisfy the moment conditions in (13)—(15).
Thus, complicated Monte Carlo simulations involving
source signal mixtures x(n) are not required.

3. The update in (24) is identical to the power method for
finding the principal eigenvector [4] of the time-varying
diagonal matrix Ry whose (4,4)th element is x;c,.

This last result can be used to develop a simple implemen-
tation of the FastICA algorithm that is similar in structure
to the method of orthogonal iterations for principal compo-
nent analysis [4]. Table 1 shows a MATLAB-based imple-
mentation of the FastICA algorithm that employs the built
in functions chol and gr to implement the prewhitening
and orthogonalization stages of the algorithm, respectively.
In this program, iter determines the total number of iter-
ations of the algorithm, and the for loop can be replaced
by a while loop with an appropriately-chosen stopping cri-
terion. At convergence, the i diagonal entry of R is equal to
the kurtosis of the ith extracted source.

3. STATIONARY POINT ANALYSIS OF THE
FASTICA ALGORITHM

The results of the last section can be used to determine
the stationary points of the FastICA iteration. Our analy-
sis extends the work in [1, 2] by finding all of the possible
stationary points of the algorithm under the normalization
condition and not just the desirable separating ones. Sim-
ilar analytical results for a related prewhitened algorithm
are described in [5]. For our analysis, we shall analyze the
situation where the signs of each c;, are ignored, such that
(25) is

leiwanyl = (34)

Clearly, the cubic nature of the update in (25) causes the
sign of each ¢;; to alternate back and forth as k is incre-
mented if k; < 0.

Assume without loss of generality that the |k;| values are
ordered, such that |ki1| > |k2| > -+ > |km|. Moreover,
let m, denote the smallest integer for which |k;| = 0 for
mp+1 < j < m, and define J as any subset of the elements
of Z=1{1,2,...,mp}. Then, we have the following.

Theorem 2.1: The set of potential stationary points of
(34) for ¢y =cs =[c1,s -+ cm,s]” are given by all possible
subsets of J with

|| 1

—1
> ksl

€T

GET ¢s=0, §¢&J. (35)

lei,s| =

Theorem 2.2: The set of stable stationary points of (34)
are the separating solutions defined for each i € Z as

leis| =1, ¢js =0, 1< j<m,j#i. (36)

Proof: A cursory study of (34) shows that setting c;x = 0
results in ¢;(z+1) = 0. Moreover, if k; = 0, then c;x41) =0
no matter what c¢;; is. Clearly, we only need to consider
stationary points of (34) for which any subset of the {c¢; s}
values for 1 < ¢ < m, are non-zero. Call this subset of
indices J. Then, for indices i € J, we can simplify (34) to

obtain
|kilei, = Z O (37)
Jj€T

By dividing both sides of (37) by |k;| and summing across
it € J, we have

chs Z|ﬁz| ZK’J ;s (38)
i€J v

Since ¢, must be of unit length, the left-hand side of (38)
must be one, yielding the relation

1
D P —— (39)
jeg Z |

€T




Substituting (39) into the right-hand side of (37) and divid-
ing both sides of the resulting expression by |;| produces

Cis = L—l (40)
> ksl
JjeET

Taking square roots of both sides of (40) yields the condition
in (35).

To determine the local stability of (34) about the solu-
tions defined in (35), define the perturbed coefficient values
lei| = ci,s + Asp where ¢ s = |cis| in (35) and J is any
valid subset of the elements of Z. Because of the unit-norm
constraint in (22), we only need to consider perturbations
{A;} that are tangent or orthogonal to c,, such that

D eidi = 0. (41)
Jj=1

Furthermore, assume that each |A;| < 1. Consider first
solutions for which ¢; s # 0 for two or more indices 7 € J.
Then, to first order in each A;,

. A:)3
leie+1)] = rileis ¥ 0i) (42)
D3 (he + 85)0 + D KIAS
JjeT i¢T
~ Ki [c?,s + 3A¢cis] (43)
z K3[el  +6c3 JAf]
jeT
A,
K,'C$ 1+ 30 g
— 1%4,8 . 1,8 (44)
Zn?c?,s Z HIQCIS,SAI
ies 1+65L
2 6
D ki
jeT

where we have used the fact that |A;| < 1 to simplify (42)
to obtain (43). It can be shown using (37) that

2 4
RiC s _
26
E :ﬁjcj,s
jeg

Substituting (45) and (35) into the right-hand side of (44)
and simplifying, we obtain

1. (45)

A

1+3
Ci,s

leige+y| = leis| -
146 cisd;
JEJ

(46)

= Jeis]- ‘1+3£i (47)
= |ci,s| + 3sgn[ci,s]As. (48)

Therefore, we have
leie+n| — leis] = 3sgnleis]As (49)

= 3sgnleis][lei| — lcisl]  (50)
and thus

leik+1y| — lei,s|

= 3 (51)
lcix]| — |ci,s|

Eqn. (51) indicates that for indices 7 for which ¢; s # 0, any
deviations of ¢;; away from c; s grow at each iteration by a
factor of three. This behavior is clearly unstable. Moreover,
these deviations only affect the solutions for cs that have
two or more non-zero elements, because if ¢, has only one
nonzero element ¢;,s = 1, then the corresponding perturba-
tion in ¢;; is A; = 0 due to the constraint in (41). These
results prove that all solutions of the form in (35) that are
not of the form in (36) are unstable.

Now, consider the space of stationary points defined by
(36). Due to the constraint in (41), we only need to con-
sider the deviations of those coefficients |cjx| = A; whose
stationary values are zero, as |c;x| = 1. For j # 1,

K A3
lejrany| = |————— (52)
K2+ ) R3AS
pET
s
~ i (53)
s
- (%mm) el (54)
Therefore,
lej 1)l [65] A2
. = A%,
lejikl lral (55)

Since each |A;| < 1, the right-hand side of (55) is less than
one. Hence, small deviations of each |cjx| away from zero
decay to zero over time. This result proves the local stability
of the update about the separating solutions in (36). Taken
together, (51) and (55) prove both theorems.

4. INITIAL CONVERGENCE OF THE
FASTICA ALGORITHM

The analysis equation in (24) first derived in [1] completely
characterizes the dynamic behavior of the single-unit Fast-
ICA algorithm. Moreover, by running m single-unit sys-
tems in parallel with orthogonalization at each step, the
behavior of the entire FastICA separation procedure can be
simulated. In this section, we employ (24) in simulation
studies to gain insight as to why the FastICA algorithm
converges so quickly in the cubic nonlinearity case.
Consider first the case where all kurtosis values {x;} in
K for (24) are identical, such that the exact value of k; does
not affect the convergence behavior of the algorithm. Figs. 1
and 2 depict the convergence of c; from numerous initial






