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ABSTRACT 
 
Spectral Flatness Measure is a well-known method for 
quantifying the amount of randomness (or “stochasticity”) 
that is present in a signal. This measure has been widely 
used in signal compression, audio characterization and 
retrieval. In this paper we present an information-theoretic 
generalization of this measure that is formulated in terms 
of a rate of growth of multi-information of a non-
Gaussian linear process. Two new measures are defined 
and methods for their estimation are presented: 1) 
considering a source-filter model, a Generalized Spectral 
Flatness Measure is developed that estimates the 
excessive structure due to non-Gaussianity of the 
innovation process, and 2) using a geometrical 
embedding, a block-wise information redundancy is 
formulated using signal representation in an Independent 
Components basis.  The two measures are applied for the 
problem of voiced/unvoiced determination in speech 
signals and analysis of spectral (timbral) dynamics in 
musical signals. 

 

1. INTRODUCTION 
 
In many signal-processing applications, such as 
compression, modeling, detection or retrieval, one deals 
with the problem of determining the amount of 
randomness that is present in a signal. A standard method 
to measure randomness is based on estimation of the 
amount of correlation structure by means of a Spectral 
Flatness Measure (SFM) [1,2,3]. SFM is defined as the 
ratio of the geometric mean to the arithmetic mean of the 
power spectral components in every spectral band. 
Sometimes called also “tonality coefficient”, it is used to 
quantify how much tone-like a sound is, as opposed to 
being noise-like.  

In this paper we consider an information-theoretic 
view of the SFM by defining a new measure of 
randomness that depends on the rate of growth of multi-
information for every additional sample of the signal. We 
call this new measure “Marginal Information 
Redundancy”, or “Multi-Information Rate” (MIR). It is 
shown that MIR equals SFM for Gaussian processes, i.e. 
for signals that can be described as a Gaussian i.i.d. noise 
passing through a linear filter (source-filter model). We 
show that SFM is a maximum entropy estimate of MIR 
when only second order statistics are available and under 
assumption of Gaussianity of the residual error, also 
called innovation process or excitation signal. In this case 
SFM measures the structure only due to linear or Markov 
dependencies that are caused by the filter. In case of a 
non-Gaussian process that “drives” a linear system, we 
take into account the additional structure or the decrease 
in entropy of the innovation. A non-Gaussian source has 
more structure since the Gaussian probability distribution 
function (pdf) has the maximal entropy among all 
processes with equal variance. We show that in non-
Gaussain case a correction to SFM can be obtained based 
on MIR approach. This Generalization of SFM (GSFM) is 
estimated from the Negentropy approximation to the 
differential entropy of the innovation process.  

A second generalization to the SFM is provided by 
assuming a geometrical embedding of the signal by 
representing the signal as a sequence of independent 
linear combinations of n dimensional basis vectors. 
Estimation of a linear independent basis is possible by 
Independent Component Analysis (ICA) method. This 
Independent Components (IC) representation models the 
one-dimensional time signal as a linear combination of 
basis vectors, so that the expansion coefficients are 
statistically as independent as possible. Using IC, we 
define a Independent Components SFM (IC-SFM) that is 
based on block-wise information redundancy differences. 
IC-SFM measures the difference between multi-



information (MI) of a sequence of blocks and a separate 
sum of MI of a one block shortened sequence plus MI of 
the last block.  It is proved that this measure equals to the 
sum of marginal entropies of the independent 
components, and is independent of the basis (as long as it 
is IC basis). Moreover, it can be easily estimated using the 
earlier  (generalized) SFM. 

 
2. MARGINAL INFORMATION REDUNDANCY 

 
Given a stochastic process x, the average amount of 
information that the variable 1x  carries about 2x  is 
quantified by the mutual information [4] 
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Generalization of the mutual information for n variables is  
 

),...,,()(),...,,( 21
1

21 n

n

i
in xxxHxHxxxI −= ∑

=
   (2) 

This function measures the average amount of common 
information contained in variables nxxx ,...,, 21 . Using 
the mutual information we define marginal information 
redundancy to be the difference between the common 
information contained in the variables nxxx ,...,, 21  and 

the  set 121 ,...,, −nxxx , i.e. the additional amount of 
information that is added when one more variable is 
observed.  
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Since in our application we are considering time ordered 
samples, this redundancy measure corresponds to the rate 
of growth of the common information as a function of 
time. It can be shown that the following relation exists 
between redundancy and entropy 
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This defines redundancy in terms of the difference 
between the entropy (or uncertainly) about isolated nx  

and the reduced uncertainty of nx  if we know its past.  In 
information theoretic terms, assuming stationarity, this 
measure equals to the difference between the entropy of 

the marginal distribution of the process nx  and the 
entropy rate of the process, equally for all n.  

The estimation of MIR is performed by separate 
estimation of marginal entropy and entropy rate of the 
signal x(t). Assuming a Gaussian signal, one can show 
that the marginal entropy of the process is equal to  

 

2
1 1( ) ln( ( ) ) log 2
2 2

H x S d e
π

π

ω ω π
π −

= +∫     (5) 

 
where )(ωS is the power spectral density of x(t). The 
entropy rate of Gaussian process, also called Sinai-
Kolmogorov Entropy,  is given by  
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MIR is calculated then as the difference 
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Considering a related quantity 
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this expression is known as Spectral Flatness Measure 
(SFM) [1]. Using this equality we estimate the Marginal 
IR from the spectral flatness measure as the -0.5log 
(SFM). 
 

3. NON-GAUSSIAN GENERALIZATION OF SFM 
 
Let us denote by 1 1 2( , ,..., )n

nx x x x=  a vector on n 
samples. Writing the multi-information for this vector, we 
get 
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with 1 1( ) ( ) ( )n n

G G G iI x H x H x= − +∑  denoting a 



Gaussian MI and ( ) ( ) ( )GJ x H x H x= −  being the 
Negentropy function [5], which measures the distance of a 
random variable from a Gaussian distribution. In the 

above expression, ( )GH x  means an entropy of a 
Gaussian random variable with same covariance matrix as 

x, ( ) log (2 ) det( )N
G xH x e Rπ= .  

Assuming a Gaussian auto-regressive (AR) process, 
the likelihood of observing nxxx ,...,, 21  equals to the 
probability of innovation (error) signal that “drives” the 
AR process. Let us denote the source (innovation) by 

nεεε ,...,, 21 . This results in the probability 

),,...,|()( 11 axxxpp nnn
ρ

−=ε , with vector aρdenoting 
the coefficients of the AR filter model.  The log-
likelihood for n signal samples of the AR process is 
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This result suggests that estimation of IR can be done 

from the entropy of the source signal, which can be 
estimated using linear prediction (LP) from the entropy of 
the estimation residual. Given the residual signalε  after 
LP modeling we get for the Gaussian case 
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Now we can generalize SFM for processes other then 

Gaussian AR. The basic idea is to use the marginal 
entropy estimate of the innovation process as the estimate 
of the entropy rate of the original process. Since the 
innovation is not Gaussian, it must be estimated by non-
Gaussian approximations. Using the above relations, it 
can be shown that 
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where we used the relation 
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with nε denoting the residual error or the excitation. We 

introduced above a new term 1( )n
G xρ  to denote the MIR 

of a Gaussian process, which is a function of the standard 
SFM derived based on Gaussian assumption. Writing 
MIR as 1 1( ) ( ) ( )n n

G WNG nx x xρ ρ ρ= + the GSFM is now 
defined as 
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For the non-Gaussian case, GSFM results in a 
combination of two factors: 1) part that depends 
on Gρ that describes the “structure” due to the linear 

Gaussian part, and 2) part related to WNGρ that contains 
the excessive structure due to the white, non-Gaussian 
residual. The GSFM of the process x can now be 
expressed as 
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where we’ve discarded the time indices from the signal 
and the innovation processes  under the convention that 
SFM(x)  is measured based on spectrum (or correlation 
statistics) of a block of measurements and WNGρ  is 
calculated using marginal distributions only.  This 
expression can be also given a precise statistical meaning 
if we view it as equivalence between mean values of 
relevant statistics assuming we use consistent estimators.  

 
 

4. GENERALIZATION OF SFM BY INDEPENDENT 
COMPONENTS LINEARISATION  

 
In this section we consider a geometrical embedding 

of the signal in a transformed space, and assume that the 
signal is represented as a sequence of independent linear 
combinations of n dimensional basis vectors. This 
approach is common to many signal compression schemes 
such as transform or sub-band coding.  Using this 
representation provides another generalization to the 
SFM.  

Given a multi-variate distribution of vectors 
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nx x x x= , we want to find a matrix W and 

vector 1 2( , ,..., )T
ns s s s= so that the components of the 

vector s Wx= are “as independent as possible”. Note 
that we deliberately change the notation, since we are no 
longer dealing with a block of time samples but actually 
assume a multivariate process. In other words, it is 
assumed that exists a multivariate process s with 

independent components and a matrix 1A W −= , so that 
x As= . The representation can be found by applying 
ICA to one-dimensional time signal that is embedded in n-
dimensional blocks. We introduce a matrix notation for 
such a sequence of blocks (vectors) 
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where ( )1 2, ,..., T
i i i i nX x x x∆+ ∆+ ∆+= is n-dimensional 

vector consisting of a consecutive signal samples, with 
relative shift∆  between the vectors (blocks).  For sake of 
simplicity we shall assume n∆ =  in the following 
derivations. Note also that in the above notation the index 
of the sample block appears in subscript, while for 
expansion coefficients the block index appears in an 
argument (the subscript is reserved for the coefficient 
number).   

 
Considering entropy of a linear transformation and using 
independence assumption of the coefficients, one can 
write the entropy of a single block as 
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and similarly for two consecutive blocks one can show 
that 
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Defining a block-wise size n marginal information 
redundancy   
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we regard the multi-information for sequence of blocks to 
be the multi-information of the variables that comprise 
these blocks. Specifically,  
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for the case of non-overlapping blocks and with an 
appropriate correction (smaller number of variables ix ) 
for the overlapping case. Introducing an auxiliary notion 
of n-block-wise entropy difference for a sequence of L 
blocks 
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one arrives at 
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where ( (1), (2),..., ( ))r i i iH s s s L  is the usual “scalar” 
entropy difference for coefficient number i. Inserting in 
the above equation, one arrives at 
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Noting that  
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and using the relation  
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we arrive at the relation 
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which gives  
 

1

1

( ,..., )

( (1),..., ( )) ( )

n
L

n

i i L
i

X X

s s L I X

ρ

ρ
=

= +∑
  (25) 

 
This brings us to our final definition of block-wise 
information redundancy  
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To sum up, our block-wise information redundancy 

measure calculates the difference in information between 
multiple blocks, considering the difference between the 
multi-information over L consecutive blocks versus the 
sum of multi-information of the first L-1 blocks and the 
multi-information in the last block LX .  The convenient 
property of this measure is that it can be calculated from 
the marginal entropies of the n independent components, 
using the standard or the generalized SFM of the previous 
paragraph. 

 
5. EXPERIMENTAL RESULTS 

 
GSFM and IC-SFM were tested for the problem of 

voicing determination in speech signals and compared to 
the standard SFM. The purpose of the experiment was not 
to develop yet another voicing estimation measure but to 
try and evaluate the performance of the various measures 
on real signal. For the experiment we have used speech 
recordings from the Keele speech database [6]. This 
database contains simultaneously recorded speech and 
Laryngograph signals, which are used as a reference 
signal for describing the true vocal cord activity.  

The GSFM was estimated using kurtosis estimate of 
Negentropy. The spectral estimator used was Burg 
maximal entropy estimator, with AR filter of order 16. 
This choice of filter is common to speech processing 
(speech envelope can be described by as little as 8 or 10 
poles filter. Using 16 parameters gives a better 
approximation. Further increase is not desirable since it 
might capture spectral properties due to pitch 
correlations). The IC-SFM was estimated for 8-
dimensional embedding. The dimension was chosen so as 
to give approximately the same amount of parameters (64 
instead of 16). Using lower dimensional embeddings 
gives results that are closer to the scalar GSFM case. 

 

 
Fig 1. Vocing, SFM, GSFM and IC-SFM 

 
Figure 1 shows the results of applying all three 

SFM’s for a long speech signal. The top graph represents 
the vocal activity from the Laryngograph. The values of 
the vocal activity are the estimated pitch in hundred Hertz 
units. The drops in vocal activity correspond to unvoiced 
parts. One can observe that SFM increases for the regions 
where no vocal activity was present. Moreover, GSFM 
and IC-SFM tend to give correspondingly lower estimates 
of randomness, thus assigning more structure to areas 
where the standard SFM is high. On the other hands, the 



generalized measures have much less “false alarms”, i.e. 
they almost do not respond (or give low SFM) to areas 
where vocal activity was present. This is not that case for 
the SFM, which tends to overestimate randomness and 
segment speech as being unvoiced even when vocal 
activity is present. One should note that structure may 
well exist in speech signal even when no vocal activity 
occurs. This happens due to plosive or fricative sounds 
that have a significant amount of structure, even without 
being considered “voiced”. 

Another experiment was conducted on musical sound 
tracks from various Films. In this case the analysis was 
done using IC based MIR on sequences of cepstral feature 
vectors. A detailed retrieval and similarity analysis is still 
to be performed. Here we bring just a short account of the 
differences in MIR of the different Musical signals since it 
seems to demonstrate some of the properties of  the IC-
MIR analysis. The analysis procedure consisted of several 
steps:  

i) Preprocessing: 
Cepstral coefficients are calculated over time frames 
of 600 milliseconds, with a 200 milliseconds overlap. 
In order not to consider signal aspects that are related 
to pitch information, the cepstral features were 
extracted by liftering the cepstral vectors (filtering in 
cepstral domain) at the first 120 coefficients.  

ii) IC Embedding: 
The cepstral analysis matrix was submitted to IC 
analysis. A set of coefficient vectors that describe the 
evolution of each of the basis vector over time was 
obtained. 

iii) Marginal Information Redundancy: 
The MIR was calculated separately for every column 
of the coefficients matrix.  
 

 
 
 Fig 2. IC for two Musical Film signals 
Figure 2 shows that behavior of the time evolution of 
coefficients 2, 3 and 4 for two distinct film music tracks. 

The top graph corresponds to “Adams Family” film music 
track and has a rap-like style, with a lot of rhythmic and 
color changes. The bottom graph shows “Cape Fear” film 
music track that has a slowly developing orchestral sound 
with predominant strong violin section. One can clearly 
observe the different behavior of the coefficients of these 
musical tracks. Marginal Information Redundancy 
quantitatively measures this behavior.  

 
6. CONCLUSION 

 
In this paper we presented several generalizations of the 
standard spectral flatness measure using an information 
theoretic formulation of randomness as a marginal 
information redundancy. It was shown that these new 
measures are capable of detecting excessive structure due 
to non-Gaussian properties of the signal. Statistical 
evaluation of these new generalized measures for practical 
applications such as voice activity detection, compression 
or capturing musical mood or style will be explored in the 
future.  
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