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ABSTRACT
In this paper sparseness measures are reviewed, extended
and compared. Special attention is paid on measuring
sparseness of noisy data. We review and extend several def-
initions and measures for sparseness, including the �0, �p

and �ε norms. A measure based on order statistics is also
proposed. The concept of sparseness is extended to the case
where a signal has a dominant value other than zero. The
sparseness measures can be easily modified to correspond
to this new definition. Eight different measures are com-
pared in three examples. It turns out that different measures
may give complete opposite results if the distribution does
not have a unique mode at zero. As conclusion, we suggest
that the kurtosis should be avoided as a sparseness measure
and recommend tanh-functions for measuring noisy sparse-
ness.

1. INTRODUCTION

In image analysis and vision research, sparseness has been
demonstrated to be a powerful concept in finding meaning-
ful representations of data [4, 11, 12, 3, 6, 7, 17, 15, 10]. The
concept of sparseness or sparsity is also used in speech and
music analysis [9, 2], in the statistical modeling of natural
languages [16] and in various other applications. Despite
the popularity of ”the sparse ideology”, sparseness is not
unambiguously defined. The simplest definition of sparse-
ness states that in a sparse matrix or vector most of elements
are zero. This definition is not sufficient in all cases and it
lefts open how the sparseness actually should be measured.

In many cases the problem may be formulated as fol-
lows: given matrix Y find a sparse matrix decomposition
as

Y = AX + N, (1)

where N represents noise and matrices Y, A and X are
problem-specific. Typically, the equation Y = AX has in-
finite many solutions and additional restrictions are needed.
For instance, we may want minimize cost function

J (S) = ‖Y − AX‖F + λJ(X), (2)

where λ is a constant, ‖ · ‖F is a matrix norm and J(X) =∑
i J(xi) is a cost function for sparseness. In this paper we

concentrate to the component-wise cost function J(x i) that
measures the sparseness of signal xi.

The relationship between Independent Component
Analysis (ICA) and maximizing sparseness is studied by
many authors [3, 7, 9, 17]. The two approaches seem to lead
similar results in many cases even if some differences are
pointed out [17]. It is not surprising that the similar results
are obtained if independent components are found maximiz-
ing kurtosis and sparse components are found maximizing
kurtosis. As also argued in [3], the choice of the sparseness
measure is not a minor detail but may have far-reaching im-
plications on the structure of a solution.

This paper is organized as follows. In Section 2 the or-
dinary definitions of sparseness for noiseless data are re-
viewed. In Section 3, measures for noisy data are presented.
The �p and �ε norm based measures are reviewed and some
extensions are presented. A measure based on order statis-
tics is also proposed. In Section 4, the concept of sparse-
ness is extended to the case where a signal has a domi-
nant value other than zero. The sparseness measures can
be easily modified to correspond to this new definition. In
Section 5, examples revealing the differences between the
measures are provided. Finally, In Section 6 we give some
guidelines for the selection of the sparseness measure.

2. SPARSENESS IN NOISELESS CASE

The definition commonly given for sparseness is based on
the �0 norm defined as the number of non-zero elements

‖x‖0 = #{j, xj �= 0} (3)

If ‖x‖0 = 0 the vector x is completely sparse i.e. contains
only zeros. If vectors having different length are compared,
the �0 norm should be divided by the length of vector. It is
characteristic for the �0 norm that the magnitude of non-zero
elements is ignored. Thus, changing an arbitrary non-zero
number to another arbitrary non-zero number does not have
any effect on sparseness.



The �0 norm can be compared with one of basic criteria
in ICA, the Shannon entropy defined as follows

H(x) = −
∫

f(x) log(f(x))dx, (4)

where f(x) is the density function of x. At the first look,
it seems that the Shannon entropy and the �0 norm are very
different concepts. However, when dealing with practical
data, approximations are used for both the �0 norm and the
entropy. The functional forms of the approximations are
often very close to each other. In fact, the kurtosis has been
used as a measure of sparseness and as an approximation of
the entropy.

3. SPARSENESS AND NOISE

The �0 norm definition presented in the previous section
is not very practical for measuring the sparseness of noisy
data. Adding a very small measurement noise makes com-
pletely sparse data completely non-sparse. A common so-
lution is to consider the �p norm instead the �0 norm

‖x‖p =
( ∑

j

|xj |p
)1/p

, with p ≤ 1. (5)

The connection between the �p norm and the �0 norm is
limp→0 ‖x‖p

p = ‖x‖0. This leads to the use of expectation

νp(x) = E{|x|p} (6)

as a measure of sparseness. This expectation can be inter-
pret also as an absolute moment of fractional order p. In
order to imitate the �0 norm small values of p, e.g. 0.1 or
0.01, should be used. The value p = 1 is also used com-
monly. Sometimes the data is whitened prior to measuring
sparseness. The connection between (6) and the normalized
cumulant based kurtosis κ◦

4 is the following

κ◦
4(x) = E{|xwhite|4} − 3. (7)

Instead of the standard normalized kurtosis, we can use the
generalized normalized kurtosis (or Gray’s variable norm)
[5, 8], defined as

κp,q(x) =
E{|x|p}

Eq{|x|p/q} − cpq, (8)

where cpq is a positive constant, such that, for the Gaussian
distribution κp,q = 0 and p, q are chosen suitably positive
(typically, q = 2 and p = 1, 3, 4, 6). In the special case for
p = 4, q = 2 and cpq = 3, the generalized kurtosis reduces
to the standard normalized kurtosis.

Another way to take the measurement noise into account
is to use the �ε norm defined as follows

‖x‖0,ε = #{j, |xj | ≥ ε}, (9)

The parameter ε should depend on the noise variance but not
on the variance of x. Determining the value of ε when the
noise variance is not known, is an open problem. Another
practical problem is that the �ε norm is non-differentiable
and thus cannot be optimized with gradient methods. A so-
lution is to approximate the �ε norm by tanh-functions

g(x) = tanh(|ax|b), (10)

where a and b are positive constants. The main difference
between (10) and the �p norm is that tanh(|ax|b) saturates
to 1 when |x| → ∞. In order to imitate the �ε norm, the
value of b must greater than 1, e.g. b = 2, b = 3 or b = 4.

It is also possible to construct nonparametric sparseness
measures. The highest-density intervals are the shortest in-
tervals containing the probability mass θ. We consider a
univariate random variable x with the cumulative density
function (cdf) F(x). The highest-density interval with the
probability mass θ is defined as follows

U0
θ =min

a,b
(b − a) on condition

F (b) − F (a) ≥ θ and a ≤ 0 ≤ b. (11)

The highest-density interval (11) actually implicitly uses a
concept similar to the �ε norm. Instead of defining the pa-
rameter ε beforehand, the highest-density interval tell what
ε should be in order to have e.g. 90% of observations in the
neighborhood of zero. The only difference to the � ε norm
is that the neighborhood is not required to be symmetric
around zero.

It is difficult to find unbiased nonparametric estimators
for the highest-density intervals (11). However, it is rela-
tively easy to construct biased estimators for the length of
the highest-density intervals. The idea is to use the empir-
ical cdf to estimate F (x) in the equation (11). Calculating
the empirical cdf corresponds to ordering the data in ascend-
ing order, i.e. using the order statistics. After that, finding
the length of the shortest interval with probability mass θ is
a linear operation. For the ordered data x(1), x(2), . . . , x(n)

the measure u0
θ a may be defined as follows

u0
θ = min

i,j
(x(i) − x(j)) on condition

i − j

n
≥ θ and x(j) ≤ 0 ≤ x(i). (12)

Depending on the application, the interesting values of θ
might be e.g. 0.5, 0.75, 0.9 or 0.99. Using θ = 0.5 means
that 50% of observations are required to be concentrated on
a small area, whereas using θ = 0.99 means that 99% of
observations are required to be concentrated.

In literature, the �p norm with 0 < p < 1 is used in
[3, 17, 6]. The �1,ε norm is proposed in [14]. The measure
log(1 + x2) is used in [12, 6]. Tanh-function is used in [6].
Sparse priors (e.g. Laplacian) are utilized in [9, 10, 13, 7].
Note that in many cases the logarithm of the sparse prior
density reduces to the �p norm.



4. SIGNALS WITH NON-ZERO MODE

In Sections 2 and 3, sparseness was defined stating that in
sparse data most values are zero or in the neighborhood of
zero. In many applications this definition is not always suf-
ficient. The data may be concentrated around a non-zero
value that can be called as the mode, the dominant value
or the baseline value. An example of this kind of signal is
presented in Figure 1. The signal is the number 4 from the
dataset ABio7.mat [1] containing typical biological sources.
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Fig. 1. A typical biological source taken from dataset
ABio7.mat [1]. The signal can be considered sparse respect
to the baseline value.

A natural solution is to subtract the mode first and then
apply sparseness measure designed for zero-mode data. The
accurate estimation of the mode is generally a non-trivial
task. Nevertheless, in sparse data, the mode can be approx-
imated by the median. This is based on the fact that more
50% of data is in the neighborhood of the mode; otherwise
the data cannot be called as sparse. Consequently, the me-
dian also belongs to this neighborhood and can be used as
an estimate of the mode. The sample mean, on the contrary,
is a poor estimator of the mode, because it can be strongly
affected by the tails of the data.

The highest-density intervals (11) may be modified re-
placing the condition a ≤ 0 ≤ b by the condition a ≤ b.
This leads to the estimator

u1
θ =min

i,j
(x(i) − x(j)) on condition

i − j

n
≥ θ and x(j) ≤ x(i). (13)

5. EXAMPLES WITH SYMMETRIC,
ASYMMETRIC AND MULTIMODAL

DISTRIBUTIONS

To test the measures of sparseness we consider three test
cases:

A) Generalized Gaussian distribution (GGD)

f(x; α, β) =
α

2βΓ(1/α)
e−(|x|/β)α

, (14)

where α is a shape parameter and β is a scaling param-
eter. The shape parameter is changed while the scaling
parameter is fixed to give unit variance.

B) Sparse mixture model

x = s + n, (15)

where

s = 0, with probability 1 − P (16)

s = µ, with probability P, (17)

and n is zero mean Gaussian noise with variance σ2.
When the probability P and the variance σ 2 are relative
small, the majority of the observations from the model
(15) is close to zero. When the variance σ2 and the
probability P decrease, the observations become more
sparse. Conversely, if σ2 is relatively small, chanc-
ing the parameter µ should not have any effect on the
sparseness. This follows from the definition of the �0

norm (3) where only the number of nonzero elements is
taken into account, not the deviations from the zero. In
the simulations the values P = 0.01 and σ2 = 0.01 are
used.

C) Lognormal distribution

x = exp(s) (18)

and s has Gaussian distribution with mean µ and vari-
ance σ2. The sparseness measures are evaluated for dif-
ferent values of σ2 with µ = 0. When σ2 is relatively
small, the mode of the Lognormal distribution is close
to one. The smaller σ2 is, the higher is the peak.

The density functions of these distributions are plotted with
various parameter values in Figure 2. The distributions in
the example A are symmetric, unimodal and have a zero
mean. In the example B, the probability mass is concen-
trated around zero but there is another mode in µ. The dis-
tributions in the example C are skewed and have non-zero
mean, mode and median.

In all three examples, 500 samples were generated from
the models with different parameter values. As the mea-
sures to be tested we chose the �p norm with p = 0.1 (to
be used separately for unmodified data, whitened data and
median subtracted data), the kurtosis κ◦

4 (7), absolute value
|x|, a logarithm measure log(1 + x2), a tanh-measure with
the median adjustment tanh((x − med(x))2) and an order
statistics measure u1

0.75 (13). The results are presented in
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(a) GGD with α ∈ {4, 2.5, 2, 1.5, 1, 0.7, 0.5}. The pdf with the highest
peak is α = 0.5
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(b) Sparse mixture model with sub-mode µ = 2
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(c) Lognormal distribution with σ ∈ {0.05, 0.1, 0.2, 0.4, 0.8}. The pdf
with the highest peak is σ = 0.05

Fig. 2. Illustration of the distributions used in the examples.

Table 1. The reported values are medians from 101 real-
izations. In the example A with the GGD, all the measures
give analogous results. Except for the kurtosis, the values
of the measures decrease when α decreases. Thus, all the
measures lead to the same conclusion: the smaller α is, the
more sparse the distribution is. In the example B, the con-
sensus is lost. According to the measures |xwhite|0.1 and κ◦

4

the sparseness increases when the value of the sub-mode µ

increases. According to the measures |x| and log(1+x2) the
sparseness decreases when the value of the sub-mode µ in-
creases. According to the measures |x|0.1, |x− med(x)|0.1,
and u1

0.75 the change in the sub-mode does not affect sparse-
ness. Measure tanh((x − med(x))2) tells that the case
µ = 1 is the most sparse but there is no difference between
the other cases. In the example C, the conclusions are again
conflicting. According to the measures |x|0.1 and |xwhite|0.1

the distribution is not sparse and the changing of the param-
eter has no effect. According to measure κ◦

4, the most sparse
distribution has σ = 0.8 According to all other measures the
most sparse distribution has σ = 0.05.

Besides finding when sparseness is maximized it is in-
teresting to compare the values for the sparse and non-
sparse cases. For an ideal measure there is a clear difference
between the values indicating sparse and non-sparse. The
| · |0.1 measures seem to be especially poor in that sense.
In the example A, the measures for Gaussian (α = 2) are
around 0.95 whereas the measures for a peaked distribution
(α = 0.5) are around 0.87. Such a small differences do not
correspond to intuition on the sparseness.

The kurtosis has the advantage that it is commonly used
to characterize distributions and thus the values of the kur-
tosis are easy to interpret. This interpretation, however, can
be complete misleading as seen from the examples B and C.
The measure u1

0.75 has a natural interpretation in sense that
it is directly the length of an interval. For the other measures
there exists no commonly used interpretation. Nevertheless,
if the goal is to optimize a sparseness measure by a gradient
method, the interpretation of the actual value of the measure
has only secondary interest.

None of the sparseness measures tested is fully satisfac-
tory. tanh |(x − med(x)|b) with b > 1 seems to be a good
practical choice. The order statistics based u1

0.75 also gives
good results but has an apparent weakness of being inappro-
priate for the gradient optimization.

6. CONCLUSION

In this paper sparseness measures are studied systemati-
cally. Despite the growing interest towards sparseness, the
basic concepts are not clearly defined. Before measuring
sparseness it is important to decide what is actually wanted
to be measured. Especially, it should be decided whether
the extended definition with a non-zero mode is used or not.

This paper does not deal with the problem of maximiz-
ing sparseness in practical applications. The measures are
tested directly not comparing the resulting sparse represen-
tations. This allows us to compare the measures themselves
without confusing details. The examples reveal that dif-
ferent measures may give complete opposite results if the
distribution does not have a unique mode at zero. Con-
sequently, the kurtosis should be avoided as a sparseness



A) GGD with the unit variance and the parameter α
α |x|0.1 |xwhite|0.1 |x − med(x)|0.1 κ◦

4 |x| log(1 + x2) tanh(|x − med(x)|2) u1
0.75

4 0.956 0.955 0.954 -0.798 0.843 0.571 0.525 2.395
2.5 0.949 0.949 0.947 -0.362 0.816 0.549 0.494 2.308
2 0.943 0.943 0.942 0.017 0.794 0.530 0.470 2.228

1.5 0.936 0.936 0.935 0.743 0.766 0.506 0.441 2.137
1 0.919 0.920 0.918 2.522 0.706 0.456 0.381 1.905

0.7 0.896 0.900 0.896 5.796 0.631 0.399 0.320 1.615
0.5 0.867 0.872 0.868 12.940 0.551 0.335 0.260 1.299

B) Sparse mixture model with the sub-mode µ
µ |x|0.1 |xwhite|0.1 |x − med(x)|0.1 κ◦

4 |x| log(1 + x2) tanh(|x − med(x)|2) u1
0.75

1 0.752 0.916 0.751 23.5 0.0885 0.0165 0.0173 0.226
2 0.753 0.876 0.752 60.3 0.0989 0.0259 0.0199 0.229
3 0.754 0.849 0.753 76.8 0.109 0.0328 0.0199 0.228
4 0.754 0.830 0.753 84.1 0.119 0.0381 0.0199 0.228
5 0.754 0.817 0.754 87.8 0.129 0.0422 0.0198 0.228
10 0.755 0.786 0.755 93.1 0.179 0.0559 0.0199 0.228
100 0.758 0.799 0.758 95.0 1.08 0.1020 0.0200 0.231
1000 0.762 0.799 0.762 95.0 10.1 0.1480 0.0200 0.228

D) Lognormal distribution with the parameter σ
σ |x|0.1 |xwhite|0.1 |x − med(x)|0.1 κ◦

4 |x| log(1 + x2) tanh(|x − med(x)|2) u1
0.75

0.05 1.000 0.944 0.700 0.004 1.001 0.695 0.003 0.112
0.1 1.000 0.944 0.749 0.123 1.005 0.698 0.010 0.223
0.2 1.000 0.943 0.803 0.468 1.018 0.711 0.042 0.443
0.4 1.001 0.939 0.860 2.357 1.088 0.772 0.155 0.860
0.8 1.003 0.924 0.927 12.23 1.382 0.956 0.364 1.580

Table 1. Comparison of the measures in the three test cases. The values indicating the highest sparseness are in bold. A
column with no value in italics means that there is no significant change in the sparseness measure when the parameter of
interest in changed. The presented numbers are medians from 101 realizations with sample size 500.

measure if it is not completely sure that the distribution is
unimodal and symmetric. Based on our examples and the
idea of noisy sparseness we recommend tanh-functions as a
practical choice for measuring sparseness.
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