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ABSTRACT

Oriented PCA (OPCA) extends standard Principal Com-
ponent Analysis by maximizing the power ratio of a pair of
signals rather than the power of a single signal. We show
that OPCA in combination with almost arbitrary temporal
filtering can be used for the blind separation of linear instan-
taneous mixtures. Although the method works for almost
any filter, the design of the optimal temporal filter is also
discussed for filters of length two. Compared to other Sec-
ond Order Statistics (SOS) methods this approach avoids
the spatial prewhitening step. Further, it is a fast converg-
ing iterative approach which achieves better performance by
combining several time lags for the estimation of the mixing
parameters.

1. INTRODUCTION

Blind Source Separation (BSS) has been receiving a lot of
attention in the last decade due to its usefulness in a vari-
ety of applications including digital communications, signal
processing, and medical science. BSS is the task of recover-
ing � unknown signals from their linear mixtures observed
at � sensors. The term “blind” refers to the fact that the un-
derlying mixing operator is unknown as well. BSS is part of
a large family of Blind Problems including blind deconvolu-
tion, blind system identification, blind channel equalization,
etc. Here we are interested in the special case where the lin-
ear mixing operator is memoryless. This problem is known
as instantaneous BSS.

Methods for this problem can be divided into methods
using second-order [1] or higher-order statistics [2], maximum-
likelihood principle [3], Kullback-Liebler distance [4, 5, 6]
PCA methods [7, 8], non-linear PCA [9], ICA methods [10].
Further information on these methods and a coherent treat-
ment of BSS, in general, can be found in [11].

The use of second order statistics (SOS) for blind prob-
lems was first noted by Tong, e.a. [12] in the early ’90’s.
The problem studied in this classic paper was blind equal-
ization. Although blind equalization is related to BSS it was

not until 1997 that second order methods were proposed for
BSS by Belouchrani e.a. [1]. We must note that second or-
der methods do not actually replace higher order ones since
each approach is based on different assumptions. For exam-
ple, second order methods assume that the sources be tem-
porally colored whereas higher order methods assume white
sources. Another difference is that higher order methods do
not apply on Gaussian signals but second order methods do
not have any such constraint.

An adaptive second order Hebbian-like approach for BSS
has been proposed in [7, 8]. This approach is based on neu-
ral SVD analyzers known as Asymmetric PCA models. One
such model, the Cross-Coupled Hebbian rule proposed in
[13], has been applied for the blind extraction of sources
such as images or speech signals using a pre-selected time
lag �. In [14] Diamantaras demonstrated that when the ob-
served data are temporally prefiltered, standard PCA can be
used for the solution of instantaneous mixture BSS. The
method needed a step of spatial prewhitening (sphereing)
over the observation data. In this paper, we show that with-
out pre-whitening the problem is a typical Oriented PCA
problem. Moreover, we are able to derive the optimal length-
2 prefilter, although the design of the optimal prefilter, in
general, is an open issue.

In this paper we demonstrate that Oriented PCA, an ex-
tension of PCA can be used for tackling the instantaneous
BSS problem. The data fed to the OPCA method must
be temporally prefiltered but almost any filter is sufficient
except for the trivial impulse or delayed impulse function.
Since OPCA relates to the Generalized Eigenvalue Decom-
position (GED) method it is a well studied problem for which
there are a number of fast and well known algorithms im-
plemented in standard libraries such as MATLAB, etc. The
advantages of the OPCA approach are summarized as fol-
lows: (a) using a single time lag it is a batch approach with-
out slow recursive iterations (b) it can combine more than
two time lags for better performance in an iterative algo-
rithm with fast convergence and (c) it does not require spa-
tial prewhitening.



2. PCA AND ORIENTED PCA (OPCA)

Oriented PCA (OPCA) is a term introduced by Kung and
Diamantaras, (see for example [15][chapter 7]) as a general-
ization of PCA. It corresponds to the generalized eigenvalue
decomposition (GED) of a pair of covariance matrices in the
same way that PCA corresponds to the eigenvalue decom-
position of a single covariance matrix. The cost function
maximized by OPCA is the signal-to-signal ratio (SSR) be-
tween a pair of �-dimensional signals �, �
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where �� � ����� �, �� � ����� �. The maximizer
� � �� of ����� is called principal oriented component
and it is the generalized eigenvector of the matrix pencil
������� corresponding to the maximum generalized eigen-
value ��. Since �� and �� are symmetric all the gener-
alized eigenvalues are real and thus they can be arranged
in decreasing order, as with ordinary PCA. The rest of the
generalized eigenvectors ��, ��, ..., ��, will be called sec-
ond, third, ..., �-th oriented principal components. They all
maximize the same cost function ����� subject to the or-
thogonality constraint

��� ���� � ��� ���� � �� � �� �

The term “oriented” is justified by the fact that �� is similar
to the ordinary principal component for � except that it is
oriented towards the least principal direction of �. In other
words, the distribution of � “steers” �� towards the direc-
tion of the least energy of �. Clearly if the distribution of
� is isotropic in all directions, ie. � is white noise, then the
steering is absent and the oriented PC is identical to the or-
dinary PC. This is easily verified mathemetically by setting
�� � � in ����� and recognizing it as the cost function
maximized by PCA.

3. BSS PROBLEM DESCRIPTION AND
ASSUMPTIONS

The description of the instantaneous BSS problem and the
adopted assumptions are outlined next. We consider � ob-
served signals 	�, ..., 	�, resulting from the linear mixing
of � source signals 
�, ..., 
�. Defining the stochastic obser-
vation and source vectors ���� � �	����� � � � � 	�����

� and
���� � �
����� � � � � 
�����

� we have:

���� � ����� (1)

For simplicity, we assume that the linear mixing operator�
is a square and invertible matrix. In general, the number of
observations may be greater than the number of sources, in
which case� is a “tall” matrix with full column rank.

It is important to note that the order and the scale of the
individual sources are unobservable.

In the following discussion we shall use the following
notation

�����
�
� ��	���	�� � ��� �

to denote the covariance of any signal 	 with time-lag �.
This notation is useful because the assumptions described
next involve time-lagged second order statistics. This set of
assumptions is typical to most SOS methods (see [1, 16]):

A1. The sources are pairwise uncorrelated, at least wide
sense stationary with zero mean and unit variance:

����� � � � (2)

A2. The sources are temporally colored. In particular, there
exist  � � positive time lags ��, ..., �� such that:

����	�
�
� ��	
��	 �� � � (3)

Define �� � �.

A3. The sources have distinct covariance functions, i.e. their
spectral densities are not identical:

�� �� � � ������ �� ������� if � �� � �

4. SOLVING BSS USING OPCA

Subsequently, we shall relate the instantaneous BSS prob-
lem with the OPC Analysis of the following pair of signals
(i) the observed signal � and (ii) almost any filtered version
of it. Note that the 0-lag covariance matrix of ���� is

�
��� � �������
� � ��� (4)

Now, consider a scalar, linear temporal filter
 � ���� � � � � �� �
operating on ����:
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�	��� � �	� (5)

for some lags ��, ..., �� . The 0-lag covariance matrix of �
is written as

����� � ����������� � �
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Assume that�
���� ��� satisfy assumptions [A2], [A3] for
all �, �. From Eq. (1) it follows that

�
��	� � �����	��� (7)

so
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with

� �
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Since� is square and invertible we can write
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where ���
�
� ���

�
. Note that, by assumptions [A1],

[A2], � is diagonal. Eq. (10) expresses a Generalized
Eigenvalue Decomposition problem for the matrix pencil
������� �
����. This is equivalent to the OPCA problem
for the pair of signals ������ �����. The generalized eigen-
values for this problem are the diagonal elements of�. The
columns of the matrix ��� are the generalized eigenvec-
tors.

The eigenvectors are unique upto a permutation and scale
provided that the eigenvalues are distinct (this is true in gen-
eral). In this case, for any generalized eigenmatrix  we
have  � ���� with � being a scaled permutation ma-
trix, i.e. each row and each column contains exactly one
no-zero element. Then the sources can be estimated as

����� � ����� (11)

����� � ���������� � �� ���� (12)

It follows that the estimated sources are equal to the true
ones except for the (unobservable) arbitrary order and scale.

4.1. Designing the optimal filter of length two

Let [A2] hold for just one time lag �, so we may use a two-
tap filter 
 � ���� ��� � ��� ��, where �� � � is a free
parameter. Then

� � �� � ����� ������ � �������

� �� � ����� ������� (13)

Denoting by �� and ������ the diagonal elements of � and
����� respectively, we obtain

�� � �� �� � ��������� � � �� � � � � � (14)

Using (14) we can compute the correlation matrix of the
input signal �����:

������ �
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��
(15)

Once the correlation is obtained we can use it in order to
design the optimal temporal filter 
. The optimality crite-
rion will be related to the eigenvalue spread. It is desirable

to spread the eigenvalues as much as possible for two rea-
sons: (a) the convergence of any batch or neural generalized
eigenvalue algorithm is typically faster when the eigenval-
ues are well separated, and (b) the perturbation of the eigen-
values due to noise can be better tolerated. Thus we need to
define a suitable metric taking into account the relative size
of the eigenvalues. We propose to use the following maxi-
mization criterion
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Using (14) this metric can be formulated in terms of the
input correlation function�����
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Let ������ � ��������� ��� ��
�������� � �������

�� and let
������ � �	�
 be the maximizer of the denominator �� �
�� � ���������

�. Then we can write
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The most robust filter is the one that maximizes ����. Note
that ���� � � and ������ ���� � �. Furthermore, �
is bounded since �	�� �

�
� � � and ���� � � for all �.

It follows that ���� has at least one maximum, which is
attained at a gradient zero-crossing:
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where �� � ��	�
���. Since ���� � �, the solution � � �
to Eq. (18) does not correspond to a maximum. Further-
more, �	�
 takes values in the discrete set �������� � � � � �������
therefore, it is not a continuous function of � and � � � �
except for those points where a discontinuity appears. As-
suming that ���� is not maximized at such a discontinuity
point, its maximum value must be attained for ������ � �,
ie. for � � �� or ��.

4.2. Using filters of length three

Unlike filters of length 2 the research for the optimal fil-
ter of length 3 is a more demanding task. Consider two
lags �� and ��. The filter of length 3 can be expressed as

 � ���� ��� ��� � ��� �� ��, where � and � are free pa-
rameters. Then

� � �� � �� � ����� �������� � ��������

��������� � ��� (19)



It can be witnessed that � involves three unknown correla-
tion matrices ������, ������, ����� � ���. We expect the
performance to be improved compared to the case of filters
of length 2 where only two matrices are involved. However,
the analytical optimization of eigenvalue spreading cost �
in (16) is not possible because too many unknowns are in-
volved. For this case we proposed to use an iterative process
which delivers filters of length three with improved perfor-
mance in each iteration.

Using the process described in the previous section for

 � ���� ��� � ��� ��, an initial estimate of the source
signals�� can be obtained (eq. (12)). The missing correlation
matrices of eq. (19) can be calculated using the estimated
source signals ��. Following the reasoning of subsection 4.1
the optimality is related with the eigenvalue spread. As a
consequence the search of the optimal filter of length three
is transformed in the search for the filter that spreads the
eigenvalues as much as possible. The criterion used is the
one used before (eq. (16)). The search is exhaustive��� � 	
��	��� �	�
�. The algorithm can be described in brief as
follows:


 Estimate ����� using 
 � ��� �� ��.


 For i=1 to Maximum Iteration

– Estimate correlation matrices using �����.

– Calculate � ��� � 	 ��	��� �	�
�

– Keep ��� �� minimizing ���� ��

– Compute new source estimates �������.

In the experiments we performed �	�� � ��, �	�
 �
�, while the increasing step was ����.

5. RESULTS

We shall compare the proposed method against the AMUSE
approach [17]. AMUSE is a non-iterative (batch) approach
which uses second order statistics. OPCA using the optimal
filter of length 2 is also a batch method. Consequently, the
two methods have comparable speeds. There are however,
two major differences between these methods: (a) AMUSE
is limited to only one time lag and (b) it uses spatial pre-
whitening. The first difference, as we shall see, has a severe
effect on performance.

The AMUSE method, was compared with the proposed
iterative approach, described in section 4.2. First blind sep-
aration is performed using the OPCA method with a tempo-
ral pre-filter of length 2 and then the calculated results are
introduced in a four iteration process, performing OPCA us-
ing filter of length 3.

The experiment setup is described next. The source and
observation data dimension is � � � and the mixing matrix

is chosen randomly to be

� �
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The sources are four multilevel PAM signals filtered by
an ARMA coloring filter of length 20. We take � � ����
samples per signal. In the AMUSE method the observa-
tions are spatially prewhitened by the transform ����� �
�
���

��������.
If is the estimated separation matrix, as mentioned in

the section 4 then�� � � with� being a scaled permu-
tation matrix. Performance is calculated using the matrix
�. First, the columns of � are arranged in order to achieve
an approximation of a diagonal matrix i.e. the maximum
absolute value of every column must be in the matrix diago-
nal. Then, every column is divided by its diagonal element.
The transformed matrix�� is an approximation of the iden-
tity matrix �. The perfect estimation will yield that � � � �.
Therefore the estimation quality is measured using the sum
of the absolute value of the off-diagonals elements of matrix
��:

�� �
�
����

�� ���� ��� (20)

It must be noted that as a consequence to the pre-whitening
process in the AMUSE case,� ����, where� is the
whitening matrix.

Comparison between the two methods was made using
the difference of their estimation quality.

� � ������� ������� (21)

The comparison formula has positive values whenever
the OPCA has better performance than AMUSE, and nega-
tive values in the opposite case.

We conducted tests using 50 datasets. Various levels
of noise were injected in order to report the robustness of
the algorithm. Noise is calculated in dB using SNR. OPCA
results are extracted from every step of the algorithm. The
mean values over the 50 datasets are presented in table 1.

It is easily witnessed that the results extracted from the
first iteration of OPCA and AMUSE are almost equal, mean-
ing that OPCA with filter of length 2 performs as the AMUSE
method. This is obvious since both methods use the same
amount of information in their estimation. On the contrary,
in every case we tested OPCA using filter of length 3 with
the AMUSE method the increase of the estimation accu-
racy was very important. The accuracy improvement varies
from ���� to ����. The use of more correlation matrices
in the case of OPCA using filter with length 3, increases
the information input in the estimation process, improving



SNR Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
100 0.0269 0.1875 0.2238 0.2410 0.2325
50 -0.0112 0.3217 0.3531 0.3563 0.3564
30 -0.0056 0.3723 0.3774 0.3769 0.3757
20 -0.0312 0.2196 0.2163 0.2276 0.2196
10 0.0027 0.3063 0.1644 0.1754 0.1524

Table 1. Comparison between the AMUSE and the OPCA
blind separation technique. OPCA results are extracted in
every iteration. Iteration 1 corresponds to the batch OPCA
technique using filter with length 2. Comparison is made
using datasets with different noise levels.

the separation quality. Finaly, it is important to outline the
convergence quickness. In every experiment we performed
convergence was reached by the third iteration.

6. CONCLUSIONS

The instantaneous BSS problem is known to be related to
second-order statistics methods. However, all earlier ap-
proaches have consistently used two steps: one preprocess-
ing (sphering) step followed by a second-order analysis method
such as SVD [1] or PCA [16]. The OPCA approach pro-
posed in this paper has the advantage that no preprocess-
ing step is required as sphering is implicitly incorporated
in the signal-to-signal ratio criterion which is optimized by
OPCA. Furthermore, the proposed approach is iterative and
improves the performance by combining several time lags
for the estimation of the mixing parameters.
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