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ABSTRACT

Using statistical models one can estimate features from
natural images, such as images that we see in everyday
life. Such models can also be used in computional vi-
sual neuroscience by relating the estimated features to
the response properties of neurons in the brain. A sem-
inal model for natural images was linear sparse coding
which, in fact, turned out to be equivalent to ICA.
In these linear generative models, the columns of the
mixing matrix give the basis vectors (features) that are
adapted to the statistical structure of natural images.
Estimated features resemble wavelets or Gabor func-
tions, and provide a very good description of the prop-
erties of simple cells in the primary visual cortex. We
have introduced extensions of ICA that are based on
modelling dependencies of the ”independent” compo-
nents estimated by basic ICA. The dependencies of the
components are used to define either a grouping or a
topographic order between the components. With nat-
ural image data, these models lead to emergence of
further properties of visual neurons: the topographic
organization and complex cell receptive fields. We have
also modelled the temporal structure of natural image
sequences using models inspired by blind source sep-
aration methods. All these models can be combined
in a unifying framework that we call bubble coding.
Finally, we have developed a multivariate autoregres-
sive model of the dependencies, which lead us to the
concept of “double-blind” source separation.

1. INTRODUCTION

Recently, modeling image windows using statistical gen-
erative models has emerged as a new area of research,
for reviews see [13, 17, 21]. Such an approach has ap-
plications both in image processing and visual neuro-
science.

In image processing, using statistical generative
models enables principled derivation of methods for de-

noising, compression, and other operations. In partic-
ular, a generative model gives a prior that can be used
in Bayesian methods. In this paper, we will concen-
trate on applications in biological modelling, although
the same models could be rather directly used in image
processing.

A widely-spread assumption is that biological visual
systems are adapted to process the particular kind of
information they receive [3]. The visual system is im-
portant for survival and reproduction, and evolution-
ary forces thus drive the visual system towards signal
processing that is optimal for the natural stimuli. This
does not imply that genetic instructions completely de-
termine the properties of the visual system: a large
part of the adaptation to the natural stimuli could be
accomplished during individual development.

Natural images have important statistical regular-
ities that distinguish them from other kinds of input.
For example, the gray-scale values or luminances at
different pixels have robust and non-trivial statistical
dependencies. Models of the statistical structure show
what a statistically adapted representation of visual in-
put should be like. Such models thus indicate what the
visual system should be like if it followed the assump-
tion of optimal adaptation to the visual input.

In the following, we first review very briefly the
structure of the human visual system, see, e.g., [19]
for a more detailed account. Then go on to discuss dif-
ferent models (based on ICA and related methods) that
we and others have developed to model the statistics
of natural images and the visual system.

2. HUMAN VISUAL SYSTEM

Figure 1 illustrates the earliest stages of the main visual
pathway. Light is detected by the photoreceptors in the
retinas, and the final output of the retinas is sent by the
retinal ganglion cells through the optic nerve. The sig-
nal goes through the lateral geniculate nucleus (LGN)
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Figure 1: The main visual pathway in the human brain.

of the thalamus to the visual cortex at the back of the
head, where most of the visual processing is performed.

The main information processing workload of the
brain is carried by nerve cells, or neurons. The major-
ity of neurons communicate by action potentials (also
called spikes), which are electrical impulses traveling
down the axons (something like wires) of neurons. Most
research has concentrated on the neurons’ firing rates,
i.e. the number of spikes “fired” by a neuron per second
(or some other time interval).

Thus, much of visual neuroscience has been con-
cerned with measuring the firing rates of cells as a
function of some properties of a visual input. For ex-
ample, an experiment might run as follows: An im-
age is suddenly projected onto a (previously blank)
screen that an animal is watching, and the number of
spikes fired by some recorded cell in the next second are
counted. By systematically changing some properties
of the stimulus and monitoring the elicited response,
one can make a quantitative model of the response of
the neuron. Such a model mathematically describes
the response (firing rate) rj of a neuron as a function
of the stimulus I(x, y).

In the early visual system, the response of a typi-
cal neuron depends only on the intensity pattern of a
very small part of the visual field. This area, where
light increments or decrements can elicit increased fir-
ing rates, is called the (classical) receptive field of the
neuron. More generally, the concept also refers to the
particular light pattern that yields the maximum re-
sponse.

So, what light patterns actually elicit the strongest
responses? This of course varies from neuron to neu-
ron. The retinal ganglion cells as well as cells in the
lateral geniculate nucleus typically have circular center-
surround receptive field structure: Some neurons are
excited by light in a small circular area of the visual
field, but inhibited by light in a surrounding annulus.
Other cells show the opposite effect, responding maxi-
mally to light that fills the surround but not the center.
This is depicted in figure 2a.
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Figure 2: Typical classical receptive fields of neurons
early in the visual pathway. Plus signs denote regions
of the visual field where light causes excitation, mi-
nuses regions where light inhibits responses. (a) Reti-
nal ganglion and LGN neurons typically exhibit center-
surround receptive field organization, in one of two ar-
rangements. (b) The majority of simple cells in V1, on
the other hand, have oriented receptive fields.

The cells that we are modelling are in the primary
visual cortex (V1). Cells in V1 have more interest-
ing receptive fields. The so-called simple cells typically
have adjacent elongated (instead of concentric circu-
lar) regions of excitation and inhibition. This means
that these cells respond maximally to oriented image
structure. This is illustrated in figure 2b.

Typically, classical receptive fields are modeled by
a linear model: the response of a neuron can be rea-
sonably predicted by a weighted sum of the image in-
tensities, as in

rj =
∑

x,y

wj(x, y)I(x, y), (1)

where wj(x, y) contains the pattern of excitation and
inhibition for light for the neuron j in question.

Although these linear models are useful in modeling
many cells, there are also neurons in V1 called com-
plex cells for which these models are completely inade-
quate. These cells do not show any clear spatial zones
of excitation or inhibition. Complex cells respond, just
like simple cells, selectively to bars and edges at a par-
ticular location and of a particular orientation; they
are, however, relatively invariant to the spatial phase
of the stimulus. An example of this is that reversing
the contrast polarity (e.g. from white bar to black bar)
of the stimulus does not markedly alter the response
of a typical complex cell. The responses of complex
cells have often been modeled by the classical ‘energy
model’. (The term ‘energy’ simply denotes the squar-
ing operation.) In such a model we have

rj =

(

∑

x,y

wj1(x, y)I(x, y)

)2

+

(

∑

x,y

wj2 (x, y)I(x, y)

)2

where wj1(x, y) and wj2(x, y) are quadrature-phase Ga-
bor functions, i.e., they have a phase-shift of 90 de-
grees, one being odd-symmetric and the other being



even-symmetric. It is often assumed that V1 complex
cells pool the responses of simple cells, in which case
the linear responses in the above equation are outputs
of simple cells.

A further interesting point is how the receptive fields
of neighboring cells are related. In the retina, the re-
ceptive fields of retinal ganglion cells are necessarily
linked to the physical position of the cells. This is due
to the fact that the visual field is mapped in an orderly
fashion to the retina. Thus, neighboring retinal gan-
glion cells respond to neighboring areas of the visual
field. However, there is nothing to guarantee the ex-
istence of a similar organization further up the visual
pathway.

But the fact of the matter is that, just like in the
retina, neighboring neurons in the LGN and in V1 tend
to have receptive fields covering neighboring areas of
the visual field. Yet this is only one of several types of
organization. In V1, the orientation of receptive fields
also tends to shift gradually along the surface of the
cortex. In fact, neurons are often approximately orga-
nized according to several functional parameters simul-
taneously. This kind of topographic organization also
exists in many other visual areas.

3. LINEAR MODELS OF NATURAL

IMAGES

The statistical generative models in visual modelling
are typically linear, or at least they incorporate a lin-
ear part. Let us denote by I(x, y) the pixel gray-scale
values (point luminances) in an image, or in practice, a
small image patch. The models that we consider here
express each image patch as a linear superposition of
some features or basis vectors ai:

I(x, y) =

n
∑

i=1

ai(x, y)si (2)

for all x and y. The si are stochastic coefficients, dif-
ferent from patch to patch.

In a neuroscientific interpretation, the latent vari-
ables si model the responses of simple cells, and the ai

are closely related to their receptive fields (see below).
Thus, in the following, we will use the expressions “sim-
ple cell outputs” or “latent variables” interchangably.

For simplicity, we assume that the number of pixels
equals the number of basis vectors, in which case the
linear system in Eq. (2) can be inverted. Then, each
latent variable or simple cell response is obtained by
applying a linear transformation to the data; the linear
transformation gives the receptive field. Denoting by
wi the coefficients of the transformation, the output of

the simple cell with index i, when the input is an image
patch I , is given by

si = 〈wi, I〉 =
∑

x,y

wi(x, y)I(x, y). (3)

It can be shown [10] that the ai are basically low-pass
filtered versions of the receptive fields wi. Therefore,
the properties of the wi and ai are for most purposes
identical.

Estimation of the model consists of determining the
values of ai, observing a sufficient number of patches
I without observing the latent variables si. This is
equivalent to determining the values of wi, or the values
of si for each image patch. The relation to ICA is now
evident. If the latent variables si are assumed to be
statistically independent and nongaussian, the linear
generative model is nothing but the ICA model.

Just like in ICA, the estimation can be simplified
by suitable preprocessing. First, we can consider only
the local changes in gray-scale values (called contrast),
and remove the local mean (called the DC component)
from the image. This also implies that the si have
zero mean. Second, we whiten the data in the spatial
domain: The data is transformed to an image so that
for any two spatial points (x, y) and (x′, y′) the value of
I(x, y) and I(x′, y′) are uncorrelated, and all points are
normalized to unit variance. In the whitened space, we
can then consider orthonormal transformations only,
i.e.

∑

ai(x, y)aj(x, y) = 0 if i 6= j and 1 if i = j.
Now, the question is: How to describe the statistical

properties of natural images with the linear generative
model? In other words, what are the statistical prop-
erties of linear transformations of the data? For exam-
ple, are they nongaussian and independent enough to
be modelled by ICA?

4. SPARSENESS AND ICA

A considerable proportion of the models on natural im-
age statistics is based on one particular statistical prop-
erty, sparseness, which is closely related to the prop-
erties of supergaussianity or leptokurtosis [3, 13, 18],
and to ICA estimation methods. The outputs of linear
filters that model simple cell receptive fields are very
sparse; in fact, they maximize a suitable defined mea-
sure of sparseness.

Sparseness is a property of a random variable.
Sparseness means that the random variable takes very
small (absolute) values and very large values more of-
ten than a gaussian random variable; to compensate,
it takes values in between relatively more rarely. Thus,
the random variable is activated, i.e. significantly non-
zero, only rarely. This is illustrated in Fig. 3. We
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Figure 3: Illustration of sparseness. Random samples
of a gaussian variable (top) and a sparse variable (bot-
tom). The sparse variable is practically zero most of
the time, occasionally taking very large values. Note
that the variables have the same variance, and that the
time structure is irrelevant in the definition of sparse-
ness.

assume here and in what follows that the variable has
zero mean.

The probability density function p of a sparse vari-
able, say s, is characterized by a large value (“peak”) at
zero, and relatively large values far from zero (“heavy
tails”). Here, “relatively” means compared to a gaus-
sian distribution of the same variance. For example,
the absolute value of a sparse random variable is of-
ten modelled as an exponential density. If the absolute
value of a symmetric random variable has an exponen-
tial distribution, the distribution is called Laplacian.
Scaling the distribution to have variance equal to one,
the density function is then given by

p(s) =
1√
2

exp(−
√

2|s|) (4)

Sparseness is not dependent on the variance (scale)
of the random variable. To measure the sparseness of a
random variable s with zero mean, let us first normalize
its scale so that the variance E{s2} equals some given
constant. Then the sparseness can be measured as the
expectation E{G(s2)} of a suitable nonlinear function
of the square. Typically, G is chosen to be convex, i.e.
its second derivative is positive. Convexity implies that
this expectation is large when s2 typically takes values
that are either very close to 0 or very large, i.e. when
s is sparse.

For example, if G is the square function, sparse-
ness is measured by the fourth moment E{s4}. This
is closely related to using the classical fourth-order cu-
mulant called kurtosis, defined as kurt(s) = E{s4} −
3(E{s2})2. If the variance is normalized to 1, kurtosis

is in fact the same as the fourth moment minus a con-
stant (three). This constant is chosen so that kurtosis
is zero for a gaussian random variable. If kurtosis is
positive, the variable is called leptokurtic, which is a
simple operational definition of sparseness.

However, kurtosis suffers from some adverse sta-
tistical properties [13], which is why in practice other
functions may have to be used. Both information-
theoretic and estimation-theoretic considerations show
that in some ways the ideal functions would be such
that G(s2) is equal to the logarithm of a sparse proba-
bility density function, optimally of s itself [13]. Then,
the measure of sparseness is in fact essentially the same
as entropy, or likelihood of the ICA model.

For example, taking the logarithm of the Laplacian
density, one obtains

G(s2) = −α
√

s2 + β = −
√

2|s| − log
√

2 (5)

In practice, a smoother version of the absolute value
may be useful because the peak of absolute value at
zero may lead to technical problems in optimization
algorithms. A widely-used smoother version is given
by G(s2) = log cosh

√
s2 = log cosh s.

Maximization of sparseness with these sparseness
measures is, in fact, very closely related to maximiza-
tion of likelihood, or maximization of the negentropies
of the estimated independent components. Assuming
that the data is whitened, and the basis vectors are
assumed orthonormal, the resulting method is nothing
but basic ICA. The result of applying ICA on natural
image patches [1, 13, 24] is shown in Figure 5.

5. TEMPORAL COHERENCE

An alternative to sparseness is given by temporal co-
herence or stability [4, 14, 6, 23, 25]. This means that
when the input consists of natural image sequences,
i.e. video data, the outputs of simple cells in subse-
quent time points should be “coherent” or “stable”, i.e.
change as little as possible. The change can be defined
in many ways, and therefore temporal coherence can
give rise to quite different definitions and measures.

First, it must be noted that using ordinary linear
(auto)correlation or covariance is not enough to pro-
duce well-defined receptive fields. That is, if we mea-
sure the temporal coherence of a cell output s(t), cen-
tered to have zero mean, as

corr(s(t), s(t − τ)) = E{s(t)s(t − τ)}, (6)

where τ is a time lag (delay), maximization of this mea-
sure does not characterize most simple cell receptive
fields. In fact, this measure is maximized by low-pass
filters, such as the DC component of image patches [6].



This failure of linear measures can be partly ex-
plained by basic results in the literature of blind source
separation [13]. The autocovariance (for a given time
lag) of the sum aisi +ajsj of two independent signals is
given by a2

i cov(si(t), si(t− τ))+a2

j cov(sj(t), sj(t− τ)).
Consider a case where si and sj have equal variances
and autocovariances. Then, if the mixing coefficients
fulfill a2

i + a2

j = 1, the mixture has the same variance
and the same autocovariance as the original signals.
There is an infinite number of such sums, and thus we
cannot tell them apart if we just look at the autocovari-
ance (and variance). This shows that maximization of
autocorrelation does not properly define linear filters,
and we have to use nonlinear autocorrelations.

Thus, we must use some kind of nonlinear temporal
correlations. We have proposed [6] that temporal co-
herence could be measured by the correlation of squares
(energies):

corr(s(t), s(t − τ)) = E{s(t)2s(t − τ)2} (7)

It was found that the typical simple cell receptive fields
maximize this criterion, just like sparseness. This mea-
sure was inspired by recent advances in the theory of
blind source separation, where it has been shown that
the correlation of squares is a valid measure for blind
source separation [8]. In fact, this method can be seen
as a variant of the class of blind separation methods
using nonstationary variance [16, 20].

Thus, when properly defined and measured, tempo-
ral coherence does provide an alternative to sparseness,
leading to the emergence of principal simple cell recep-
tive field properties from natural images. The result
of applying temporal coherence on natural image se-
quences is shown in Figure 6.

6. DEPENDENCIES BETWEEN

COMPONENTS

6.1. Definition and models

The third statistical property considers the relation-
ships between the different latent components (out-
puts of simple cells), which will be denoted by si, i =
1, . . . , n. When using sparseness or temporal coher-
ence, the outputs of simple cells si are usually assumed
independent, i.e. the value of sj cannot be used to pre-
dict si for i 6= j. To go beyond this basic framework,
we need to model the statistical dependencies of the
linear filters, assuming that their joint distribution is
dictated by the natural image input [22, 9, 11].

Note that again, we must consider nonlinear corre-
lations. Linear correlations are not interesting in this
respect because they can easily be set to zero by stan-
dard whitening procedures. In fact, in ICA estimation,

the components are often constrained to be uncorre-
lated [13].

When probing the dependence of si and sj , a sim-
ple approach would be to consider the correlations of
some nonlinear functions, just as in the case of tempo-
ral coherence. In image data, the principal form of de-
pendency between two simple cell outputs seems to be
captured by the correlation of their energies, or squares
s2

i . This means that

cov(s2

i , s
2

j ) = E{s2

i s
2

j} − E{s2

i }E{s2

j} 6= 0. (8)

Here, we assume that this covariance is positive, which
is the usual case.

Intuitively, correlation of energies means that the
cells tend to be active, i.e. have non-zero outputs, at
the same time, but the actual values of si and sj are not
easily predictable from each other. For example, if the
variables are defined as products of two independent
components oi, oj and a common “variance” variable v

[11, 21]:

si = oiv (9)

sj = ojv (10)

then si and sj are uncorrelated, but their energies are
not.

While the formulation above makes energy correla-
tion easy to understand by using a separate variance
variable v, it is not very suitable for practical compu-
tations, in which we need a simple expression for the
joint probability density function of si and sj . A sim-
ple density that incorporates both energy correlation
and sparseness is given by [9, 11]

p(si, sj) =
2

3π
exp(−

√
3
√

s2

i + s2

j ) (11)

This could be considered as a two-dimensional gener-
alization of the Laplacian distribution, since it corre-
sponds to a one-dimensional density where the expo-
nential term would be proportional to exp(−

√
3
√

s2),
which is as in Eq. (4) up to some scaling constants.
(This density has been standardized to that its mean
is zero and the variances are equal to one.) The corre-
lation of energies in this probability distribution is il-
lustrated in Fig. 4. A generalization of the probability
density to more than two dimensions is straightforward
by just taking the sum of the squares inside the square
root in the exponential; the scaling and additive con-
stants are then difficult to calculate but they are rarely
needed.

Just as in the case of sparseness measures, the den-
sity in Eq. (11) gives us a measure of the combination
of energy correlation and sparseness by considering the
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Figure 4: Illustration of the energy correlation in the
probability density in Equation (11). The conditional
variance of sj (vertical axis) for a given si (horizontal
axis). Here we see that conditional variance grows with
the square (or absolute value) of si.

expectation of the log-density. We can take the loga-
rithm of the density to obtain a function of the form

E{G(s2

i + s2

j )} (12)

where G(b) = −
√

b, up to irrelevant constants. This
is a measure that is simple to compute. To get insight
to this measure, consider what happens when G is the
square function. Then the measure gives E{s4

i + s4

j +

2s2

i s
2

j}. The expectations of the first two terms measure
sparseness just as kurtosis, while the expectation of
the third is just the first term in the covariance of the
squares. In practice, however, we prefer the logarithm
of the density function to the square function because
of the same statistical reasons (discussed above) that
we prefer the log-density to kurtosis as a measure of
sparseness.

6.2. Subspaces based on dependencies

The correlation of energies could be embedded in a
model of natural image statistics in many ways. A very
simple way would be to divide the latent variables into
groups [2], so that the si in the same group have cor-
relation of energies, whereas si in different groups are
independent. In such a model [9], it was found that the
groups (called “independent subspaces”) show emer-
gence of complex cells properties, see Fig. 7. The sum
of squares inside a group (which could be considered an
estimate of the variance variable associated with that
group) has the principal invariance properties of com-
plex cells. Thus, simple cells that pool to the same
complex cell have energy correlations, whereas simple
cells that are not pooled together are independent.

6.3. Topography based on dependencies

Instead of a simple grouping, we have also proposed a
more sophisticated way of modelling the correlations of
squares of simple cell outputs, based on topography or
spatial organization of the cells [11, 10]. The concept of
cortical topography was reviewed earlier in section 2.

Let us assume that the components si are arranged
on a two-dimensional grid or lattice as is typical in
topographic models [15]. The restriction to 2D is mo-
tivated by cortical anatomy, but is not essential. The
topography is formally expressed by a neighbourhood
function h(i, j) that gives the proximity of the compo-
nents (cells) with indices i and j. (Note that these in-
dices are two-dimensional). Typically, one defines that
h(i, j) is 1 if the cells are sufficiently close to each other,
and 0 otherwise.

Our purpose was to define a statistical model in
which the topographic organization reflects the statisti-
cal dependencies between the components. The compo-
nents (simple cells) are arranged on the grid so that any
two cells that are close to each other have dependent
outputs, whereas cells that are far from each other have
independent outputs. Since we are using the correla-
tion of energies as the measure of dependency, the ener-
gies are strongly positively correlated for neighbouring
cells.

We have defined such a statistical model,
topographic ICA [11, 10], which incorporates just this
kind of dependencies and can be estimated for natural
images. When the model is applied on natural image
data (see Fig. 8), the organization of simple cells is
qualitatively very similar to the one found in the vi-
sual cortex: there is orderly arrangement with respect
to such parameters as location, orientation, and spatial
frequency – and no order with respect to phase. This
is the first model that shows emergence of all these
principal properties of cortical topography [10].

An interesting point is that the topography defined
by dependencies is closely related to complex cells: The
topographic matrix h(i, j) can be interpreted as the
pooling weights from simple cell to complex cells. The
pooling weights have now been set by making the as-
sumption that complex cells only pool outputs of sim-
ple cells that are near-by on the topographic grid. Thus,
we see how modelling the dependencies by topogra-
phy is a generalization of a simple division of the cells
into groups. Finally, note that a model of topogra-
phy defined by energy correlation is very different from
those typically used in models of (cortical) topography.
Usually, the similarity of simple cells is defined by Eu-
clidean distances or related measures, but correlation
of energies is a strongly non-Euclidean measure.



Figure 5: Basis vectors estimated by ICA or sparse coding.

Figure 6: Basis vectors estimated by temporal coherence.



Figure 7: Basis vectors, and their grouping into 4-D subspaces, estimated by independent subspace analysis.

Figure 8: Basis vectors, and their topographic organization, estimated by topographic ICA.
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Figure 9: The four types of representation. The plots show the outputs of filters as a function of time and the posi-
tion of the filter on the topographic grid. Each pixel is the activity on one unit at a give time point, gray being zero,
white and black meaning positive and negative outputs. For simplicity, the topography is here one-dimensional. In
the basic sparse (ICA) representation, the filters are independent. In the topographic representation, the activations
of the filters are also spatially grouped. In the representation that has temporal coherence, they are temporally
grouped. The bubble representation combines all these aspects, leading to spatiotemporal activity bubbles. Note
that the two latter types of representation require that the data has a temporal structure, unlike basic sparse
coding or ICA.



7. BUBBLES: A UNIFYING FRAMEWORK

Now we introduce a unifying theoretical framework for
the statistical properties discussed above: sparseness,
temporal coherence, and topography. This is based on
the concept of a spatiotemporal bubble [12].

The key to the unifying framework is to note that
in the models above, we used the same kind of depen-
dence though variances (which expresses itself in the
correlation of squares or energies) to model two differ-
ent things: dependencies between the latent variables,
and temporal dependencies of a single latent variable.

Combination of sparseness and topography means
that each input activates a limited number of spatially
limited “blobs” on the topographic grid, as in topo-
graphic ICA. If these regions are also temporally coher-
ent, they resemble activity bubbles as found in many
earlier neural network models. A spatiotemporal ac-
tivity bubble thus means the activation of a spatially
and temporally limited region of cells, or in general, rep-
resentational units. This is illustrated in Fig. 9 for a
one-dimensional topography.

What could such bubbles represent in practice?
Since we are about to define a general-purpose unsu-
pervised learning procedure, the meaning of bubbles
depends on the data on which they are applied. In
the case of natural image sequences, we can assume
that the topographic grid is rather similar to the one
obtained by topographic ICA. Then, a bubble would
mean activation of Gabor-like basis vectors with simi-
lar orientation and spatial frequency, in near-by points
on the image. This would correspond to a short contour
element of given orientation and spatial frequency. In
contrast to an “independent component” of an image,
this contour element can move a bit, and its phase can
change, during the temporal extent of the bubble.

Now, we formulate a generative model based on ac-
tivity bubbles. We postulate a higher-order random
process u that determines the variance at each point.
This non-negative, highly sparse random process ob-
tains independent values at each point in time and
space (space referring to the topographic grid). For
simplicity, let us denote the location on the topogra-
phy by a single index i. Then, the variances v of the
observed variables are obtained by a spatiotemporal
convolution

vi(t) =
∑

j

h(i, j)[ϕ(t) ∗ uj(t)] (13)

where h(i, j) is the neighbourhood function that defines
the spatial topography, and ϕ is a temporal smoothing
kernel. The simple cell outputs are now obtained by
multiplying simple gaussian white noise oi(t) by this

variance signal:

si(t) = vi(t)oi(t) (14)

Finally, the latent signals si(t) are mixed linearly to
give the image. Denote by I(x, y, t) an image sequence.
Then the mixing can be expressed as

I(x, y, t) =

n
∑

i=1

ai(x, y)si(t). (15)

The three Eqs. (13–15) define a statistical generative
model for natural image sequences.

The higher-order process ui(t) could be called the
bubble process. When this process obtains a value that
is different from zero, which is a rare event by defini-
tion, a bubble is created: The non-zero value spreads
to neighbouring temporal and spatial locations due to
the smoothing by ϕ and h. The spread of activation
means that simple cells are have large variances inside
that spatiotemporal window.

For experiments and estimation methods regarding
the bubble model, see [12].

8. A TWO-LAYER MODEL WHERE BOTH

LAYERS ARE ESTIMATED

We have also developed a two-layer model of natural
image sequences that has the interesting property that
both layers can be estimated [7]. This is in stark con-
trast to the models discussed above that fix the second
layer (pooling of simple cell responses) beforehand, and
only estimate the basis vectors (linear mixing matrix).

Technically, the estimation of two-layer models is
quite difficult. In the models introduced above, esti-
mation of the pooling weights is possible, in principle,
by considering them as parameters just as the basis
vectors. However, this introduces a normalization con-
stant in the likelihood, because the integral of the prob-
ability density must equal one for any values of the
pooling weights. Evaluation of this constant is most
difficult.

We have been able to circumvent this problem by
using a multivariate autoregressive model on the activ-
ity levels of simple cells. The activity levels correspond
to the variances used in earlier sections, but for tech-
nical reasons, they are here defined simply as the ab-
solute values. Let us denote by abs(s(t)) a vector that
contains the absolute values of the elements of s(t).
Further, let v(t) denote a driving noise signal in the
autoregressive process. Let us denote by M a K × K

matrix that gives the autoregressive coefficients, and let
τ denote a time lag. Our model for the activities is a



constrained multidimensional first-order autoregressive
process, defined by

abs(s(t)) = Mabs(s(t − τ)) + v(t). (16)

Just as in ICA, the scale of the latent variables is not
well defined, so we define that the variances of si(t) are
equal to unity.

The model is complicated by the fact that the ab-
solute values must be non-negative. Thus, There are
dependencies between the driving noise v(t) and the
s(t − τ). To define a generative model for the driv-
ing noise v(t) so that the non-negativity of the ab-
solute values holds, we proceed as follows. Let u(t)
denote a zero-mean random vector with components
which are statistically independent of each other. We
define v(t) = max(−Mabs(s(t − τ)),u(t)) where the
maximum is computed component-wise.

To make the generative model complete, a mecha-
nism for generating the signs of components s(t) must
be included. We specify that the signs are generated
randomly with equal probability for plus or minus af-
ter the strengths of the responses have been generated.
All the signs are mutually independent, both over time
and the cell population, and also independent of the
activity levels. Note that one consequence of this ran-
dom generation of signs is that that filter outputs are
uncorrelated [7].

We have developed a method for estimating both
the autoregressive matrix M and the basis vectors si-
multaneously. This is important because the set of ba-
sis vectors is not well-defined because of multiple lo-
cal minima. Furthermore, there is little justification
to assume that the maximally independent basis vec-
tors given by ICA would be the optimal ones to use in
a multi-layer model, since the structure of the higher
layer affects the likelihood. For a description of the
estimation method, and an interesting graphical repre-
sentation of the resulting basis vectors and M, see [7].

9. ESTIMATION THAT IS BLIND TO THE

DEPENDENCIES

A most interesting result that we have obtained very
recently is that the estimation method in the preced-
ing section can be generalized to a model where the
quantitative values of the dependencies (correlations
of squares) are arbitrary. This leads to a separation
method that is double-blind in the sense that no apriori
assumptions are made either on the mixing matrix or
on the higher-order correlations.

In the model we assume that the sources si(t) have
dependencies because the general activity levels, i.e.

variances of the sources are not independent. More-
over, we assume that this activity levels change smoothly
in time, as in methods based on nonstationary variance
[16, 20, 8]. To model such dependencies, we assume, as
above, that each source signal can be represented as a
product of two random signals vi(t) and oi(t):

si(t) = vi(t)oi(t). (17)

Here, oi(t) is an i.i.d. signal that is completely inde-
pendent in time, and mutually independent over the
index i as well. The dependencies (between the sources
and over time) are only due the dependencies in vi(t),
which is a non-negative signal giving the general activ-
ity level (variance). Thus, vi(t) and vj(t) are allowed to
be statistically dependent. No particular assumptions
on these dependencies are made, in order to have as
blind a method as possible.

For simplicity, we use here the ordinary source sep-
aration notation and terminology. Assume that we ob-
serve an invertible linear transformation of the vectors
of source signals:

x = As (18)

with a square mixing matrix A. The following theo-
rem, whose proof will be found in a manuscript under
preparation, shows how the model can be estimated
without assumption on the form of the correlations of
squares:

Theorem 1 Assume the observed signals xi(t) are gen-
erated according to the model (18), and that the signals
are preprocessed by spatial whitening to give the multi-
dimensional signal z(t). Define the objective function:

J(W) =
∑

i,j

[

cov(wT
i z(t),wT

j z(t − τ))
]2

(19)

where W is constrained to be orthogonal, and τ is a
time lag. Assume that the matrix K defined by

Kij = cov(s2

i (t), s
2

j (t − τ)) (20)

is of full rank. Then, the objective function J is (glob-
ally) maximized when WA equals a signed permutation
matrix, i.e. the wT

i z(t) equal the original sources si(t)
up to random signs.

10. CONCLUSION

Modelling the statistical structure of natural images is
useful in vision research as well as in image processing.
Possibly the most fundamental model is nothing but
ICA, although it was originally motivated by sparse



coding. The obtained components are not really inde-
pendent, which shows, in fact, an opportunity to model
further aspects of the visual system.

We have developed models on the dependencies of
the “independent” components. The most important
kind of dependency seems to be the correlation of
squares (energies), in other words, dependence through
variances or activity levels. These dependencies are
modelled by 1) independent subspaces and 2) a topo-
graphic organization of the components based on their
dependency structure.

Further, we have modelled the temporal structure
of natural image sequences using the very same kind of
(temporal) dependencies through variances. This even-
tually lead to the unifying framework of spatiotemporal
activity bubbles. Finally, we have developed a method
of double-blind source separation, which is blind to the
particular higher-order correlations of the components
as well.

Future work will consist of extending this work to
multi-layer models; see [5] for a first attempt.
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