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ABSTRACT

This paper presents a speaker indexing method that uses a small
number of microphones to estimate who spoke when. Our proposed
speaker indexing is realized by using a noise robust voice activity
detector (VAD), a GCC-PHAT based direction of arrival (DOA) es-
timator, and a DOA classifier. Using the estimated speaker index-
ing information, we can also enhance the utterances of each speaker
with a maximum signal-to-noise-ratio (MaxSNR) beamformer. This
paper applies our system to real recorded meetings / conversations
recorded in a room with a reverberation time of 350 ms, and eval-
uates the performance by a standard measure: the diarization er-
ror rate (DER). Even for the real conversations, which have many
speaker turn-takings and overlaps, the speaker error time was very
small with our proposed system. We are planning to demonstrate a
real-time speaker indexing system at ICASSP2008.

Index Terms— Speaker indexing, diarization, voice activity de-
tector, maximum SNR beamformer

1. INTRODUCTION

Meeting recognition has been studied [1–5] and it has been pointed
out that speaker indexing (sometimes called “diarization”), i.e., esti-
mating who spoke when, is an important topic. The speaker indexing
information should be useful for such applications as speech recog-
nition during minute taking and speech enhancement.

Let us formulate the task. Suppose that N ≥ 2 speech sources
s1, . . . , sN are convolutively mixed and observed at M microphones,

xj(t) =
PN

k=1

P
l hjk(l) sk(t − l) + nj(t), j =1, . . . , M, (1)

where hjk(l) represents the impulse response from source k to mi-
crophone j, and nj(t) is the observed stationary background noise
at microphone j. The speech sk(t) are intermittent signals. In this
paper we assume that the speakers do not change their seats during
one meeting / conversation. Our goals are (i) to give speaker indices
to each time point t, and (ii) to enhance each speaker utterance, with-
out knowing the number of speakers N , the speech sources sk or the
mixing process hjk.

Recently, some papers (e.g., [1] and related papers) employ sev-
eral microphones and utilize the time-difference of arrival informa-
tion between microphones to improve speaker indexing. However,
most previous work uses an undesigned microphone array. How-
ever, in the meeting, we can employ a small and precisely arranged
microphone array. By using such an array, we can utilize the speaker
position information more accurately, and easily relate the estimated
speaker position to the meeting’s seating arrangement. Such an array
is also portable, which is important for a minuting system.

As regards the meeting recognition task, we have proposed a
speech enhancement method for a meeting situation [6]. The paper
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Fig. 1. Flow for proposed method.

employed a maximum signal-to-noise-ratio (MaxSNR) beamformer,
which requires “target speaker speaking period” and “target silent
(interferences-and-noise) period” information. That is, our enhance-
ment method includes a speaker indexing system.

In this paper, first, we detail our speaker indexing method. Our
speaker indexing system consists of a noise robust voice activity de-
tector (VAD), a GCC-PHAT based direction of arrival (DOA) es-
timator, and a DOA classifier. That is, our system estimates the
speaker indices by relying on the speaker seat locations. Our sys-
tem is characterized by a VAD that is robust with respect to all types
of noise (i.e., stationary, non-stationary, and burst noise). In addi-
tion, we explain a speech enhancement method with the MaxSNR
beamformer. Although the authors of [2] employ a beamformer as a
frontend for the speaker indexing, this paper proposes to utilize the
speaker indexing result for designing the beamformer coefficients.

Then, we report the speaker indexing and enhancement perfor-
mance of our proposed system. We also evaluate the noise robust
VAD. We utilized real recordings of meetings / conversations in a
room whose reverberation time was 350 ms. We obtained encourag-
ing results even for the recorded conversations, which usually have
more speaker turn-takings and overlaps than meetings.

2. PROPOSED METHOD

Figure 1 shows the system flow of our proposed method. This sec-
tion explains each step in Fig. 1 closely.

Our system works in the time-frequency domain. That is, it
utilizes the time-frequency representation xj(f, τ) of the observa-
tions xj(t) (1), which is obtained by a short-time Fourier transform
(STFT). Here f is a frequency and τ is a time-frame index.

2.1. Speaker indexing

2.1.1. Voice activity detector (VAD)

First, we detect automatically the periods of target human speeches
from a continuously observed signal by using VAD.

A block diagram of the VAD employed in this paper is shown
in Fig. 2. In the figure, the VAD is constructed by using two stream
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Fig. 2. Block diagram of VAD. PARADE: a Periodic to Aperiodic
component RAtio-based DEtection, SKF: a switching Kalman filter.

speech / non-speech discriminators, i.e., periodic to aperiodic com-
ponent ratio-based detection (PARADE) [7] and a switching Kalman
filter (SKF)-based approach [8]. Each stream outputs the likeli-
hood of speech / non-speech discrimination frame by frame, thus
the speech period PS is decided by using the adaptively weighted
sum of each likelihood [9].

PARADE is robust for burst noise and the SKF is robust for sta-
tionary and non-stationary noises. Therefore, by integrating them,
we can obtain a VAD that is robust for all types of noises, i.e., sta-
tionary noise, non-stationary noise, and burst noise.

Here, the SKF constructs a clean speech / silence state transi-
tion model (GMM: Gaussian mixture model) in advance, and se-
quentially updates the noise model without a priori knowledge of
ambient noise by using a Kalman filter when a signal is observed.
After the noise model updating, a noise adapted model, i.e., a model
with a speech (clean speech + noise) state and a non-speech (silence
+ noise) state is composed by using probability density functions
(PDFs) of the clean speech state or the silence state and updated
noise model. With the method, the Kalman filter for noise updating
is formulated by using PDF parameters of the clean speech state or
the silence state. Consequently, two types of estimation (updating)
results are given for the noise model by the selection of the clean
speech state or the silence state. This means that the state-space rep-
resentation of the Kalman filter depends on the state selection, thus
the method has the characteristic of a switching Kalman filter. By
using the adapted model, we can construct the VAD that is robust to
a variety of speech and time varying noise.

In this paper, the VAD results are given by binary labeling, i.e.,
the non-speech and the speech frames are labeled as 0 and 1, re-
spectively. As we employ an array of multiple microphones, first we
apply the VAD to each channel independently. Then, each outputted
binary label is unified with a frame by frame logical sum operation.
The speech period PS is determined by PS = {τ |frames labeled as 1}.

2.1.2. Speaker indexing

Then, we partition the speech period PS into each speaker period
Pk (k = 1, · · · , N ). The estimated speaker periods Pk gives us the
speaker indexing result.

Feature extraction: In this paper, we classify the direction of ar-
rival (DOA) q(τ) in the speech period PS . To estimate the DOA,
first we estimate the time differences of arrival (TDOA) q′jj′(τ) for
all microphone pairs j and j′ by using the generalized cross correla-

for τ = 1 : end { /* for all frame τ , do online clustering */
if exist(centroid) & τ ∈ PS {
if min ||ck − q(τ)|| < th1 { /* close enough to existing centroid */

then k ← argmink||ck − q(τ)|| /* find nearest centroid ck */
Ck ← Ck ∪ q(τ) /* add cluster member to cluster Ck*/
ck ← ck + μq(τ) /* update centroid ck*/

}
}

if mod(τ/F1)==0 { /* check new centroid(s) for every F1 frames */
if (the number of τ ∈ PS in bini) > th2 in the last F2 frames

& min ||ck − bi|| > th3 { /* if recent features concentrate in a DOA
& it is far enough to existing centroids */

then create new centroid cK+1 = bi /* K: # of existing clusters */
}

}
}

Fig. 3. Pseudo code of online clustering. bini is the pre-defined
feature range, bi is a representing vector for bini. In our implemen-
tation, bini = [10◦(i−1), 10◦i) is defined in azimuth θ (see section
2.1.2), and bi is the center value of bini. The thresholds in our paper
are th1 = 15◦ and th3 = 30◦ in azimuth θ, F1 = 20, F2 = 500,
and th2 = 16 frames.

tion method with the phase transform (GCC-PHAT) [10]

q′jj′(τ) = argmaxq′
X

f

xj(f, τ)x∗
j′(f, τ)

|xj(f, τ)x∗
j′(f, τ)|e

j2πfq′
. (2)

We can use a TDOA (column) vector q′(τ), which consists of the
q′jj′(τ) of all the microphone pairs, however, in this paper we use
the DOA vector q(τ) as a feature for simplicity of implementation.

The DOA vector q(τ) is calculated by the TDOA information
q′(τ) and the given microphone coordinate information D [11]:

q(τ) = cD−q′(τ). (3)
where c is the propagation velocity of the signals and − denotes the
Moore-Penrose pseudo-inverse. When the source azimuth is θ(τ)
and the elevation is φ(τ), the DOA vector can be written as q(τ) =
[cos θ(τ) cos φ(τ), sin θ(τ) cos φ(τ), sin φ(τ)]T .

Because we employed the GCC-PHAT, the feature q(τ) is esti-
mated frame-wise (not time-frequency slot-wise).
Clustering: To divide PS into individual speaker periods Pk, we
then perform clustering for the extracted features q(τ) of all time-
frames τ ∈ PS . In order to apply our method even when the number
of speakers N is unknown, we employ an online clustering algo-
rithm (leader-follower clustering) [12]. The pseudo code is provided
in Fig. 3, where a new centroid is generated when a new speaker
appears in a recording.

Each speaker period Pk is determined by
τ ∈ Pk if q(τ) ∈ Ck, (4)

where Ck is the k-th cluster. This Pk is the speaker indexing re-
sult for the real-time display (see Fig. 5). For the speaker indexing
evaluation in Section 3, we removed the short fragments and short
pauses by smoothing Pk, and provide temporal information about
the speech-onset and speech-offset for each speaker.

2.2. Speech enhancement

For speech enhancement, this paper employs a MaxSNR beamformer
as in our previous paper [6]. The design criterion for the beamformer
wk(f) is to maximize the ratio λ(f) of the output power between
the target-speaker period Pk and the interference-and-noise-only pe-
riod P̄k = P − Pk. That is, the MaxSNR beamformer is one of the
applications of the speaker indexing. The beamformer coefficients
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Table 1. Conversation recordings. Each recording duration was five minutes.
Evaluation data ID #Speaker Overlap [%] #Turn-taking #Utterance Noise sources
presentation rehearsal 1 4 1.4 40 119 PC1,2, projector, laughing voice
presentation rehearsal 2 (Q&A) 3 6.0 75 145 of other speakers
conversation 3 34.8 243 278 PC2
discussion 3 10.8 126 172 PC2, paper noise
crossword puzzle 1 4 18.6 149 185 PC2
crossword puzzle 2 4 13.0 183 218 PC2
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Fig. 4. Room setup. Small ellipses illustrate example speaker places.
The reverberation time was around 350 ms.

wk(f) is obtained by the eigenvector e1(f), which corresponds to
the largest eigenvalue of the generalized eigenvalue problem [6]

Rk
T(f)wk(f) = λ(f)Rk

I (f)wk(f), (5)
where Rk

T(f) = 1
|Pk|

P
τ∈Pk

x(f, τ)xH(f, τ), Rk
I (f) = 1

|P̄k|P
τ∈P̄k

x(f, τ)xH(f, τ), x(f, τ) = [x1(f, τ), . . . , xM (f, τ)]T , and
|P| denotes the number of elements of |P|.

The enhanced speech for the k-th speaker is obtained by
yk(f, τ) = wH

k (f)x(f, τ) . (6)

3. SYSTEM EVALUATIONS

3.1. Setup

Experiments were performed in the room shown in Fig. 4 whose
reverberation time was around 350 ms. We recorded some conversa-
tions by three or four speakers in the room. The duration of each unit
of recorded data was five minutes. The distance between the micro-
phone array and the speakers was around 1 m. Personal computers
(PC1, 2) and a projector in Fig. 4 could be the noise sources.

Because our recordings were conversations, they contain more
speaker turn-takings and speaker overlaps than usual meeting record-
ings. Table 1 summarizes the conversation situations. It can be
seen that our data contains many speaker turn-takings and overlaps,
which make speaker indexing difficult and require speech enhance-
ment. Reference VAD and speaker indexing labels were generated
by employing a hand-labeled transcription, which includes temporal
information about speech-onsets and speech-offsets.

The sampling rate was 16 kHz, the frame size for STFT was
64 ms, and the frame shift was 32 ms.

3.2. VAD results

In the evaluation, we compare the VAD performance of the proposed
method with that of Sohn’s method [13], which is a widely used

Table 2. Experimental results of VAD [%]
Sohn ProposedEvaluation data ID FAR FRR Ave. DER FAR FRR Ave. DER

presentation rehearsal 1 41.8 14.3 28.1 20.0 12.8 24.3 18.6 22.2
presentation rehearsal 2 24.3 28.5 26.4 34.2 22.5 19.7 21.1 22.0
conversation 33.2 44.1 38.7 56.6 47.9 21.7 34.8 32.5
discussion 56.4 17.0 36.7 45.7 14.8 22.4 18.6 23.0
crossword puzzle 1 12.6 37.1 24.9 45.3 16.4 13.7 15.1 19.4
crossword puzzle 2 32.0 22.8 27.4 37.3 26.8 13.6 20.2 17.8

statistical model-based VAD technique.
The feature parameters for the PARADE-based VAD and SKF-

based VAD in the proposed method were the 1st order periodic to
aperiodic component ratio and the 24th order log-Mel spectra, re-
spectively. These parameters were extracted by using a Hamming
window with a 64 ms frame length and a 32 ms frame shift length.
We trained the silence and clean speech GMMs for PARADE-based
VAD and SKF-based by using phonetically balanced Japanese sen-
tences. The training data consisted of 5,050 utterances spoken by
101 speakers. Each GMM had 32 Gaussian distributions.

The evaluation criteria are the false acceptance rate (FAR) and
the false rejection rate (FRR):

FAR = NFA/Nns × 100 [%], FRR = NFR/Ns × 100 [%] ,

where Nns, Ns, NFA, and NFR are the total number of non-speech
frames, the total number of speech frames, the number of non-speech
frames detected as speech frames, and the number of speech frames
detected as non-speech frames, respectively. We also evaluated the
diarization error rate (DER) for VAD [3] (in [3], it is defined as DER
for speech activity detection (SAD))

DER =
Wrongly estimated speech period length

Entire speech period length
× 100[%].

Table 2 shows the VAD results. As seen in the table, the pro-
posed method significantly improves the average FAR and FRR
rates and the DER compared with Sohn’s method. With the proposed
method, the factors that contributed to the improvement were the up-
dating of Kalman filter-based noise model and the adaptive stream
combination. In particular, the expansion of the applicable noise en-
vironment based on the multi stream combination is the most crucial
factor for VAD in real environments.

3.3. Speaker indexing results

We evaluated the diarization error rate (DER),

DER =
Wrongly estimated speaker time length

Entire speaker time length
× 100[%],

which is established by NIST [3]. The diarization error includes the
missed speaker time (MST), the false alarm speaker time (FAT), and
the speaker error time (SET). We evaluated the DER after smoothing
the speaker indexing result Pk as mentioned in Section 2.1.2. If
the estimated number of speakers outnumbers the true number of
speakers, such ghost speaker periods were regarded as the SET.
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Table 3. Experimental results of speaker indexing [%]

With Sohn’s VAD With proposed VADEvaluation data ID DER MST FAT SET DER MST FAT SET
presentation rehearsal 1 27.2 21.6 4.0 1.7 23.9 20.7 3.1 0.1
presentation rehearsal 2 35.0 27.6 4.5 2.9 31.2 23.1 5.6 2.5
conversation 61.3 30.6 13.7 17.1 38.7 19.0 14.5 5.3
discussion 45.0 24.5 17.7 2.8 34.8 25.9 6.9 2.0
crossword puzzle 1 45.0 30.7 7.7 6.6 36.9 18.1 13.6 5.2
crossword puzzle 2 47.6 34.3 9.2 4.1 32.7 21.3 6.8 4.6

Table 3 summarizes the results. Please note that our recordings
contained many speaker turn-takings and overlaps. With our noise
robust VAD, we obtained better performance in the DER than with
Sohn’s VAD. In our implementation, we had small the SET rate.
This means that our online clustering stage worked successfully. The
DER results were affected by the high MST rate. The high MST rate
was because we employed frame-wise DOA as the feature, which
disregards the speaker overlap in one frame. The MST may be im-
proved by using time-frequency-wise DOA information (e.g.,[11]).

3.4. Speech enhancement results

We also evaluated the speech enhancement performance provided
by the MaxSNR beamformer, where the target-speaker period Pk

and the interference-and-noise-only period P̄k were estimated by
the speaker indexing. Here, Pk was not smoothed. For a quanti-
tative evaluation, we utilized simulated conversation data that was
made by following eq. (1) with impulse responses hjk(l) and PC
and projector noise nj(t) obtained in the room (Fig. 4), and En-
glish speech sources sk(t) sampled at 16 kHz. Each data segment
lasted 90 s and the conversation involved three speakers. We tried six
speaker combinations. The performance measures were the signal-
to-interference plus noise ratio (SINR) and the signal to distortion
ratio (SDR) [6].

Table 4 shows the speech enhancement results. We obtained
high performance, although we did not smooth the speaker indexing
result Pk. Moreover, the performance does not depend on the VAD
methods. This suggests that the MaxSNR beamformer does not nec-
essarily require the low MST and FAT rates, and that it just needs the
accurate speaker frame estimation (i.e., small SET rates).

We also confirmed informally that we can obtain good enhance-
ment performance with our implemented system for the real recorded
conversation. Even when we have more speakers than microphones,
we can still expect that there are fewer speakers in a short data block
(e.g, 5 seconds) in a real conversation. Therefore, it was still possible
to employ the MaxSNR beamformer.

3.5. System
In our implementation, the VAD component was written in C and
the speaker indexing parts and display drawing (see Fig. 5) were re-
alized by MATLAB6. 5. In the display (Fig. 5), microphone-1 obser-
vation (Fig. 5(A)) and the speaker indexing results (Fig. 5(B), (C))
are drawn. Our speaker indexing system can work in real-time on a
personal computer (AMD Athlon64, 2.4GHz). The real-time factor
of the system, which is defined as (the total processing time)/(the
total recording signal duration), was around 0.6.

4. CONCLUSION

We reported an evaluation of our proposed speaker indexing / en-
hancement system. Our proposed speaker indexing system, which
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Fig. 5. Result image. (A) recording at microphone 1, (B) speaker
indexing result, (C) speaker positions with respect to the microphone
array (the center of the circle indicates the array position).

Table 4. Speaker enhancement results in SINR and SDR [dB]. The
averaged input SINR was −3.1 [dB].

With Sohn’s VAD With proposed VAD
SINR SDR SINR SDR
11.8 16.6 11.9 16.2

consists of noise robust VAD, a GCC-PHAT based DOA estimator
and a DOA classifier, works well even for conversation recordings.
We also reported that speech enhancement with the MaxSNR beam-
former can be realized by using roughly estimated speaker indexing
results. Our future work will include improving the speaker indexing
performance by employing time-frequency-wise DOA information.
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