
SIMULTANEOUS AND FAST 3D TRACKING OFMULTIPLE FACES IN VIDEO BY
GPU-BASED STREAM PROCESSING

Oscar Mateo Lozano∗, Kazuhiro Otsuka

omateo@locke.es, otsuka@eye.brl.ntt.co.jp
NTT Communication Science Laboratories

3-1, Morinosato-Wakamiya, Atsugi-shi, 243-0198, Japan

ABSTRACT

In this work, we implement a real-time visual tracker that tar-
gets the position and 3D pose of objects in video sequences,
specifically faces. Using Stream Processors for performing
the computations as well as efficient Sparse-Template-based
particle filtering allows us to achieve real-time processing
even when tracking multiple objects simultaneously in high-
resolution video frames. Stream processing is a relatively
new computing paradigm that permits the expression and
execution of data-parallel algorithms with great efficiency
and minimum effort. Using a GPU (Graphics Processing
Unit, a consumer-grade Stream Processor) and the NVIDIA
CUDATM technology, we can achieve real-time performance
even when tracking multiple objects in high-quality videos.

Index Terms— stream processing, GPGPU, particle fil-
tering, video tracking, real-time systems

1. INTRODUCTION

Fast and robust object tracking in video sequences is required
by many applications in many fields: automated surveillance
systems need it to realize their objectives, robots rely on
it to perform navigation tasks or man-machine interaction,
augmented reality systems depend on the position data ac-
quired by visual tracking to place their virtual objects in the
real world, video-games or assisted devices can be controlled
thanks to a camera and some face or hand tracking software,
to name just a few.
Our motivation for developing a real-time face video

tracker is to advance research on a system that can infer
conversation structure from video sequences of face-to-face
communication [1]; a key assumption is that the gaze di-
rection of the participants provides cues for discerning the
conversation structure, and can be identified from head direc-
tions. The constraints we impose on this tracker are: it has
to be completely automatic, robust against rapid movement
and partial occlusion, work with just one camera (no stereo-

∗Author also with the Image Processing Group of the Universidad
Politécnica de Madrid

vision) on a conventional PC, and be able to track several
faces simultaneously, all in real-time.

1.1. Particle filtering

Particle filtering is a model estimation technique based on
Monte Carlo simulations [2]. Random values of a state-space
variable are generated (the so-called particles), entered into
a description of the system, and checked against the current
output measure to generate a weight value, or probability of
that particle being the one that best describes the current state
of the system. Therefore, the collection of all these particles
and their weights is, at each instant, a numerical approxima-
tion of the probability density function of the system. The
Particle Filter (PF) framework is the basis of the well-known
Condensation algorithm [3], which was originally proposed
for contour tracking, but has been also successfully applied
to the appearance-based tracking of moving objects in video
sequences (as in our chosen method: Sparse Template Con-
densation [4]). The probabilistic approach of these methods
provides significant robustness, as several possible states of
the system are tracked at once at any given moment.
A common problem with this practical method is the

significant computational requirements. Fortunately, Particle
Filters are also easily parallelizable; while they require high
arithmetic throughput, they have low global communication
and storage costs. It is our belief that the advent of consumer-
grade parallel processors can bring the robustness of these
algorithms to real-time applications.

1.2. Stream Processing

We are specially interested in computer graphics chips
(known as “Graphics Processing Units” or GPUs), because
they are currently the most powerful, easily available, and
cheap form of computing hardware. These chips have gone
from fixed-application peripherals to modern, powerful, and
programmable general purpose processors. In recent years,
there has been strong interest from researchers and develop-
ers in exploiting the power of commodity graphics hardware
for general-purpose computing (this movement is known as



Fig. 1. Results of the simultaneous tracking of four faces. The frame sequence is taken from a synthetic 1024x768 video, the
sparse templates are composed of approximately 230 feature points, and each one is tracked using 1000 particles.

GPGPU, for “General Purpose GPU”). Unfortunately, the
GPU uses an unusual programming model, so effective GPU
programming requires rewriting the target algorithm into
graphics terms by a programmer familiar with the limitations
of the underlying hardware.
Stream processing represents an important advance in

making parallel processing easily accessible to programmers.
The programming paradigm raised by stream computing
can be described as, given a set of input and output data
(streams), to define some computation-intensive operations
(kernel functions) that are to be applied to each element in the
stream while exploiting the data independency and locality
typical in media-processing applications. The programmer
is forced by this (intuitive) programming model to express
his/her application in a way that well suits the computational
resources of ChipMultiprocessors (CMPs). But it offers more
than just ease of programming: architectures that map well
to this paradigm (“Stream Processors”) can achieve higher
performance than other architectures, as the locality and con-
currency enforced by this paradigm (and the associated data
bandwidth hierarchy) allows more of the die to be devoted
to ALUs instead of caching and memory access circuitry.
GPUs (although with some limitations) are considered to be
general-purpose Stream Processors.
The Particle Filter framework, and specially the Sparse

Template variant described in [4], applies particularly well

to this paradigm: the operations performed are very simple
(in our case, they consist mainly of geometric transforma-
tions), the data used is highly localized (each particle is self-
contained, as also is every point that describes our template),
and need little memory, so we can use the capabilities offered
by Stream Processors (performmany computations extremely
rapidly and in parallel) to achieve our real-time system. In
particular, we expect a GPU to perform very well, and proof
of this is that some authors have studied the application of
pure GPGPU techniques to other particle filtering tracking al-
gorithms with great success (like the 2D visual tracker in [5]).
To the best of our knowledge, our work is the first 3D object
tracker to be based on Stream processing.

2. METHOD OVERVIEW

Our tracker can be studied in three big blocks: initialization,
tracking, and display. In our system, the initialization stage is
performed in a separate thread in the host system, while the
main thread performs GPU-based tracking and displays the
results (Fig. 1).

2.1. Initialization stage

The initialization thread scans the image looking for new
faces that are not currently being tracked. For this purpose, a



Fig. 2. a Frontal face image at time t = 0; b the Viola & Jones detector finds a rectangle containing a face, and the AAM is
2D-fitted to the shape of that face; c depth map texture is warped to the AAM shape; d the same for the normal map; e the
feature points (position and grey level) that form the sparse template are selected using image processing techniques, and their
depth and normal to the surface values are extracted from prior maps.

Viola & Jones [6] boosting algorithm is employed, as these
detectors are quite fast and have been proven to work very
well in practice. After determining that a detected face is not
currently being tracked (by simply comparing it to known
face positions), the subimage formed by the detected rectan-
gle is passed to the next step, for template extraction.
In the Sparse Template Matching method, a sparse tem-

plate is carefully formed by a small set of pixels (feature
points) from a full template, with the idea of making the track-
ing more efficient by reducing the number of calculations. In
addition, we resort to the Sparse Template Matching method
to find relevant points to track, and treat those points as uni-
dimensional streams of data.
In this method, the human face is typically approximated

as a planar surface forming the sparse template. In order to
increase precision, our system uses a generic 3D model of
the human face that we personalize to each detected face by
means of the Active Appearance Model [7]. We fit one of
these models over the face subimage, thus obtaining the 2D
coordinates of a series of landmark points that correspond to
previously known features of the human face and, with the
help of these landmarks, adapt our face model (described as
the pair of a “heightmap” and a “normalmap”) to obtain the
depth value and normal to the surface vector at every point of
the face. See Fig. 2 for a graphical explanation of this process.
Next, the feature points are selected from local mini-

mum/maximumpoints and boundary dipoles on the image, as
in [4]. With all this information, our template can be formed
by a stream of N feature points, each one composed of the
three coordinates of the feature point, and the vector normal
to the face surface in the feature point. At the same time,
M particles per object to be tracked are randomly selected
and their state-space values filled with random values uni-
formly distributed around the well-known initial state. Here,
a particle’s state consists of 2-translations on the image plane,
3-rotations, scale, and illumination coefficient (See Fig. 1).
The feature points and the particles provide our two input
streams.

2.2. Weighting stage

Actual particle filtering is performed in this stage. As de-
scribed in [2, 4], it consist of the steps of selection or drift-
ing, diffusion, and particle weight measurement. Of all these
steps, the last one is the most expensive. What this stage does
is score each particle by means of a likelihood weight. Here,
for each particle, the likelihood weight is calculated based
on the summation of matching errors between each feature
point in the template and corresponding pixels in the current
frame. The particle filter algorithm itself is computationally
expensive, but the weight computation is the main bottleneck,
and the one that we have decided to execute via Stream pro-
cessing. Our two input streams are composed of the stream
formed by all particles and the stream formed by all feature
points.
Weight calculation of each particle is an independent pro-

cess, as is the matching error calculation for each feature
point. Our method exploits these independencies to utilize
parallel processing on the GPU: the kernels must perform the
3D transformation of each feature point as estimated by each
of the particles, and then a comparison of the feature point
gray level against the resulting point in the full image. The
sum of all those comparisons for each feature point results
in the weight of each one of the particles. This is our output
stream: the collection of weight values of every particle.
As a simple feature point occlusion detector, we employ a

normal map, as depicted in Fig. 2(d). It indicates the vectors
normal to the surface in each feature point. By transforming
(the same as we do with the feature positions, except only the
rotation effect is considered) the normals, we obtain a coarse
measure of the 3D face model pose, that we use to discard
those points that are likely occluded by the face itself.
Once the weights of each particle are obtained, we rear-

range the particles in descending order of weight and estimate
the current state as the average of the best particles. Then, we
pass the result to the display stage and perform the selection
of new particles, and their random diffusion (by means of a



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100
Particle weighting speed

Number of particles

T
im

e 
pe

r 
fr

am
e 

(m
s)

 

 
GPU
Software

Fig. 3. Speed of the particle weighting stage: comparing
Stream processing in the GPU version to a serial CPU-only
version. Video 1024x768, 217 feature points.

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40
Full application speed

Faces

Fr
am

es
 p

er
 s

ec
on

d

 

 
GPU
Software

Fig. 4. Speed of the full application: comparing Stream pro-
cessing in the GPU version to a serial CPU-only version.
Video 1024x768,≈230 feature points per face, and 1000 par-
ticles per face.

Gaussian noise term with mean and standard deviation cho-
sen carefully to provide both stable and fast tracking) in order
to diversify the set and avoid the degeneracy problem. After
that, this stage starts again and is repeated indefinitely, unless
the quality of the tracking results degrades so much that we
must consider that tracking has failed.

3. EXPERIMENTS AND CONCLUSIONS

The developed software (a mixture of C++ and CUDA) was
tested on an Intel Core 2 Duo 2.66GHz host system with
2GB RAM, using a NVIDIA GeForce 8800GTX GPU as
the Stream Processor. As the adaptive face models, we used
AAM-API [8]. The generic face model heightmap and nor-
malmap were created by hand on the base of a subdivided
CANDIDE [9]. The Viola & Jones implementation provided
with OpenCV was used as the frontal face detector. The
results indicate an important speed boost compared to the

CPU-only version of the algorithm, especially when using
a large number of particles (Fig. 3) and/or tracking multiple
objects simultaneously (Fig. 4), making the tracker eminently
suitable for real-time processing in a standard PC platform.
We have described a system for 3D visual tracking capa-

ble of achieving real-time performance thanks to the use of
a GPU for parallel computation. The use of the Stream pro-
cessing approach greatly simplified the development issues,
and at the same time opened the door to other computing ar-
chitectures. The goals imposed before starting the design (au-
tomatic, robust, just one camera, conventional computing re-
sources, multi-object, real-time) have all been achieved, and
the system is currently being used for future research in the
area of conversation scene analysis. The novelty of the pro-
posed work lies not only in the usage of a Stream Processor
for 3D visual tracking, but also in the new sparse template
initialization method that improves the accuracy and stability
of tracking by means of a simple, generic 3D-model of the
human face.

4. REFERENCES

[1] K. Otsuka, J. Yamato, Y. Takemae, and H. Murase, “Con-
versation scene analysis with dynamic Bayesian network
based on visual head tracking,” in Proc. ICME2006,
2006, pp. 949–952.

[2] A. Doucet, N. Freitas, and N. Gordon (eds), Sequen-
tial Monte Carlo Methods in Practice, Springer-Verlag,
2001.

[3] M. Isard and A. Blake, “Condensation - conditional den-
sity propagation for visual tracking,” in Proc. ICCV’98,
1998, pp. 107–112.

[4] Y. Matsubara and T. Shakunaga, “Sparse template match-
ing and its application to real-time object tracking,” IPSJ
Trans. Computer Vision and Image Media, vol. 46, no. 9,
pp. 17–40, 2005.

[5] A. S. Montemayor, J. J. Pantrigo, Á. Sánchez, and
F. Fernández, “Particle filter on GPUs for real-time track-
ing,” in Proc. of ACM SIGGRAPH, 2004, p. 94.

[6] P. Viola and M. Jones, “Robust real-time face detection,”
IJCV, vol. 57, no. 2, pp. 137–154, 2004.

[7] G. J. Edwards, C. J. Taylor, and T. F. Cootes, “Interpret-
ing face images using active appearancemodels,” in Proc.
Int. Conf. on Face and Gest. Recog., 1998, pp. 300–305.

[8] M. B. Stegmann, B. K. Ersbøll, and R. Larsen, “Fame
- a flexible appearance modelling environment,” IEEE
Trans. Med. Img., vol. 22, no. 10, pp. 1319–1331, 2003.

[9] J. Ahlberg, “Candide-3 – an updated parameterized
face,” Tech. Rep. LiTH-ISY-R-2326, Dept. Electrical
Eng., Linköping Univ., 2001.


