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ABSTRACT
A novel probabilistic framework is proposed for analyzing
cross-modal nonverbal interactions in multiparty face-to-face
conversations. The goal is to determine “who responds to
whom, when, and how” from multimodal cues including
gaze, head gestures, and utterances. We formulate this prob-
lem as the probabilistic inference of the causal relationship
among participants’ behaviors involving head gestures and
utterances. To solve this problem, this paper proposes a hi-
erarchical probabilistic model; the structures of interactions
are probabilistically determined from high-level conversation
regimes (such as monologue or dialogue) and gaze directions.
Based on the model, the interaction structures, gaze, and
conversation regimes, are simultaneously inferred from ob-
served head motion and utterances, using a Markov chain
Monte Carlo method. The head gestures, including nodding,
shaking and tilt, are recognized with a novel Wavelet-based
technique from magnetic sensor signals. The utterances are
detected using data captured by lapel microphones. Ex-
periments on four-person conversations confirm the effec-
tiveness of the framework in discovering interactions such
as question-and-answer and addressing behavior followed by
back-channel responses.

Categories and Subject Descriptors
H1.2 [Models and Principles]: User/Machine System —
Human Information Processing

General Terms
ALGORITHMS, HUMAN FACTORS
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1. INTRODUCTION
Face-to-face conversation is one of the most basic forms of

communication in our life and is used for conveying/sharing
information, understanding others’ intention/emotion, and
making decisions. To enhance our communication capability
beyond conversations on the spot, the automatic analysis of
conversation scenes is a basic technical requisite to enable
effective teleconferencing, archiving/summarizing meetings,
and to realize communication via social agents and robots.
The conversation scene analysis targets various aspects of
conversations, from individual/group behaviors such as “who
is speaking now?” and “who is talking/listening to whom?”,
to context/mental status such as “who made him angry?”
and “why is she laughing?”.

In the face-to-face setting, the messages include not only
verbal but also nonverbal messages. The nonverbal mes-
sages are expressed by nonverbal behaviors in multimodal
channels such as eye gaze, facial expressions, head motion,
hand gesture, body posture and prosody; psychologists have
elucidated its importance in human communications [1, 26].
Therefore, it is expected that conversation scenes can be
largely understood by observing people’s nonverbal behav-
iors with sensing devices such as cameras and microphones.

As a preliminary step, authors have focused on eye gaze
as a nonverbal cue for recognizing addressing/listening be-
haviors [22], based on the importance of gaze functionality
in conversations [16, 12]. We have conducted a frequency
analysis of the set of gaze directions of all participants, we
call it gaze pattern, and hypothesized that the topology of
gaze patterns (convergence and mutual gaze) can indicate
the pattern of conversations such as monologue and dia-
logue; we call these the conversation regimes. As an exam-
ple, one relationship is “hearers tend to look at speaker in
monologues”. To model the relationships between gaze pat-
terns and regimes, we proposed a probabilistic conversation
model based on a dynamic Bayesian network; the conver-
sational regime controls the dynamics of gaze patterns and
utterances; the gaze pattern is a hidden variable and is esti-



mated from head-direction measurements. With this model,
the regimes and the gaze patterns are jointly estimated from
the utterances and the head directions measured with sen-
sors [22] or face tracking in videos [23]; the estimation is
implemented using the MCMC(Markov chain Monte Carlo)
method.

This paper tries to extend our framework to a new target,
the automatic inference of nonverbal interaction structures
in multiparty conversations; the goal is to determine “who
responds to whom, when, and how”. In contrast to authors’
previous work [22, 23], this paper tries to recognize more di-
rect nonverbal interactions in conversations. We particularly
focus on head gestures (nod, shake, and tilt) and utterances
as nonverbal cues, and try to discover the action-reaction
pairs of participants’ behaviors such as question-and-answer
and addressing followed by back-channel responses. The tar-
get interactions will yield cross-modal formations such as an
utterance acknowledged by nodding where the nod triggers
the other’s utterances. The interaction structure is the ba-
sic primitive in conversations and can reveal how messages
are exchanged among people; it can be a clue for inferring
how the attitude and minds of participants change. As far
as the authors know, this paper is the first one to shed light
on the explicit structural analysis of nonverbal interactions
in conversations.

We formulate this problem as the probabilistic inference of
the causal relationships among participants’ behaviors, we
call these relationships the interaction structures. To solve
this problem, this paper proposes a hierarchical probabilistic
model; the interaction structures are probabilistically gen-
erated from gaze and conversation regimes; the interaction
structures then determine how head gestures and utterances
relate to each other, i.e. “which behavior is triggered by
which behavior”, as well as “which behaviors are spontaneous
and which are reactive”. Based on the model, the interac-
tion structures, gaze patterns, and conversation regimes, are
simultaneously inferred from head directions, head gesture
intervals, and utterance intervals, using a MCMC.

One of the key features differentiating our model from ex-
isting interaction models is the modeling concept: explicit
representation of the causal relationships among behaviors
in Bayesian network form; the configuration of which is ruled
by upper-layer processes, i.e. regimes and gaze. Another
key feature is the use of a semi-Markov process [14] to ac-
curately model the temporal structures of interactions; it
permits arbitrary distributions of behavior timing, such as
duration and pause length. As one such timing distribu-
tion, this study employs a Weibull distribution [21] due to
its expressiveness. So far, several interaction models have
been proposed for conversation scene analysis, based on the
coupled-HMM [4] and its derivatives such as the influence
model [2]. However, due to the Markov property of these
models, the only exponential temporal distributions are sup-
ported, which does not necessarily match actual phenomena.
Moreover, interaction modeling has, so far, mainly targeted
audio modality [2, 7], and the modeling of multimodal in-
teractions remains an open problem.

This paper focuses on head gestures such as nodding,
shaking, tilt, for the following reasons. First, it is well
known that head gestures play important roles in face-to-
face conversation for both speakers and hearers [18]. The
speaker’s head gestures appear as visible signs of actions
such as addressing, questioning, and stressing. The hearers’

head gestures can be interpreted as signs of listening, ac-
knowledgement, agreement/disagreement, and the level of
understanding. These gestures are used to regulate various
interactions in conversations, such as question & answer, ad-
dressing & back-channel response, and turn-taking/yielding.
Therefore, head gestures are considered to be a rich infor-
mation source for understanding conversations.

Several head gesture recognition methods have been pro-
posed for man-machine interfaces using techniques such as
HMM [15] and FFT+SVM(Support Vector Machine)[20].
Unlike interactions with artificial agents, human-human con-
versations exhibit a wide variety of gestures, in terms of peri-
odicity, speed, and dynamic range, which are mixed together
with other head motions such as those synchronized to ut-
terances, turning head when changing gaze direction, and so
on. To handle such gestures, this paper proposes a novel ges-
ture recognition technique that consists of Wavelet-analysis
of head pose sequences; SVM is used as a discriminator.

This paper is organized as follows. Section 2 overviews
related works. Section 3 proposes our conversation model,
and Section 4 presents an estimation algorithm based on
the model. Section 5 describes the experiment conducted to
verify the effectiveness of our method. Section 6 presents
our conclusion and some discussions.

2. RELATED WORKS
In recent years, conversation scene analysis has emerged as

an attractive research area [10], and two streams of research
have been gaining attention: the automatic recognition of
meeting actions, and using annotated data to explore human
mechanisms in meetings.

The former study stream aims to realize the automatic
recognition of meeting actions such as monologue, dialogue,
discussion, note-taking, and presentation, from audio/visual
signals. To do this, most prior studies employed low-level
features such as global image motion and geometric image
primitives detected from video, and tried to build statisti-
cal models on machine learning techniques that linked the
signals to meeting actions. So far, a number of models have
been proposed based on the HMM(Hidden Markov Model)
[19], layered-HMM [27], coupled-HMM [2], and dynamic
Bayesian networks [9]. However, the explicit measurement
and modeling of human behaviors in meetings remain as
open problems. On the other hand, another line of studies,
motivated by the desire to explore human mechanisms in
meetings, takes the psychological point of view. In pioneer-
ing work, a group led by Quek focused on the floor control
function; they used a multimodal meeting corpus [6], cre-
ated by a human expert, for analyzing speech patterns such
as interruption and delegation of the floor [5]. So far, their
research has revealed that multimodal cues such as gaze,
gesture, speech, have important roles in floor control. How-
ever, full-automatic data annotation remains a future work.

Given the current status of the field, we have been trying
to bridge the gap between the two streams of studies men-
tioned above: automatic understanding of meeting scenes
from direct measurements of nonverbal behaviors, and ex-
plicitly modeling the relationship between individual behav-
iors and the status of conversation, with the help of psycho-
logical findings.
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Figure 1: Conversation model, (a) concept, (b)
graphical model.
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Figure 2: Gaze patterns and interaction patterns in
(a)convergence regime and (b)dyad-link regime.

3. CONVERSATION MODEL

3.1 Model Concept
This study focuses on group conversations held in a closed

environment; the number of participants is N ≥ 3. As shown
in Fig. 1(a), we assume that conversations have hierarchi-
cal structures. Further, we hypothesize that a high-level
process, called a conversation regime, governs how people
interact with each other on the interaction layer, and the
interaction process governs how each individual behaves on
the behavior layer.

In [22], authors have proposed conversation regimes as a
global status of conversations, which correspond to address-
ing/listening patterns such as monologue and dialogue. We
focused on the eye gaze of each participant as an interactive
behavior. Also, we hypothesized that the gaze pattern of
participants can indicate the structure of conversations, and
proposed three regimes: Convergence, Dyad-Link, and Di-
vergence. The regime called Convergence (also called mono-
logue) corresponds to the situation that a speaker addresses
all others, and the addressees listen to the speaker. This
regime is indicated by the convergence of the addressees’
gaze onto the speaker, as shown in Fig. 2(a). Second, the
regime called Dyad-Link (also called dialogue) corresponds
to the situation that two people are talking to each other,
and the others are side-participants. This regime is indi-
cated by mutual gaze between the two, as shown in Fig.
2(b). Third, the regime called Divergence (also called oth-
ers) corresponds to situations other than convergence and
dyad-link regimes; every one is silent and/or no organized
conversation exists. The gaze pattern does not exhibit any
organized pattern.

This paper extends the authors’ framework in [22] to in-
fer cross-modal nonverbal interactions. Of particular note,
this paper newly introduces head gestures (nod, shake, tilt)
and utterances as the interacting nonverbal cues, and tries
to find the causal relationship amongst them them. Fig.
1(b) provides a graphical representation of our new conver-
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Figure 4: Interaction network representing causal
relationship determined from interaction structures.

sation model, consisting of hidden variables (conversation
regimes S, gaze patterns X, and interaction structures E)
and observable variables (head directions H, head gestures
G, and utterances U). This model assumes that the inter-
action structures are probabilistically generated depending
on the conversation regimes and gaze patterns and the head
gestures and utterances are probabilistically generated by
the interaction structures.

To establish the link between conversation regimes and
the interaction structures, we hypothesize that the pattern
of interactions resemble the gaze patterns as shown in Fig.
2. For example, in regime convergence, the addressees often
respond to the speaker with nods as the sign of listening,
sometimes accompanied with short utterances like “hmm”
and “yeah”. These addressing/back-channel responses are
basic primitives of interactions in conversation. It is as-
sumed that the direction of the responses follows the same
pattern noted in the case of gaze, as shown in Fig. 2(a). On
the other hand, there is another type of interaction, called
question-and-answer; it is an interaction for exchanging mes-
sages between two persons. We assume that it often appears
in the regime dyad-link, and it takes the form depicted in
Fig. 2(b).

3.2 Model Structure
Fig. 3 provides a graphical representation of the pro-

posed conversation model with temporal information. The
upper part (A) is the same as the proposed in [22], and
the lower part (B) is the novel extension made in this pa-
per. In the upper part, we denote the sequence of regime
states as S = {S1, S2, · · · , ST }; we target the discrete tem-
poral interval [1, T ]. The regime state St at time t takes
one of N convergence regimes, NC2 dyad-link regimes and
the divergence regime. The regime changes are considered
to follow a discrete Markov process. The sequence of gaze
patterns is represented as X = {X1,X2, · · · ,XT }, where



the gaze pattern Xt at time t is composed of the set of
gaze directions of all participants, Xt = {Xi,t}N

i=1; it takes
N discrete directions: look at other’s face or avert from all
of them. The sequences of head directions is denoted as
H = {H1, H2, · · ·HT }T

t=1, and the head direction of each
participants, Ht = {hi,t}N

i=1, is observed as continuous az-
imuth (horizontal) angle.

The lower part (B) in Fig. 3 represents the relationship
between the interaction structures E and behaviors consist-
ing of temporal intervals of head gestures G and utterances
U . In this paper, a head-gesture detector detects the pres-
ence/absence of head gestures at each time step, and a voice
activity detector detects that of utterances at each time step
(See also 5.4 and 5.3). From the detection results, the tem-
poral intervals of continuous head gestures are extracted;
here we define a temporal interval G ∈ G as that is bounded
by the beginning/ending time step at which head motion
starts/ends. The same definition can be applied to the ut-
terance interval U ∈ U . Here, we denote a set of gesture
and utterance intervals as B = G ∪ U ; hereafter we refer
to behavior B ∈ B unless it is necessary to distinguish be-
tween gestures and utterances. Note this paper targets nod,
shake, tilt, and treats them as the same behavior, because it
mainly focuses on the temporal aspect of gestures, not the
meaning of gestures.

This paper assumes that each behavior is triggered by an-
other’s behavior, or appears spontaneously. The interaction
structures E determine the causal relationship among be-
haviors. The proposed model assumes that the interaction
is probabilistically generated based on the states of regimes
and gaze patterns. Fig. 4, which corresponds to the lower
part of Fig. 3, visualizes the causal relationship among be-
haviors assigned by the interaction structures; we call it the
interaction network. In Fig. 4, boxes indicate behaviors
and an arrow from a box indicates the reaction target that
triggered the behavior. A box without any outgoing arrow
indicates spontaneous behavior. The interaction network
can be considered as a Bayesian network with inverse arrow
directions.

The interaction structures consist of a set of elements,
called action unit, E ∈ E, which corresponds to each be-
havior interval, where gesture and utterance intervals are
linked if their beginning times are similar. Each action unit,
E, has attributes including spontaneous-reactive class and
a reaction target. The spontaneous-reactive class indicates
that the action is spontaneous (denoted E →ø) or a reaction
to another’s behavior (denoted E → B, B ∈ Nei(E) ⊂ B),
where B denotes the reaction target that triggered action
E. Nei(E) denotes a set of others’ behaviors that occur
in the temporal vicinity of E, as shown in Fig. 4. This
paper assumes there is only one reaction target for each ac-
tion unit, at most. Here, reactive behavior is defined as the
direct and immediate response to others’ behavior. Sponta-
neous behavior is one that is not reactive behavior. Typical
examples of spontaneous behaviors are addressing and ques-
tioning behavior of speakers. On the other hand, typical re-
active behaviors include the hearers’ back-channel responses
and answers to questions posed.

3.3 Model Definition
Based on the conditional dependency depicted in Fig.

1(b), the joint probability distribution of the model is de-

Table 1: Spontaneous probabilities
Regime Monologue Dialogue Others
Role speaker addressee dyad others —

Utterance ηSMSU ηSMAU ηSDDU ηSDSU ηSOU

(0.95) (0.06) (0.00) (0.00) (0.78)

Gesture ηSMSG ηSMAG ηSDDG ηSDSG ηSOG

(0.93) (0.05) (0.50) (0.00) (0.71)

Table 2: Directional probabilities
Monologue Addressee to speaker ηDA (0.88)
Dialogue One in dyad to another ηDD (1.00)

— Look at response target ηDG (0.88)

fined as

p(X,S,E,H,U ,G, ϕ) ∝ FH(H|X, ϕ) · FB(U ,G|E, ϕ) ·
P (E|X,S, ϕ) · P (X|S, ϕ) · P (S|ϕ) · p(ϕ), (1)

where ϕ denotes the set of all model parameters. Eq.(1) is
composed of the product of the likelihood functions for ob-
served data and the prior distribution of all hidden variables.
This paper employs the same definitions used in [22] for the
priors of regimes P (S|ϕ) and gaze patterns P (X|S, ϕ), and
for the likelihood for head directions FH(·), which assumes
that head direction follows a Gaussian distribution for any
given gaze direction. The prior p(ϕ) of model parameters
is defined as the product of that of each of the parameters;
this assumes the independency of individual parameters.

In Eq. (1), P (E|X,S, ϕ) represents the probability that
interactions E occur in given regimes S and gaze patterns
X. This paper decomposes this into the product of the
probabilities of each action unit E ∈ E, as written in

P (E|X,S, ϕ) =
Q

E∈EP (E|X,S) ·QB∈Nei(E)ψ(E, B) (2)

where the first term, P (E|X,S), represents the probability
of the action unit state and the second term is a penalty to
suppress the case of two behaviors responding to each other
(ψ(E, B) = 0), otherwise ψ(E, B) = 1.

In Eq. (2), P (E|X,S, ϕ) represents the probability that
action unit E is in response to another’s behavior or is
spontaneous. To define this, this paper introduces sponta-
neous probabilities and directional probabilities, and defines
P (E|X,S, ϕ) as their product. The former is the proba-
bility that an action is spontaneous behavior. This paper
assumes that it depends on the regime and role of the per-
son making action unit E, as summarized in Table 1; each
probability is a hidden variable to be estimated. In Table
1, values inside the parentheses are examples obtained from
manually-annotated data (C1) (See 5.1); they indicate that
for a monologue, speaker’s behaviors is far more sponta-
neous than that of the addressees. On the other hand, the
directional probability represents the probability that action
unit E is in response to the target person; it is assumed to
depend on gaze and regime. Table 2 summarizes the direc-
tional probabilities. As mentioned earlier, we assume that
addressees often respond to the speaker in regime conver-
gence, and respond to each other in dyad-link regime. Also,
the reaction target tends to be a gazee, because people tend
to look at the target when they respond.

The second component, which is newly defined for the
joint density in Eq. (1), is the likelihood of interactive be-
havior FB(U ,G|E, ϕ) for given interaction structures E in
Eq. (1). This paper defines this component as the product of
the likelihood function of each behavior interval, fB(B|E),
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Figure 6: Weibull distributions for duration, pause
length, and response time.

in each action unit, by assuming the conditional indepen-
dency of each behavior for given interaction structures E.
This likelihood calculation is based on the temporal distri-
butions of duration, pause, and reaction time of gestures
and utterances (See Fig. 5). Fig. 6 summarizes Weibull
models employed to represent the distributions. The model
in Fig. 6 indicates the tendency observed in the timing of
behaviors; e.g. spontaneous utterances are longer than reac-
tive ones, but spontaneous gestures tend to be shorter than
reactive ones. Using these models, the likelihood fB(B|E)
can be defined separately for each case as in

fB(B|E) =


fS,D

B (td) · fS,P
B (tp) if E is spontaneous,

fR,D
B (td) · fR,R(tr) if E is reactive,

(3)
where td, tp, and tr denote the duration, pause length, and
reaction time of behavior B, respectively. Note that the
Weibull parameters are hidden variables to be estimated.
If the target behavior is a gesture, the trigger time is set
to the beginning of the interval. Otherwise, trigger time is
considered to be a hidden random variable, which follows
the probability distribution of response time.

4. ESTIMATION ALGORITHM
Based on the model defined above, the problem is to esti-

mate the interaction E, the regime S, gaze pattern X, and
model parameters ϕ from measurements Z = {H,G,U}.
We employ a Bayesian approach [3] to estimate the joint
posterior distribution p(E,S,X, ϕ|Z) of all unknown vari-
ables from the given measurements. To estimate the joint
posterior, this study uses the Markov chain Monte Carlo
method called the Gibbs sampler [11], which has an ad-
vantage when dealing with complex models. The Gibbs

sampler repeatedly generates random samples from the full-
conditional posterior distributions of each unknown variable,
which constitute a Markov chain whose invariant distribu-
tion equals the desired joint posterior. The full-conditional
distribution is the distribution of a variable when other vari-
ables are given. From the random samples after the Markov
chain has converged, the maximum a posterior estimate is
calculated for discrete variables, and the minimum mean-
squared error estimates are calculated for continuous vari-
ables. Note this estimation algorithm is a form of unsuper-
vised learning, which does not need training data to obtain
the model parameters ϕ. Instead, we need to experientially
determine hyper-parameters of the prior distributions of the
parameters ϕ.

The full-conditional distribution of the interaction struc-
ture of an action unit can be derived from the joint distri-
bution in Eq. (1), and is written as

P (E → B|S,X,E \ E, ϕ,Z) (4)

∝QB′∈B(E)fB(B′|E) · P (E → B|X,S) · ψ(E, B),

where B(E) denotes a set of behaviors included in action
unit E. According to Eq. (4), the reaction target (also
spontaneous-reactive class) B ∈ Nei(E) ∪ ø of each action
unit E is sampled. The trigger time for each of candi-
date utterance intervals in neighborhood Nei(E) is sampled
from the reaction time distribution. The full conditional
of each spontaneous action and directional probability be-
comes a Beta distribution when assuming Beta priors, and
these probabilities are sampled from the corresponding Beta
full-conditional posteriors. For Weibull models, we assume
Gamma priors for the Weibull’s shape and scale parame-
ters, and truncated uniform prior for the location parameter;
these priors are used to represent a priori knowledge about
the timing distributions. For other variables and parame-
ters, this paper follows the procedures described in [22].

5. EXPERIMENTS

5.1 Data
This paper targets 4-person group conversations. The

participants were four women within the same age bracket;
they were seated as shown in Figure 7. They were instructed
to hold a discussion and try to reach a conclusion as a group
for a given discussion topic within five minutes. The dis-
cussion topics were “Should tax breaks be given to full-time
housewives, or not?” and “Is marriage and romantic love
the same or different?”; hereafter the recorded conversations
are referred C1 and C2, respectively. The head directions
were measured at 30 Hz using magnetic-based sensors (POL-
HEMUS FastrakTM), which were attached to their heads
on hair bands. Audio data were recorded by lapel micro-
phones attached to each participant. Also, video sequences,
whole shot (Figure 7(b)) and bust shots (Figure 9(a)), were
recorded at 30 frames/sec. These data were synchronized
at the unit-time step of 1/30 sec. The lengths of data were
10000 and 9100 frames (5.6 and 5.1 min) for C1 and C2,
respectively.

5.2 Manual Annotation
The raw data was manually annotated to permit a quan-

titative evaluation. Annotation was mainly performed by
one female in her 20s’. Fig. 8(a) shows a part of the
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Figure 7: Overview of scene. (a)plan view of partic-
ipants’ location, (b)whole view of participants.

manual annotation (' 20 sec.). For each person, P1∼P4,
the thick bands shows the utterance intervals, manually de-
tected based on IPU(Inter Pausal Unit) of ≥0.3 sec. The line
segments beneath the utterances indicate gesture intervals,
manually detected by visual inspection of the video. The
target gestures were nodding, shaking, and tilting. Other
head motions were excluded. Next, for each utterance in-
terval and each gesture interval, spontaneous-reactive class
and the reaction target were determined. Also, trigger time
was given for each reactive behavior. In Fig. 8(a), small
circles represent the beginning of action units and the ar-
rows from them indicate the reaction targets, while circles
with no arrow indicate spontaneous actions. The position of
arrow’s head indicates the trigger time step. Each vertically-
elongated ellipse indicates an integrated action unit consist-
ing of an utterance and a gesture. Also, the ground truth of
gaze directions and regimes was manually created by watch-
ing the video sequences.

5.3 Voice Activity Detection
To automatically detect utterance intervals from the au-

dio signals captured by lapel microphones, this paper em-
ployed a voice activity detection (VAD) method [24] that can
robustly detect each person’s utterance separately by clus-
tering each person’s signal in the time-frequency domain.
The detected utterances output by the VAD method were
reformed by filling short-term gaps to satisfy the IPU crite-
ria, and eliminating very short intervals as noise. Fig. 8(b)
shows some of the utterance intervals so detected. Com-
pared to the manual detection results in Fig. 8(a), the auto-
matic result includes detection lapses due to whisper-like ut-
terances, and over-detection due to breathing, rustling, and
coughing. Table 3(a) shows the accuracy of utterance detec-
tion in terms of precision, recall, and hit ratio. Here, the hit
ratio is the ratio of correct frames to all frames. Table 3(a)
confirms that the automatic voice detection method used
was highly accurate and robust even though the amount of
cross-talk was significant.

5.4 Gesture Recognition
The head gestures were detected with a new technique

based on discrete Wavelet transform (DWT). First, DWT
features are separately calculated for each head pose com-
ponent; the components are azimuth (horizontal), elevation
(vertical), and roll (in-plane rotation). This study applied
the Daubechies wavelet of order 10 (db10) and decomposi-
tion scale was set to 2-4; windows size was 16. At each time
step, we calculated the DWT coefficients of details D2-D4
and final approximation A4, and then calculated the max-
imum, minimum, mean, standard deviation of the wavelet
coefficients in each sub-band, as the feature vector of ges-
tures. These statistics were used in EEG signal analysis [13].

Next, we trained an SVM to classify the feature vector into
two categories; gesture or non-gesture, at each time step.
This paper employed a polynomial kernel of order 5 and a
soft margin criterion. Training and classification was done
for each person in each conversation. C1 was classified using
the SVM trained with manually detected data of C2, and
vice versa. The output of the SVM was then reformed in a
manner similar to the utterance intervals to yield the final
gesture intervals.

Fig. 8(b) shows some of the detected gestures. A com-
parison to Fig. 8(a) shows that there are some errors; over-
detection occurs due to continuous gestures and small head
movements. Table 3(b) shows the accuracy of gesture de-
tection, and indicates that the detection was moderately
successful, despite the huge dynamic range of gestures, from
almost invisible ones to very large ones.

5.5 Experiment Setting
This paper employed the same values as used in [22],

for hyper-parameters, which determine the prior distribu-
tions of gaze, regime, and head directions. The Gibbs sam-
pling iteration was 10000, and statistics were calculated from
samples obtained from the 5000th∼10000th iterations. The
same parameter set were used for both data C1 and C2.

5.6 Qualitative Evaluation
Fig. 8(b) shows a part of the interaction structures in-

ferred from automatically detected behaviors. Fig. 9 shows
three snap shots to illustrate the flow of the conversation. In
this scene, speaking turn changes over time; P4→P2→P1.
We have confirmed that gaze patterns and regimes were suc-
cessfully estimated for this scene. First, P4 started to give
her opinion to others who listened to P4. During this (P4’s)
turn, others responded to P4 with utterances and gestures.
They synchronized their responses to a break point in P4’s
discourse. Fig. 8(b) indicates that these back-channel re-
sponses were successfully determined. Next, at the end of
P4’s utterances, she asked the others for agreement and tried
to confirm their attitudes; their answers were correctly in-
ferred. At the same time, P2 overlaid her utterance with the
end of P4’s sentence, and took over the speaking turn. P1,
P3, and P4 turned their gaze to P2 and acknowledged her
turn. Also, they responded to her tag-question with positive
answers; their responses were successfully determined, even
though the turn taking by P2 was abrupt. P1 then took
advantage of a momentary chance, and took the turn. P2,
P3, and P4 laughed at what P1 said; it appeared to be a
humorous phrase. These responses toward P1 were success-
fully determined.

Fig. 8(b) indicates that most question/answer and ad-
dressees’ back-channel responses toward speakers were accu-
rately estimated, and followed the changes in speaking turn.
A visual inspection of all inferred interactions confirmed that
the inferred interaction structures were reasonably accurate;
a few flaws were present.

5.7 Quantitative Evaluation
Table 4 shows the result of the quantitative evaluation

of interactions. Table 4(a) shows the ratio of spontaneous-
reactive class (correctly estimated) to the manual annota-
tion. Table 4(b) shows the ratio of the number of action
units whose target person was correctly inferred, to the num-
ber of all action units whose spontaneous-reactive class was
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Figure 8: Interaction network representation of interaction structures, (a)manual annotation, (b)inference
result from automatically detected behaviors, (data = C1), 1 frame = 1/30 sec., Display length ' 20 sec.

correctly determined. Table 4(c) shows the ratio of the num-
ber of action units in which the difference between the es-
timated trigger time and the one from the corresponding
annotation was less than or equal to 0.3 sec.; the denomina-
tor of this ratio is the number of action units whose target
person was correctly inferred. Table 4(a) shows that the
accuracy of determining spontaneous-reactive class is rather
modest; miss-classification happens often, especially when
the action unit has a short preceding pausal length. Table
4(b) indicates that target persons were accurately inferred,
and Table 4(c) suggests that the accuracy of identifying the
trigger time was reasonably high. C1 yielded superior per-
formance to C2, because C2 was a more complex conversa-
tion, with a lot of rapid turn changes. In general, the results
gained from automatically detected behaviors were basically
comparable to those from the manually detected ones; this
verifies the effectiveness of VAD and the gesture detection
technique described here.

Despite the limited dataset and annotation, the above
results suggest the effectiveness of the proposed method
in analyzing nonverbal interactions in multiparty conversa-
tions. Future work includes evaluations using a comprehen-
sive dataset that includes various group and topics, as well
as examining the consistency of manual annotations (used
as ground truth) given by different annotators.
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Figure 9: Snap shots of three time steps, t1, t2, t3 in
Fig. 8. (a)each participant, (b)regime estimates and
gaze patterns (solid arrows: estimates, wide arrows:
ground truth). RC

i denotes Pi’s monologue regime.

6. CONCLUSION AND DISCUSSION
This paper proposed a novel target of conversation scene

analysis, the automatic inference of interaction patterns from
participants’ nonverbal behaviors in multiparty conversa-
tions. To that purpose, a hierarchical probabilistic conversa-
tion model was introduced. Even though this paper focused
on simple interactions conditioned on conversation regimes,
gaze patterns, and temporal structures such as duration,



Table 3: Detection accuracy of utterance (a) and
gesture (b)

(a)Utterance (b)Head Gesture
Precision Recall Hit Precision Recall Hit

C1 95.2 85.2 95.0 60.0 86.6 73.3
C2 91.5 81.3 93.6 75.1 60.3 77.2

Table 4: Acuracy of estimated interactions: (Man-
ual)manual annotation, (Auto)automatically de-
tected behaviors

(a)Spont. (b)Person (c)Trigger
C1 (Manual) 88.3 97.7 81.2
C2 (Manual) 77.1 92.2 67.7
C1 (Auto) 75.7 95.9 74.5
C2 (Auto) 71.1 91.4 70.1

pause, and reaction times, the proposed framework is con-
sidered to be noteworthy in that it provides a basic method-
ology for analyzing nonverbal cross-modal interactions in
face-to-face conversations, and offers several prospective di-
rections.

First, the interaction structures discovered with the pro-
posed framework can be used as a clue for understanding the
mental/context level aspects of conversations. The first step
would be classifying the responses into positive and negative
types, which can be indicated by head gesture classes. The
proposed gesture detector is powerful enough to distinguish
various head motions such as nod, shake, and tilt. The prob-
lem is to establish useful links between motion features and
the inner state of the person, like the degree of agreement.
Moreover, it can provide a basic element for analyzing how
one person’s opinion can spread throughout a human net-
work and how a group’s concordance is formed over time.
It is also interesting work to relate our framework to psy-
chological/linguistic studies such as adjacency pair analysis
[25] and synchrony analysis [8].

The interaction structures can be a useful element of meet-
ing annotation for automatic archiving/summarizing sys-
tems. For example, it could provide more semantic-based
retrieval capability such as “who had positive/negative on his
opinion?” and “who’s opinion was the most influential?”.
Also, the identified interaction structures can be used to
improve automatic video editing so that viewers can more
clearly understand who responds to whom. Furthermore, it
is worth considering a system that can quantify communica-
tion skill and provide users with feedback to improve human
communication skill in organizations.

To realize real-time applications, future works include the
real-time simultaneous tracking of faces from low-resolution
video sequences, image-based head gesture recognition, and
voice detection/separation captured with microphone ar-
rays. Our framework can also easily incorporate other modal-
ities such as prosody and facial expressions. We are cur-
rently developing a facial expression recognition technique
that is robust against head-pose changes [17].

Finally, authors believe that this work will contribute to
opening up a new research field that can explore various
aspects of nonverbal cross-modal interactions in multiparty
conversations, and bridge related disciplines such as psychol-
ogy, social linguistics, and multimodal applications.
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