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ABSTRACT . .
. . o . Table 1. Comparison of VAD techniques

This paper addresses the problem of voice activity detection (VAD) D
. h - . . . performance
in noisy environments. The VAD method proposed in this paper inte- NoiSe environments
grates multiple speech features and a signal decision scheme, namely Clean [ Station- Non- RTF
the speech periodic to aperiodic component ratio and a switching ary | stationary| Burst
Kalman filter. The integration is carried out by using the weighted _ITU-T G. 729B O X X x| 0.06
sum of likelihoods outputted from each VAD (stream). The stream _ETSIES 202050] A O A x| 0.06
weight is decided adaptively each short time frame. The evaluation Sohn 1999 O O x a 0.07
is carried out by using a VAD evaluation framework, CENSREC- _Ramirez 2004 @) @) 4 x 005

. . "PARADE O O A O | 0.06
1-C. The evaluation results revealed that the proposed method sig SKE o) o) O = 010
nificantly outperforms the baseline results of CENSREC-1-C as re-—yusclEVAD O O ) @) 013

gards VAD accuracy in real environments. In addition, we carried

out speech recognition evaluations by using detected speech signals,. ) o ' )
and confirmed that the proposed method contributes to an improv 'Jgtlo (PAR)-based VAD [3] and the switching Kalman filter (SKF)

ment in speech recoanition accurac Based VAD [5]. The combination is carried out by employing the
P 9 Y- adaptive weighting sum of likelihood outputted from each method
Index Terms— voice activity detection, periodic to aperiodic independently. By using this approach, we can improve the VAD

component ratio, switching Kalman filter, adaptive integration performance compared with when using each method alone.
The proposed method was evaluated on the CENSREC-1-C (Cor-
1. INTRODUCTION pora and Environments for Noisy Speech RECognition-1 Concate-

Voice activity detection (VAD), which automatically detects a period nated) [6], which is concatenated Japanese noisy speech data for
of target human speech from a continuously observed signal, is onéAD evaluation. The evaluation results revealed that the proposed
of the most important techniques for speech signal processing. VABnethod significantly improves VAD accuracy compared with the
is widely used in various speech signal processing techniques, e. £ENSREC-1-C baseline. In addition, we confirmed that the pro-
speech enhancement, speech coding for cellular or IP phones, apdsed VAD improves the speech recognition accuracy of concate-

the front-end processing of automatic speech recognition. nated utterances.
Usually, VAD consists of two parts: a feature extraction part and
a decision part. The feature extraction part extracts acoustic features 2. COMPARISON OF EACH METHOD

for speech / non-speech discrimination, and the traditional featureBhis section compares several VAD methods, and confirms the ap-
are the zero-crossing rate and the energy difference between speg@igable and inapplicable noise environments for each method. Table
and non-speech [1]. However, these parameters are not robust Irshows expected performance in several noise environments and the
the presence of interference noise, thus several noise robust featuregl time factor (RTF) of each method. The RTF was measured by
have been proposed [2, 3]. These parameters can improve the VAEsing an Intel Pentium 4 3.6 GHz CPU.
accuracy. On the other hand, a statistical model-based VAD tech- Several VAD methods have been proposed, e.g., ITU-T recom-
nique has been proposed as a robust decision mechanism bgSohmmendation G. 729 Annex B. [7], ETSI recommendation ES 202 050
al. [4]. This method defines a speech / non-speech state transitidf], the statistical model-based approach proposed by Sodin[4],
model, and calculates the likelihood ratio of a speech state to a nomnd the spectral divergence proposed by Rangted. [2]. How-
speech state by using forward probability estimation. Sohn’s methoever, although these methods can be applied to stationary noise envi-
provides robust performance in noisy environments. However, thisonments, it is difficult to apply them to non-stationary ot burst noise
performance is restricted to specific environments. Namely, assumgnvironments.
tions of stationary noise environments aadriori knowledge of Here, our proposed methods, PAR-based VAD [3] and SKF-
noise are indispensable to Sohn’s method. based VAD [5], has cover a wide range of noise environments. As
The applicable noise environment for VAD differs depending onshown in Table 1, the PAR-based VAD is robust for not only station-
the feature parameter and decision scheme. It is difficult to copary noise but also burst noise, because almost burst noises have no
with all noises observed in the real world by using only one methodperiodic characteristics. On the other hand, the SKF-based VAD is
Thus, we investigate the VAD method with wide noise coverage byobust for stationary and non-stationary noises, because the method
combining multiple VAD methods. For the combination methods,can estimate the time varying noise sequentially. However, each
in this paper, we adopt a speech periodic to aperiodic componemtethod has inapplicable noise environments, i.e., PAR-based VAD



. . - Cd ean speech nodel
and SKF-based VAD are not robust for the noise with periodic char- b \oi se model

acteristics and the burst noise, respectively. Consequently, by inte- D

grating each method effectively, the resulting method can cope with @ ’
all noise environments with a practical RTF by compensating each N

inapplicable noise environment. I

Conposi tion I

3. PERIODIC TO APERIODIC COMPONENT RATIO
We first provide a short explanation of the PAR calculation (see [3]
for details). With this calculation, the dominant harmonic compo-
nent in the observed signal is referred to as the periodic component,
which is not always the target signal, and the other sound compo-
nents are referred to as aperiodic components and include both envi-
ronmental noise and the aperiodic components of target speech. Al-
though the estimated power of the periodic component is affected by Noi sy speech model
the changes in the aperiodic components, this effect can be mitigatgly 1 Speech/non-speech state transition model with noise dynam-
inthe PAR. Therefore, PAR is expected to be insensitive to dynamig.s. The symbolsH, and H; denote the non-speech and speech

changes in noise power. We define the power of the observed signglates, respectively. The symhis} denotes a noise state sequence.
o, Within at-th short-time frame of lengtf’ as:

wherep,, andp,, denote estimated values @f, andp,,. PAR can

T—1 M
_ so2_ 1 sTFs|? be calculated by using the ratios of the estimaigdand ., .
Pt = Tgo |Or‘ = M mZ:l ‘Ot,m ‘ s (1) y 9 A Pat

4. VAD BASED ON STATISTICAL MODEL
wherep; is the power of the observed signal, abd’-"® isashort-  4.1. Speech / non-speech state transition model
time Fourier spectrum (STFS) ¢ = o,g,. g- is a symmetric  The proposed method discriminates between speech and non-speech
short-time analysis window, ant/’ is the number of STFS bins. Let periods based on the likelihood ratio test (LRT) with a statistical
us suppose that the fundamental frequency (FO) at-thrame is  model.
already obtained af, . Then, we assume the following equations to As shown by the clean speech model in Fig. 1, the proposed
decompose the powg into the powers of its periodic and aperiodic method trains Gaussian mixture models (GMMs) of clean speech
componentsp,, andpa,: and silence in advance by using a clean speech corpus.
Next, we assume that noise has non-stationary characteristics,

Pt= Pre Tt Pay 2) thus, the noise sequence is modeled by using a sequential state transi-
Hy 2 tion model as shown by the noise model in Fig. 1. With this method,
Ppy =17 - Z o1’ ‘ (3)  we assume that the noise statistics are not known in advance. Thus,
h=1 o [nso0.] we estimate the parameters of the noise model sequentially by using
T T 2 a Kalman filter.
n= <ngg> /(Z gr) (4) Finally, by composing speech and noi_s_e models, we can con-
j—t ot struct the speech / non-speech state transition model with noise dy-

namics as shown by the noisy speech model in Fig. 1. Namely,
(5) this model has state transition processes for both speech and noise.
Speech has a discrete state transition process and noise has a se-
guential process. By using this model, we can construct VAD that is
robust as regards a variety of speech and time varying noise.

1 G asrrs)?_ L oa|qerrs |
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whereO; 7% andO; 7S are the STFSs of unknown periodic and
aperiodic components ié-, n is @ normalization constant that rep-
resents the ratio of the power of a sinusoidal component to its powet.2. Formulation of likelihood ratio calculation
spectrum, andh fo,] and H; are the function that outputs an STFS This section describes the speech / non-speech discrimination method
bin index corresponding to the-th harmonic frequency and the hased on the state transition model shown in Fig. 1.
number of harmonics defined based fin, respectively. In the In the proposed metho@o.:, No.:, andg; denote the.-dimensional
above decomposition, we estimate FO by the autocorrelation methagéctor of the log Mel spectra of the observed signal and noise at the
widely used for estimating FO [9]. Note that Eq. (3) can be viewed;_th short time frame, and the speech or the non-speech statetat the
as a kind of comb filtering, and that Eq. (5) represents the assumph frame. WherQo.; = {Oo, - -- , 0;} andNo.; = {No,--- ,N;}
tion that the power of the aperiodic components is widely distributecyre given, the state is decided with respect to the conditional proba-
over the entire frequency range in a manner that is independent froRjlity p (¢;|00., No.) as follows:
the frequencies of the periodic components. After certain mathemat-
ical manipulations described in [3] based on the assumptions given  p (¢;|Oo.t, No.t) = p(Oo:t, gt Nowt) /p (0o:t, No:t)
by Egs. (2) to (5), we can obtain the following:

X p(OO:h(ImNo:z) (8)
2

o JOSTES | — Hypy Here, we assume that andN; are mutually independent, thus,
H t[rso] the recursive formula g (O No:¢) is given b
Ppe =1 [y (6) ( 0:t, qt, O:t) g Yy

.S He | STFS 2 P (Oo:t, 1, No:t) = Z P (qt|gt—1) p (N¢|N¢—1) p (O¢lgs, Nt)
Pt n Zh:l P, [h fo ] qt—1

~ _ L0
Pas = 1—nH; ’ @ xp (Oo0:t—1,qi—1, Noze—1) - 9)



By definingp (¢« = Hj|qi—1 = H;) = a,,; (the state transition prob- The adaptive frame by frame decision of the weights given
ability of speech)p (O¢|q: = H;,N:) = bjn, (O:) (the output by the following method.

probability), andp (N|N:—1) = ¢t +—1 (the state transition proba- First,b; ~, (O:) andb; par (PAR;) are normalized as the to-
bility of noise),a;,+ = p (Oo:t, g: = H;, No.¢) (the forward proba- tal likelihood of non-speech statg¢ & 0) and speech statg & 1)
bility) is represented as the following equation from Eq. (9). equal to 1. Next, the absolute differences of the likelihoods of the

non-speech state and the speech staig r,, andDpar,: are cal-

! culated by the following equations.

e =Y (asj0,e-1) bin, (O) i1 (10)
i=0 Dskri = |boN, (Ot) — bin, (O)] a7)
In EQ. (10),c4,.—1 is set at 1, because we assume that the noise has Dpar: = |bo,par (PAR,) — b1 par (PAR))| (18)

a continuous state transition process. Thus, Eq. (10) is simplified as )
When Dskr,: Of Dpagr,: has a large value, it shows that the

1 decision confidence is high regarding whether the current frame be-
Q= Z (asjc,t—1) bjN, (Of) . (11)  longsto a non-speech state or a speech state. When the value are low,
i=0 it shows that the decision confidence is low. The weighgiven by
In Eqg. (11), whert = 0, the current frame is assumed to be a non-USiNgDsx k.t andDpar  as follows:
speech frame. Thus, the initial values, = 1 andai,0 = 0 are v = Dskri) (Dskri+ Dpar) (19)
given.
Finally, the state; is given by the LRT, namely, the thresholding Equation (19) shows that the weight of the SKF increases or
likelihood ratioR; = a1,¢/o,¢, @S decreases according to the confidence of the SKF. Thus, by using
this weight, we can select the most suitable method for the current
@ = { Ho Ry < Threshold (12) frame, frame by frame.
H, R:; > Threshold

6. EXPERIMENTS

On the other hand, when we focus on the state transition noise.1. Experimental setup
model shown in Fig. 1, it is also given by the following equation. The proposed method was evaluated by using the CENSREC-1-C
This equation is completely equivalent to a statistical representatiodatabase [6]. CENSREC-1-C was designed as an evaluation frame-

of a Kalman filter [10]. work for VAD in noisy environments and has two types of evaluation
data set, i.e., simulated data and real recorded data. In this paper, we
P (O0:t,No:t) = p (N:[N¢—1) p (O¢|N¢) p (O0:6-1, No:t—1) chose the real recorded data set for the evaluation.
( The data was recorded in two real noisy environments (a restau-

If the probability (state) variable, is added to Eq. (13), the  ani (Rest) and a street (St.)) with two different sound pressure
_statlstl_cal process is e_qu_lvalent to Eq. (9_)). This me{_ms_that Eq. (%vels (avg. 60 dBA: high SNR (Hi.) and avg. 70 dBA: low SNR
is equivalent to a statistical representation of a switching Kalmar(Lol))_ The data were originally recorded at a sampling rate of 48
filter that switches the state-space model of a Kalman filter based qg, (with 16 bit quantization), and were down-sampled to 8 kHz.
a state variable. The details of the Kalman filter-based noise statfhere were ten speakers (five males and five females). The recorded
updating are provided in [S]. speech consisted of four files per subject. A single file included 8-10
5. INTEGRATION OF VAD METHODS utterances of continuous numbers consisting of 1-12 digit numbers

This section describes the combination of PAR and SKF mentione$ith two-second intervals between each utterance in each noisy en-
in sections 3 and 4. The combination is carried out by employing th¥ironment and for each SNR condition. The correct segment labels
adaptive weighted sum of likelihoods outputted from each methodvere tagged manually.

independently. Thus, the GMMs of clean speech and silence for PAR _The feature parameters for the PAR-based VAD and SKF-based
are trained in advance, and the likelihood of PAR- 4 (PAR,) ~ VAD were 1st order PAR and 24th order log-Mel spectra, respec-

is given by the following equation. tively, which were extracted by using a Hamming window with a
25 msec frame length and a 10 msec frame shift length. We trained
bj,par (PARy:) the silence and clean speech GMMs for PAR-based VAD and SKF-

K based VAD by using clean speech data for the HMM training of
= > wpan, N ( PARG; AR, ; 5, 05 aR, M) (14)  CENSREC-1(AURORA-2J)[11]. Each GMM has 32 Gaussian dis-
1 ’ e tributions. The training data consisted of 8,440 utterances spoken by
o o 110 speakers. The state transition probabilities of the clean speech
Whenb; par (PAR;)is given, the likelihood of SKB; n, (O:)  model were set at; ; = {0.90,0.10,0.45, 0.55}.

is added with wei as follows:
'S with weight;; as ws 6.2. Experimental results of VAD

b; (04, PAR:) = vtbjN, (O1)+(1—7:)bj . par (PAR:) , (15) In the evaluation, we compare the VAD performance of the proposed
method with the CENSREC-1-C baseline, Sohn’s method [4], PAR
where0 < v, < 1. The forward probabilities for the LRT are alone §: = 0), and SKF alone+; = 1). The baseline VAD tech-
calculated by using combined likelihodg (O:, PAR;) as follows:  nique of CENSREC-1-C is energy-based VAD with adaptive thresh-
olding.

1

The evaluation criteria are the utterance correct rate and utter-
Ft = Z:O (aijetie—1) b; (O, PARY) (16)  ance accuracy rate as shown by Eqgs. (20) and (21).
When~; = 0, the discrimination is carried out by PAR alone, Corr = Ne/N x 100 [%] (20)

and forv; = 1, the discrimination is carried out by SKF alone. Acc = (N. — Ny)/N x 100 [%] , (21)



Table 2. VAD results (%)

Corr(%) Acc(%)
Rest. Hi. | Rest. Lo.| St. Hi. | St. Lo. Ave. | Rest. Hi. | Rest. Lo. | St. Hi. | St. Lo. Ave.
Baseline 74.20 56.52 39.42 41.45 | 52.90 21.45 -43.48 | -15.65 | -33.91 | -17.90
Sohn 72.75 57.10 97.39 78.55 | 76.45 4551 -6.38 | 94.49 57.39 | 47.75
PAR 70.72 57.10 87.25 80.58 | 73.91 24.35 -6.67 64.35 54.49 34.13
SKF 89.57 66.96 | 100.00 | 97.97 | 88.63 68.41 12.46 | 97.68 93.62 68.04
PAR+SKF 93.04 70.72 | 100.00 | 97.97 | 90.43 72.75 19.71 | 99.13 94.78 71.60

Table 3. Speech recognition results after VAD (%)

Word accuracy (T)/o) Error reduction rate from w/o VAF%)

Rest. Hi. | Rest. Lo.| St. Hi. | St. Lo. Ave. | Rest. Hi. | Rest. Lo.| St. Hi. [ St. Lo. Ave.
w/o VAD 45.17 128 | 3443 | 25.23| 26.53 0.00 0.00 0.00 0.00 0.00
Baseline 44.16 18.12 | 29.96 | 21.62 | 28.47 -1.84 17.06 | -6.82 -4.83 2.64
Ideal VAD 52.67 29.17| 41.25| 29.50 | 38.15 13.68 28.25| 10.40 5.71 | 15.82
Sohn 37.45 -3.81 | 33.41| 29.58 | 24.16 -13.83 -6.22 -1.46 555 | -3.31
PAR 39.76 8.89 | 39.16 | 24.08 | 27.97 -9.87 7.71 7.21 -1.54 1.97
SKF 43.75 1250 | 46.99 | 33.15| 34.10 -2.59 11.37 | 19.16 | 10.59 | 10.30
PAR+SKF 46.85 18.67 | 47.27| 33.52 | 36.58 3.06 17.62 | 19.58 | 11.09 | 13.68

whereN, N., andN; denote the total number of speech utterancesmethod also improves speech recognition accuracy. In the future, we
the number of correctly detected utterances, and the number of imre planning to investigate the optimal threshold decision.
correctly detected utterances, respectively. 8 ACKNOWLEDGEMENTS

Table 2 shows the results of an utterance-level evaluation. A; -
seen in the table, the proposed method “PAR+SKF” significantly?he present study was conducted using a CENSREC-1 database and

improves bothC'orr and Acc compared with the baseline. In par- ZCENhSSEC'l'.C_ da?ballse _dev\(/e\llopke?d bé the IPSJ-SIG SLP Noisy
ticular, the average improvement iticc when compared with the >P€€C ecognition Evaluation Working Group.
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