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ABSTRACT

This paper addresses the problem of voice activity detection (VAD)
in noisy environments. The VAD method proposed in this paper inte-
grates multiple speech features and a signal decision scheme, namely
the speech periodic to aperiodic component ratio and a switching
Kalman filter. The integration is carried out by using the weighted
sum of likelihoods outputted from each VAD (stream). The stream
weight is decided adaptively each short time frame. The evaluation
is carried out by using a VAD evaluation framework, CENSREC-
1-C. The evaluation results revealed that the proposed method sig-
nificantly outperforms the baseline results of CENSREC-1-C as re-
gards VAD accuracy in real environments. In addition, we carried
out speech recognition evaluations by using detected speech signals,
and confirmed that the proposed method contributes to an improve-
ment in speech recognition accuracy.

Index Terms— voice activity detection, periodic to aperiodic
component ratio, switching Kalman filter, adaptive integration

1. INTRODUCTION
Voice activity detection (VAD), which automatically detects a period
of target human speech from a continuously observed signal, is one
of the most important techniques for speech signal processing. VAD
is widely used in various speech signal processing techniques, e.g.,
speech enhancement, speech coding for cellular or IP phones, and
the front-end processing of automatic speech recognition.

Usually, VAD consists of two parts: a feature extraction part and
a decision part. The feature extraction part extracts acoustic features
for speech / non-speech discrimination, and the traditional features
are the zero-crossing rate and the energy difference between speech
and non-speech [1]. However, these parameters are not robust in
the presence of interference noise, thus several noise robust features
have been proposed [2, 3]. These parameters can improve the VAD
accuracy. On the other hand, a statistical model-based VAD tech-
nique has been proposed as a robust decision mechanism by Sohnet
al. [4]. This method defines a speech / non-speech state transition
model, and calculates the likelihood ratio of a speech state to a non-
speech state by using forward probability estimation. Sohn’s method
provides robust performance in noisy environments. However, this
performance is restricted to specific environments. Namely, assump-
tions of stationary noise environments anda priori knowledge of
noise are indispensable to Sohn’s method.

The applicable noise environment for VAD differs depending on
the feature parameter and decision scheme. It is difficult to cope
with all noises observed in the real world by using only one method.
Thus, we investigate the VAD method with wide noise coverage by
combining multiple VAD methods. For the combination methods,
in this paper, we adopt a speech periodic to aperiodic component

Table 1. Comparison of VAD techniques
VAD performance

Noise environments
Clean Station- Non- RTF

ary stationary Burst

ITU-T G. 729B © × × × 0.06
ETSI ES 202 050 4 © 4 × 0.06
Sohn 1999 © © × × 0.07
Ramirez 2004 © © 4 × 0.05
PARADE © © 4 © 0.06
SKF © © © 4 0.10
MUSCLE-VAD © © © © 0.13

ratio (PAR)-based VAD [3] and the switching Kalman filter (SKF)-
based VAD [5]. The combination is carried out by employing the
adaptive weighting sum of likelihood outputted from each method
independently. By using this approach, we can improve the VAD
performance compared with when using each method alone.

The proposed method was evaluated on the CENSREC-1-C (Cor-
pora and Environments for Noisy Speech RECognition-1 Concate-
nated) [6], which is concatenated Japanese noisy speech data for
VAD evaluation. The evaluation results revealed that the proposed
method significantly improves VAD accuracy compared with the
CENSREC-1-C baseline. In addition, we confirmed that the pro-
posed VAD improves the speech recognition accuracy of concate-
nated utterances.

2. COMPARISON OF EACH METHOD
This section compares several VAD methods, and confirms the ap-
plicable and inapplicable noise environments for each method. Table
1 shows expected performance in several noise environments and the
real time factor (RTF) of each method. The RTF was measured by
using an Intel Pentium 4 3.6 GHz CPU.

Several VAD methods have been proposed, e.g., ITU-T recom-
mendation G. 729 Annex B. [7], ETSI recommendation ES 202 050
[8], the statistical model-based approach proposed by Sohnet al. [4],
and the spectral divergence proposed by Ramirezet al. [2]. How-
ever, although these methods can be applied to stationary noise envi-
ronments, it is difficult to apply them to non-stationary ot burst noise
environments.

Here, our proposed methods, PAR-based VAD [3] and SKF-
based VAD [5], has cover a wide range of noise environments. As
shown in Table 1, the PAR-based VAD is robust for not only station-
ary noise but also burst noise, because almost burst noises have no
periodic characteristics. On the other hand, the SKF-based VAD is
robust for stationary and non-stationary noises, because the method
can estimate the time varying noise sequentially. However, each
method has inapplicable noise environments, i.e., PAR-based VAD



and SKF-based VAD are not robust for the noise with periodic char-
acteristics and the burst noise, respectively. Consequently, by inte-
grating each method effectively, the resulting method can cope with
all noise environments with a practical RTF by compensating each
inapplicable noise environment.

3. PERIODIC TO APERIODIC COMPONENT RATIO
We first provide a short explanation of the PAR calculation (see [3]
for details). With this calculation, the dominant harmonic compo-
nent in the observed signal is referred to as the periodic component,
which is not always the target signal, and the other sound compo-
nents are referred to as aperiodic components and include both envi-
ronmental noise and the aperiodic components of target speech. Al-
though the estimated power of the periodic component is affected by
the changes in the aperiodic components, this effect can be mitigated
in the PAR. Therefore, PAR is expected to be insensitive to dynamic
changes in noise power. We define the power of the observed signal
oτ within a t-th short-time frame of lengthT as:

ρt =
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whereρt is the power of the observed signal, andOSTFS
t,m is a short-

time Fourier spectrum (STFS) of̂oτ = oτgτ . gτ is a symmetric
short-time analysis window, andM is the number of STFS bins. Let
us suppose that the fundamental frequency (F0) at thet-th frame is
already obtained asf0t . Then, we assume the following equations to
decompose the powerρt into the powers of its periodic and aperiodic
components,ρpt andρat :

ρt = ρpt + ρat (2)
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whereOSTFS
pt,m

andOSTFS
at,m

are the STFSs of unknown periodic and
aperiodic components in̂oτ , η is a normalization constant that rep-
resents the ratio of the power of a sinusoidal component to its power
spectrum, and[hf0t ] andHt are the function that outputs an STFS
bin index corresponding to theh-th harmonic frequency and the
number of harmonics defined based onf0t , respectively. In the
above decomposition, we estimate F0 by the autocorrelation method
widely used for estimating F0 [9]. Note that Eq. (3) can be viewed
as a kind of comb filtering, and that Eq. (5) represents the assump-
tion that the power of the aperiodic components is widely distributed
over the entire frequency range in a manner that is independent from
the frequencies of the periodic components. After certain mathemat-
ical manipulations described in [3] based on the assumptions given
by Eqs. (2) to (5), we can obtain the following:
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Fig. 1. Speech/non-speech state transition model with noise dynam-
ics. The symbolsH0 and H1 denote the non-speech and speech
states, respectively. The symbolNt denotes a noise state sequence.

whereρ̂pt andρ̂at denote estimated values ofρpt andρat . PAR can
be calculated by using the ratios of the estimatedρ̂pt andρ̂at .

4. VAD BASED ON STATISTICAL MODEL
4.1. Speech / non-speech state transition model
The proposed method discriminates between speech and non-speech
periods based on the likelihood ratio test (LRT) with a statistical
model.

As shown by the clean speech model in Fig. 1, the proposed
method trains Gaussian mixture models (GMMs) of clean speech
and silence in advance by using a clean speech corpus.

Next, we assume that noise has non-stationary characteristics,
thus, the noise sequence is modeled by using a sequential state transi-
tion model as shown by the noise model in Fig. 1. With this method,
we assume that the noise statistics are not known in advance. Thus,
we estimate the parameters of the noise model sequentially by using
a Kalman filter.

Finally, by composing speech and noise models, we can con-
struct the speech / non-speech state transition model with noise dy-
namics as shown by the noisy speech model in Fig. 1. Namely,
this model has state transition processes for both speech and noise.
Speech has a discrete state transition process and noise has a se-
quential process. By using this model, we can construct VAD that is
robust as regards a variety of speech and time varying noise.

4.2. Formulation of likelihood ratio calculation
This section describes the speech / non-speech discrimination method
based on the state transition model shown in Fig. 1.

In the proposed method,O0:t, N0:t, andqt denote theL-dimensional
vector of the log Mel spectra of the observed signal and noise at the
t-th short time frame, and the speech or the non-speech state at thet-
th frame. WhenO0:t = {O0, · · · ,Ot} andN0:t = {N0, · · · ,Nt}
are given, the state is decided with respect to the conditional proba-
bility p (qt|O0:t,N0:t) as follows:

p (qt|O0:t,N0:t) = p (O0:t, qt,N0:t) /p (O0:t,N0:t)

∝ p (O0:t, qt,N0:t) (8)

Here, we assume thatqt andNt are mutually independent, thus,
the recursive formula ofp (O0:t, qt,N0:t) is given by

p (O0:t, qt,N0:t) =
X
qt−1

p (qt|qt−1) p (Nt|Nt−1) p (Ot|qt,Nt)

×p (O0:t−1, qt−1,N0:t−1) . (9)



By definingp (qt = Hj |qt−1 = Hi) = ai,j (the state transition prob-
ability of speech),p (Ot|qt = Hj ,Nt) = bj,Nt (Ot) (the output
probability), andp (Nt|Nt−1) = ct,t−1 (the state transition proba-
bility of noise),αj,t = p (O0:t, qt = Hj ,N0:t) (the forward proba-
bility) is represented as the following equation from Eq. (9).

αj,t =

1X
i=0

(ai,jαi,t−1) bj,Nt (Ot) ct,t−1 (10)

In Eq. (10),ct,t−1 is set at 1, because we assume that the noise has
a continuous state transition process. Thus, Eq. (10) is simplified as

αj,t =

1X
i=0

(ai,jαi,t−1) bj,Nt (Ot) . (11)

In Eq. (11), whent = 0, the current frame is assumed to be a non-
speech frame. Thus, the initial valuesα0,0 = 1 andα1,0 = 0 are
given.

Finally, the stateqt is given by the LRT, namely, the thresholding
likelihood ratioRt = α1,t/α0,t, as

qt =


H0 Rt < Threshold
H1 Rt ≥ Threshold

. (12)

On the other hand, when we focus on the state transition noise
model shown in Fig. 1, it is also given by the following equation.
This equation is completely equivalent to a statistical representation
of a Kalman filter [10].

p (O0:t,N0:t) = p (Nt|Nt−1) p (Ot|Nt) p (O0:t−1,N0:t−1)
(13)

If the probability (state) variableqt is added to Eq. (13), the
statistical process is equivalent to Eq. (9). This means that Eq. (9)
is equivalent to a statistical representation of a switching Kalman
filter that switches the state-space model of a Kalman filter based on
a state variable. The details of the Kalman filter-based noise state
updating are provided in [5].

5. INTEGRATION OF VAD METHODS
This section describes the combination of PAR and SKF mentioned
in sections 3 and 4. The combination is carried out by employing the
adaptive weighted sum of likelihoods outputted from each method
independently. Thus, the GMMs of clean speech and silence for PAR
are trained in advance, and the likelihood of PARbj,PAR (PARt)
is given by the following equation.

bj,PAR (PARt)

=

KX
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PARt; µPARt,j,k , σ2

PARt,j,k

”
(14)

Whenbj,PAR (PARt) is given, the likelihood of SKFbj,Nt (Ot)
is added with weightγt as follows:

bj (Ot, PARt) = γtbj,Nt (Ot)+(1−γt)bj,PAR (PARt) , (15)

where0 ≤ γt ≤ 1. The forward probabilities for the LRT are
calculated by using combined likelihoodbj (Ot, PARt) as follows:

αj,t =

1X
i=0

(ai,jαi,t−1) bj (Ot, PARt) (16)

Whenγt = 0, the discrimination is carried out by PAR alone,
and forγt = 1, the discrimination is carried out by SKF alone.

The adaptive frame by frame decision of the weightγt is given
by the following method.

First,bj,Nt (Ot) andbj,PAR (PARt) are normalized as the to-
tal likelihood of non-speech state (j = 0) and speech state (j = 1)
equal to 1. Next, the absolute differences of the likelihoods of the
non-speech state and the speech stateDSKF,t andDPAR,t are cal-
culated by the following equations.

DSKF,t = |b0,Nt (Ot)− b1,Nt (Ot)| (17)

DPAR,t = |b0,PAR (PARt)− b1,PAR (PARt)| (18)

WhenDSKF,t or DPAR,t has a large value, it shows that the
decision confidence is high regarding whether the current frame be-
longs to a non-speech state or a speech state. When the value are low,
it shows that the decision confidence is low. The weightγt given by
usingDSKF,t andDPAR,t as follows:

γt = DSKF,t/ (DSKF,t + DPAR,t) (19)

Equation (19) shows that the weight of the SKF increases or
decreases according to the confidence of the SKF. Thus, by using
this weight, we can select the most suitable method for the current
frame, frame by frame.

6. EXPERIMENTS
6.1. Experimental setup
The proposed method was evaluated by using the CENSREC-1-C
database [6]. CENSREC-1-C was designed as an evaluation frame-
work for VAD in noisy environments and has two types of evaluation
data set, i.e., simulated data and real recorded data. In this paper, we
chose the real recorded data set for the evaluation.

The data was recorded in two real noisy environments (a restau-
rant (Rest.) and a street (St.)) with two different sound pressure
levels (avg. 60 dBA: high SNR (Hi.) and avg. 70 dBA: low SNR
(Lo.)). The data were originally recorded at a sampling rate of 48
kHz (with 16 bit quantization), and were down-sampled to 8 kHz.
There were ten speakers (five males and five females). The recorded
speech consisted of four files per subject. A single file included 8-10
utterances of continuous numbers consisting of 1-12 digit numbers
with two-second intervals between each utterance in each noisy en-
vironment and for each SNR condition. The correct segment labels
were tagged manually.

The feature parameters for the PAR-based VAD and SKF-based
VAD were 1st order PAR and 24th order log-Mel spectra, respec-
tively, which were extracted by using a Hamming window with a
25 msec frame length and a 10 msec frame shift length. We trained
the silence and clean speech GMMs for PAR-based VAD and SKF-
based VAD by using clean speech data for the HMM training of
CENSREC-1 (AURORA-2J) [11]. Each GMM has 32 Gaussian dis-
tributions. The training data consisted of 8,440 utterances spoken by
110 speakers. The state transition probabilities of the clean speech
model were set atai,j = {0.90, 0.10, 0.45, 0.55}.
6.2. Experimental results of VAD
In the evaluation, we compare the VAD performance of the proposed
method with the CENSREC-1-C baseline, Sohn’s method [4], PAR
alone (γt = 0), and SKF alone (γt = 1). The baseline VAD tech-
nique of CENSREC-1-C is energy-based VAD with adaptive thresh-
olding.

The evaluation criteria are the utterance correct rate and utter-
ance accuracy rate as shown by Eqs. (20) and (21).

Corr = Nc/N × 100 [%] (20)

Acc = (Nc −Nf )/N × 100 [%] , (21)



Table 2. VAD results (%)
Corr(%) Acc(%)

Rest. Hi. Rest. Lo. St. Hi. St. Lo. Ave. Rest. Hi. Rest. Lo. St. Hi. St. Lo. Ave.
Baseline 74.20 56.52 39.42 41.45 52.90 21.45 -43.48 -15.65 -33.91 -17.90
Sohn 72.75 57.10 97.39 78.55 76.45 45.51 -6.38 94.49 57.39 47.75
PAR 70.72 57.10 87.25 80.58 73.91 24.35 -6.67 64.35 54.49 34.13
SKF 89.57 66.96 100.00 97.97 88.63 68.41 12.46 97.68 93.62 68.04
PAR+SKF 93.04 70.72 100.00 97.97 90.43 72.75 19.71 99.13 94.78 71.60

Table 3. Speech recognition results after VAD (%)
Word accuracy (%) Error reduction rate from w/o VAD (%)

Rest. Hi. Rest. Lo. St. Hi. St. Lo. Ave. Rest. Hi. Rest. Lo. St. Hi. St. Lo. Ave.
w/o VAD 45.17 1.28 34.43 25.23 26.53 0.00 0.00 0.00 0.00 0.00
Baseline 44.16 18.12 29.96 21.62 28.47 -1.84 17.06 -6.82 -4.83 2.64
Ideal VAD 52.67 29.17 41.25 29.50 38.15 13.68 28.25 10.40 5.71 15.82
Sohn 37.45 -3.81 33.41 29.58 24.16 -13.83 -6.22 -1.46 5.55 -3.31
PAR 39.76 8.89 39.16 24.08 27.97 -9.87 7.71 7.21 -1.54 1.97
SKF 43.75 12.50 46.99 33.15 34.10 -2.59 11.37 19.16 10.59 10.30
PAR+SKF 46.85 18.67 47.27 33.52 36.58 3.06 17.62 19.58 11.09 13.68

whereN , Nc, andNf denote the total number of speech utterances,
the number of correctly detected utterances, and the number of in-
correctly detected utterances, respectively.

Table 2 shows the results of an utterance-level evaluation. As
seen in the table, the proposed method “PAR+SKF” significantly
improves bothCorr andAcc compared with the baseline. In par-
ticular, the average improvement inAcc when compared with the
baseline was approximately 83 %. In addition, the proposed method
improves bothCorr andAcc compared with PAR and SKF. This
means that the proposed likelihood combination works effectively.

6.3. Experimental results of speech recognition
We also carried out an evaluation of speech recognition with the
proposed method. We used the HTK (HMM Tool Kit) [12] for
speech recognition and acoustic model training. The acoustic model
is trained as whole word (digit) HMMs (16 states, 20 Gaussian dis-
tributions per state) by using clean training data from CENSREC-
1. The feature parameters used in this evaluation consisted of 39
MFCCs with 12 MFCCs, log-energy, and their first and second order
derivatives. Cepstral mean normalization was not applied at the fea-
ture extraction. A more detailed evaluation scheme for CENSREC-1
is described in [11].

Table 3 shows the speech recognition results in terms of word ac-
curacy. In the table, “w/o VAD” and “Ideal VAD” represent speech
recognition results without VAD and with VAD using hand labeled
utterance boundaries, respectively. The table shows that the pro-
posed method “PAR+SKF” improves speech recognition accuracy.
As regards the speech recognition results obtained with the proposed
method, there was an increase in the deleted word and substituted
word errors caused by VAD errors. However, the insertion word er-
rors, especially in the silent periods between utterances, was signifi-
cantly reduced. Therefore, we can confirm that the proposed method
contributes to an improvement in speech recognition accuracy by re-
ducing insertion word error.

7. CONCLUSION

This paper presented a noise robust VAD technique based on the in-
tegration of multiple speech features and a signal decision scheme.
The proposed method combined a speech periodic to aperiodic com-
ponent ratio and a switching Kalman filter with adaptive weight-
ing. The evaluation results show that our proposed method improves
VAD accuracy compared with the periodic to aperiodic component
ratio or the switching Kalman filter alone. In addition the proposed

method also improves speech recognition accuracy. In the future, we
are planning to investigate the optimal threshold decision.
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