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What is reverberation?

Reflections from walls, floors, and ceilings

Omnipresent when using a distant mic in an enclosure

Reflections

Reflections

Direct sound
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Effect of reverberation (1/2)

• Speech becomes less intelligible for humans
• Automatic Speech Recognition (ASR) becomes very hard

Non-reverberant speech captured by a headset

Reverberant speech captured by a distant mic
Largely modify 
spectral pattern

RT60≈0.6 s
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Effect of reverberation (2/2)

-3-

Speech arrives at mics 
from all directions

• Sound localization becomes unclear for humans
• Direction-of-arrival (DOA) estimation becomes challenging
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More realistic scenario

-4-

Distant mics

Noise

Reverberation＋ Overlapping speech ＋Noise

Reverberation

Overlapping
speech
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Problemss caused by reverberation

• Degrades speech intelligibility and localization for humans
• Degrades performance of speech applications
• Hinders effectiveness of speech preprocessing

• ASR
• Remote conference
• Etc.

Speech applications

Reverberant
speech

Degraded by reverberation

Speech preprocessing

Noisy 
reverberant
speech mixture

• Denoising
• Source separation
• Etc.

Degraded by reverberation
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Role of dereverberation
• Reduce reverberation in captured signals to mitigate its 

negative effects 
• To improve speech intelligibility and localization

• To improve speech preprocessing and applications

Speech preprocessing
• Denoising
• Source separation

Noisy 
dereverberated
speech 
mixture

Noisy 
reverberant
speech 
mixture

Reverberant
speech

Dereverb

Dereverberated
speechDereverb

Speech applications
• ASR
• Remote conference

Improved 
intelligibility and 

localization

Improved 
accuracy

Improved 
performance
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Quick overview of effectiveness

WPE+Beamforming (8ch)

Observed (no enhancement)

Word Error Rate (WER) (%)

Diffusion model (2ch)

WPE*1)+Beamforming (2ch)
6.14 %

4.92 %

3.38 %

4.61 %

ASR improvement for REVERB Challenge (2014) Real dataset 

This webinar puts particular focus on these techniques

*1) Weighted Prediction Error dereverberation (WPE)

REVERB recipe for ESPnet2 : state-of-the recognizer for this task

Noisy, reverberant speech recorded in a lecture room environment

3.46 %WPE+Diffusion model (2ch)

Effective, but reverb and 
noise still remain

More effective, but speech 
is slightly distorted
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Applications of speech dereverberation

-8-

For computers to understand 
human conversations

– Smart speaker
– Communication robot
– Meeting recognition

To enhance human listening
– Hearing aids
– Hands-free remote conference

A versatile technique to improve quality of speech applications

Hearing aids Remote conference
Minutes generation

Smart speaker Communication 
robot



9Copyright 2024 NTT CORPORATION

Outline of this talk
1. Approaches to dereverberation
2. Blind inverse filtering-based dereverberation

• Theoretical background

• Weighted Prediction Error (WPE) method

• Extension to joint denoising, dereverberation, and source separation

3. Neural network (NN)-based dereverberation
• Diffusion model-based joint denoising and dereverberation

• Integration with WPE and other SE techniques

4. Future challenges and concluding remarks
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Signal model-based dereverberation
Beamforming (multi-ch) [Flanagan, 1985]

• Model: direct signal comes from source direction

• Solution: enhance signal coming from the source direction

• Requires many mics for large reverb reduction

Power spectral density (PSD) estimation (1-ch)
[Lebart+,2001], [Habets+,2004,2007,2009], [Löllman 2010] 
• Model: Energy of reverberation exponentially decays

• Solution: Suppress reverberation PSD in power domain

• Simple and efficient model with marginal effectiveness

Blind inverse filtering (multi-ch)
• Model: Convolution with room impulse response (RIR)

• Solution: Apply inverse filter to cancel RIR
› Weighted prediction error (WPE) method

• One of most effective techniques

Energy decay property of reverberation

Exponential 
decay

[Time]

[dB]

Beam
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Neural Network (NN)-based dereverberation
Deterministic prediction (1-ch/multi-ch)

• Train an NN to predict clean speech from 
reverberant obs. [Weninger+, 2014], [Xu, 2015]

• Use of U-Net [Ronneberger+, 2015] greatly 
improved the estimation accuracy [Wang, 2021]

Probabilistic prediction (1-ch/multi-ch)
• Train an NN to predict conditional density of clean 

speech (implicitly or explicitly) from reverberant 
observation.

• Diffusion model-based denoising and 
dereverberation [Serra+,2022],[Richter+, 2023]

› An emerging speech enhancement (SE) technique
› Can be integrated with signal model-based 

dereverberation

Reverberant Estimated clean

NN Sampling𝐱𝐱
𝑝𝑝(𝐬𝐬|𝐱𝐱)

�𝐬𝐬
Reverberant
speech

Estimated 
clean speech

Conditional
density
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Key differences between approaches

Blind inverse 
filtering

(Section 2)

NN-based 
approach

(Section 3)

Hybrid
(Section 3, and 

future work)

Prior training Not 
necessary Necessary Necessary

Adaptability to 
test condition High Limited

(by training data) Medium

Dereverb
performance

Limited
(by signal 

model)

High
(Under matched 

conditions)

Very high 
(Yet depending on 

conditions)
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Time-domain model of reverberation 

Reverberant
speech

Late
reverberation

Direct 
sound

Early
reflectionsImpulse 

response

𝐷𝐷 (=30-50 ms)

Preserve Reduce

Desired signal 𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡

[Bradley et al., 2003]

𝑥𝑥𝑡𝑡 = �
𝜏𝜏=0

𝐿𝐿−1

𝑎𝑎𝜏𝜏𝑠𝑠𝑡𝑡−𝜏𝜏

Direct
sound

Early 
reflections

Late 
reverberation

+

= �
𝜏𝜏=0

𝐷𝐷−1

𝑎𝑎𝜏𝜏𝑠𝑠𝑡𝑡−𝜏𝜏 + �
𝜏𝜏=𝐷𝐷

𝐿𝐿−1

𝑎𝑎𝜏𝜏𝑠𝑠𝑡𝑡−𝜏𝜏

𝑎𝑎𝜏𝜏
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Matrix representation of RIR convolution
1-ch convolution at 𝒎𝒎th mic:

Multi-ch convolution:

𝐱𝐱𝑚𝑚,𝑡𝑡 = 𝐇𝐇𝑚𝑚𝐬𝐬𝑡𝑡

𝐱𝐱𝑚𝑚,𝑡𝑡 =

𝑥𝑥𝑚𝑚,𝑡𝑡
𝑥𝑥𝑚𝑚,𝑡𝑡−1
⋮

𝑥𝑥𝑚𝑚,𝑡𝑡−𝐾𝐾

𝐬𝐬𝑡𝑡 =

𝑠𝑠𝑡𝑡
𝑠𝑠𝑡𝑡−1
⋮

𝑠𝑠𝑡𝑡−𝐾𝐾0

= 𝐇𝐇𝑚𝑚
𝑑𝑑 𝐬𝐬𝑡𝑡+ 𝐇𝐇𝑚𝑚

𝑟𝑟 𝐬𝐬𝑡𝑡
𝐫𝐫𝑚𝑚,𝑡𝑡𝐝𝐝𝑚𝑚,𝑡𝑡

𝐱𝐱𝑡𝑡 = 𝐇𝐇𝐬𝐬𝑡𝑡 = 𝐇𝐇𝑑𝑑𝐬𝐬𝑡𝑡+𝐇𝐇𝑟𝑟𝐬𝐬𝑡𝑡
𝐫𝐫𝑡𝑡𝐝𝐝𝑡𝑡

𝐱𝐱𝑡𝑡 =
𝐱𝐱1,𝑡𝑡
⋮

𝐱𝐱𝑀𝑀,𝑡𝑡
𝐇𝐇 =

𝐇𝐇1
⋮
𝐇𝐇𝑀𝑀

∈ ℝ𝑀𝑀𝐾𝐾×𝐾𝐾0

𝐾𝐾0 = 𝐿𝐿 + 𝐾𝐾 − 1

𝐇𝐇𝑑𝑑 : desired convolution matrix

𝐇𝐇 : convolution matrix

𝐇𝐇𝑚𝑚 =

𝑎𝑎𝑚𝑚,0 𝑎𝑎𝑚𝑚,1 ⋯ 𝑎𝑎𝑚𝑚,𝐿𝐿−1 0 ⋯ 0
0 𝑎𝑎𝑚𝑚,0 𝑎𝑎𝑚𝑚,1 ⋯ 𝑎𝑎𝑚𝑚,𝐿𝐿−1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋯ 0 𝑎𝑎𝑚𝑚,0 𝑎𝑎𝑚𝑚,1 ⋯ 𝑎𝑎𝑚𝑚,𝐿𝐿−1

∈ ℝ𝐾𝐾×𝐾𝐾0
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Inverse
filter

What is inverse filtering?
Reverberant 
speech (multi-ch)Clean

speech
Desired speech 
(multi-ch)

RIRs

Transformation 
from 𝐇𝐇 to 𝐇𝐇𝑑𝑑

Inversion
Multiplication of 
convolution 
matrix 𝐇𝐇

𝐝𝐝𝑡𝑡 = 𝐇𝐇𝑑𝑑𝐬𝐬𝑡𝑡𝐬𝐬𝑡𝑡

𝐱𝐱𝑡𝑡 = 𝐇𝐇𝐬𝐬𝑡𝑡

𝐇𝐇 𝐇𝐇𝑑𝑑 : desired 
convolution 
matrix

Unit 
impulse
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Exact inverse filter for given RIR
[Miyoshi and Kaneda, 1988]

• Given 𝐇𝐇, the inverse filter 𝐖𝐖 should transform 𝐇𝐇 to 𝐇𝐇𝑑𝑑:

• Solution is obtained using the pseudo-inverse of 𝐇𝐇 denoted by 𝐇𝐇+:

–When 𝐇𝐇 is full column rank (requiring #mics≥ 2)

𝐇𝐇 is not given in a blind inverse filtering scenario
The challenge is to estimate 𝐖𝐖 without knowing 𝐇𝐇

𝐖𝐖Ｈ𝐇𝐇 = 𝐇𝐇𝑑𝑑

𝐖𝐖Ｈ = 𝐇𝐇𝑑𝑑𝐇𝐇+ where  𝐇𝐇+ = 𝐇𝐇Ｈ𝐇𝐇 −1𝐇𝐇Ｈ



19Copyright 2024 NTT CORPORATION

• For computational efficiency, we decompose time-domain convolution by 
STFT-domain convolution at each frequency

- Valid when frame shift << analysis window [Nakatani+, 2008] 

• Exact inverse filter can be defined in the same way as time-domain model

STFT-domain convolution model

STFT-domain convolution

𝐱𝐱𝑡𝑡,𝑓𝑓1 = 𝐇𝐇𝑓𝑓1𝐬𝐬𝑡𝑡,𝑓𝑓1𝐱𝐱𝑡𝑡 = 𝐇𝐇𝐬𝐬𝑡𝑡
Time-domain convolution

for each 
frequency 𝑓𝑓

Inverse filtering can be performed separately in each frequency

Decompose 𝐱𝐱𝑡𝑡,𝑓𝑓2 = 𝐇𝐇𝑓𝑓2𝐬𝐬𝑡𝑡,𝑓𝑓𝐹𝐹

𝐱𝐱𝑡𝑡,𝑓𝑓𝐹𝐹 = 𝐇𝐇𝑓𝑓𝐹𝐹𝐬𝐬𝑡𝑡,𝑓𝑓𝐹𝐹
…
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Approaches to blind inverse filtering
Blind RIR estimation + robust inverse filtering

• Blind RIR estimation is still a challenging problem
› Eigenvalue decomposition-based [Gannot, 2010] 
› Rank-1 matrix lifting-based joint source and impulse response 

estimation [Yohena+, 2024]

• Robust inverse filtering for given RIR
› Regularization [Hikichi+, 2007]
› Partial multichannel equalization [Kodrasi+, 2013]

Blind and direct estimation of inverse filter
• Multichannel linear prediction (MCLP) based methods

› Prediction Error (PE) method [Abed-Meraim+, 1997]
› Delayed Linear Prediction [Kinoshita+, 2009]
› Weighted Prediction Error (WPE) method [Nakatani+, 2010]
› Multi-input multi-output (MIMO) WPE method  [Yoshioka+, 2012]

Robust 
inverse 
filtering

Blind RIR 
estimation

Observed
signal

Enhanced 
signal

Estimated RIR

Filtering

Blind inverse 
filter  

estimation

Observed
signal

Enhanced 
signal

Estimated inverse filter
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Vanilla MCLP [Abed-meraim+, 1997]

Dereverberation: 𝐝̇𝐝𝑡𝑡,𝑓𝑓 = 𝐱𝐱𝑡𝑡,𝑓𝑓 −�
𝜏𝜏=1

𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓

・・・ ・・・・・・ ・・・

Current signal

𝐱𝐱𝑡𝑡,𝑓𝑓 = 𝐝̇𝐝𝑡𝑡,𝑓𝑓 + 𝐫̇𝐫𝑡𝑡,𝑓𝑓

・・・ ・・・・・・ ・・・

: direct signal
: reverberation

Predict ∑𝜏𝜏=1𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓

Past signal
Predictable

Multi-ch

Predicted signal

Subtract predicted signals from observation



22Copyright 2024 NTT CORPORATION

Formal definition of vanilla MCLP
Multichannel autoregressive model

• Assuming 𝐝̇𝐝𝑡𝑡,𝑓𝑓 stationary white noise, Maximum Likelihood (ML) solution becomes

• With estimated �𝐆𝐆𝜏𝜏,𝑓𝑓, 𝐝̇𝐝𝑡𝑡,𝑓𝑓 is estimated (= inverse filtering) as

: prediction matrices.

𝐱𝐱𝑡𝑡,𝑓𝑓 = �
𝜏𝜏=1

𝐿𝐿

𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓 + 𝐝̇𝐝𝑡𝑡,𝑓𝑓

𝐆𝐆𝜏𝜏,𝑓𝑓 ∈ ℂ𝑀𝑀×𝑀𝑀

�𝐆𝐆𝜏𝜏,𝑓𝑓 = arg min�
𝑡𝑡=1

𝑇𝑇

𝐱𝐱𝑡𝑡,𝑓𝑓 −�
𝜏𝜏=1

𝐿𝐿

𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓

2

2

𝐆𝐆𝜏𝜏,𝑓𝑓

̂̇𝐝𝐝𝑡𝑡,𝑓𝑓 = 𝐱𝐱𝑡𝑡,𝑓𝑓 −�
𝜏𝜏=1

𝐿𝐿

�𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓
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Problems in vanilla MCLP
Speech is not stationary white noise

» MCLP assumes the desired signal to be temporally uncorrelated
» Speech signal exhibits short-term correlation (30‐50 ms)

MCLP distorts the short-time correlation of speech

» MCLP assumes the target signal d to be stationary
» Speech is not stationary for long-time duration (200-1000 ms)

MCLP disrupts the temporal structure of speech

Solutions: 
• Use of a prediction delay [Kinoshita+, 2009]

• Use of a non-stationary speech model [Nakatani+, 2010]
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Delayed MCLP [Kinoshita+, 2009]

Delayed MCLP can reduce late reverberation        
without distorting temporal correlations of speech

・・・ ・・・・・・ ・・・
Current signal

・・・ ・・・・・・ ・・・

Predict ∑𝜏𝜏=𝐷𝐷𝐿𝐿 𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓

Past signal

Multi-ch

Delay D (=30-50 ms)

Unpredictable

Predictable
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Use of non-stationary source model
[Nakatani+, 2010, Yoshioka+, 2011]

Model of desired signal: time-varying Gaussian (local Gaussian)
𝑝𝑝 𝐝𝐝𝑡𝑡,𝑓𝑓;𝜃𝜃 = 𝑁𝑁𝑐𝑐 𝐝𝐝𝑡𝑡,𝑓𝑓; 0,𝜎𝜎𝑡𝑡,𝑓𝑓

2 𝐈𝐈 where 𝜃𝜃 = 𝜎𝜎𝑡𝑡,𝑓𝑓
2 ∶ source PSD

Maximum Likelihood (ML) estimation:

�𝐺𝐺𝜏𝜏,𝑓𝑓 , �𝜎𝜎𝑡𝑡,𝑓𝑓
2 = arg max�

𝑡𝑡=1

𝑇𝑇
1

𝜋𝜋𝜎𝜎𝑡𝑡,𝑓𝑓
2 exp

− 𝐱𝐱𝑡𝑡,𝑓𝑓 − ∑𝜏𝜏=𝐷𝐷𝐿𝐿 𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓 2

2

𝜎𝜎𝑡𝑡,𝑓𝑓
2

Can perform dereverberation based only on a few 
seconds of observation

Weighted prediction error (WPE)

𝐆𝐆𝜏𝜏,𝑓𝑓,𝜎𝜎𝑡𝑡,𝑓𝑓
2
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Processing flow of WPE

Dereverberation

Source PSD
estimation

Prediction matrix
estimation

𝐝̂𝐝𝑡𝑡,𝑓𝑓 = 𝐱𝐱𝑡𝑡,𝑓𝑓 −�
𝜏𝜏=𝐷𝐷

𝐿𝐿

𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓

{ �𝐆𝐆𝜏𝜏,𝑓𝑓}

{ �𝐆𝐆𝜏𝜏,𝑓𝑓} = arg min�
𝑡𝑡=1

𝑇𝑇 𝐱𝐱𝑡𝑡,𝑓𝑓 − ∑𝜏𝜏=𝐷𝐷𝐿𝐿 𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓 2

2

𝜎𝜎𝑡𝑡,𝑓𝑓
2

{𝐆𝐆𝜏𝜏,𝑓𝑓}

�𝜎𝜎𝑡𝑡,𝑓𝑓
2 = 1

𝑀𝑀
𝐱𝐱𝑡𝑡,𝑓𝑓 − ∑𝜏𝜏=𝐷𝐷𝐿𝐿 �𝐆𝐆𝜏𝜏,𝑓𝑓

𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓 2

2
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Does WPE perform inverse filtering?

Minimized when

Reverb Prediction

Assumption
𝐝𝐝𝑡𝑡,𝑓𝑓 and 𝐫𝐫𝑡𝑡,𝑓𝑓 are mutually 
uncorrelated

Yes, WPE performs inverse filtering when the inverse filter exists

𝐸𝐸
𝐱𝐱𝑡𝑡,𝑓𝑓 − ∑𝜏𝜏=𝐷𝐷𝐿𝐿 𝐆𝐆𝜏𝜏,𝑓𝑓

𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓 2
2

𝜎𝜎𝑡𝑡,𝑓𝑓
2

= 𝐸𝐸
𝐝𝐝𝑡𝑡,𝑓𝑓 2

2

𝜎𝜎𝑡𝑡,𝑓𝑓
2 + 𝐸𝐸

𝐫𝐫𝑡𝑡,𝑓𝑓 − ∑𝜏𝜏=𝐷𝐷𝐿𝐿 𝐆𝐆𝜏𝜏,𝑓𝑓
𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓 2

2

𝜎𝜎𝑡𝑡,𝑓𝑓
2

≥ 𝐸𝐸
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𝐻𝐻 𝐱𝐱𝑡𝑡−𝜏𝜏,𝑓𝑓
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REVERB Challenge : improvement in ASR (2014)

 Acoustic conditions
 Real recordings of read speech

 Noisy and reverberant lecture rooms

 Processing flow

1.0~2.5 m

RT60: 0.7 s, SNR: 10-20 dB

WERs

[Delcroix+., 2015]

WPE(8ch)+Beamforming+Denoising

Distant mic  (No enhancement) 48.9 %
22.2 %

9.0 %

WER(%)

WPE (8ch)

WPE Beamforming+ 
Denoising

ASR
(DNN-HMM)

Noisy and 
reverberant 
observation

8ch 8ch

This was the best score at the 2014 challenge 

[Kinoshita+, 2016]
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Demonstration（8-mics, Real data）
No reverberation
（headset）

With reverberation
（distant mic）

WPE+beamforming
+denoising

WPE 
dereverberation
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Dereverberation of speech mixture by WPE 
[Yoshioka+, 2012]

Existence of such an inverse filter for mixture dereverberation is guaranteed 
[Miyoshi+, 1988] when

• #mics > #sources

• Convolution matrix for mixture is full column rank

WPEReverberant 
speech mixture

Dereverberated
speech mixture

WPE : versatile dereverberation preprocessor

Multi-ch Multi-ch
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Goal: Estimate who speaks when and what
- In four different conversation scenarios
- Recorded by distant distributed mic-arrays

› Noisy reverberant speech mixture with unknown 
number of speakers

Complex and challenging ASR task

Distant ASR challenge CHiME-8 task1 (2024)

Speaker diarization

Guided source 
separationWPE ASR

Who speaks when 

Isolated
speech

Noisy 
reverb
speech 
mixture

Speech enhancement

Processing pipeline of baseline system

Scenario
(Dataset)

Dinner 
party1

(CHiME6)

Dinner 
party2

(DiPCo)

1-to-1 
Interview
(Mixer 6)

Office 
meeting

(NotSoFar1)

Ave-
rage

w/o WPE 21.63 31.22 11.62 9.31 17.52

w/ WPE 19.80 27.33 10.13 8.93 15.85 

Demonstrates effectiveness of WPE for mixture derev. 
Further improvement should be included in future work

Spk2

Spk3

Mic1

Mic2

Mic3

Are you 
sure

Spk1

Mic1-24

Certainly Ya

How about 
today

It’s great

Recording condition Estimation targets

Who speaks when, whatCHiME6 dinner party

This is Tamaki 
speaking 

Sure

Noisy 
reverb 
speech 
mixture Time

Results (Dev set): tcpWER*1) of NTT system [Kamo+, 2024]

*1) Time-constrained minimum permutation WER

What

[Cornell+, 2024]
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Extensions of WPE (1/2)
Elaboration of probabilistic source models
• Sparse prior for speech PSD [Jukic et al., 2015]
• Bayesian estimation with student-T speech prior [Chetupalli+, 2019]

Frame-by-frame online estimation
• Recursive least square [Yoshioka+, 2009], [Caroselli+, 2017]
• Kalman filter for joint denoising and dereverberation [Togami+, 2013], 

[Braun+, 2018], [Dietzen+, 2018]
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Extensions of WPE (2/2)
Dereverberation of more sources than microphones (under-
determined situation)
• Switching WPE [Ikeshita+, 2021-1, 2021-2]

Joint optimization of dereverberation and beamforming
1. Maximum likelihood convolutional beamformer that can jointly 

perform denoising and dereverberation [Dietzen+, 2018], [Nakatani+, 2019]

2. Integration of WPE and blind source separation (BSS)/extraction 
(BSE) [Yoshioka+, 2010], [Ikeshita+, 2021], [Nakatani+, 2021]

3. Extension to switching convolutional beamformer [Nakatani+, 2022]
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Jointly optimize both blocks

Joint optimization of WPE and BSS/BSE 

Optimiza-
tion fwsSNR↑ STOI↑ WER↓

Separate 5.86 dB 0.83 19.54 %
Joint 6.16 dB 0.84 16.31 %

WPE Aux-
IVE*1

Noisy, reverberant 
speech mixture

Multi-
ch

Multi-
ch Denoised, 

dereverberated,  
and isolated 

speech signals

*1) Auxiliary-function-based

Results on REVERB-2Mix [Nakatani+, 2021]

Assumptions:
Signals estimated by overall system satisfy: 
1. Each speech is time-varying Gaussian
2. Noise is stationary Gaussian
3. Speech signals and noise are mutually 

independent

[Yoshioka+, 2010], [Ikeshita+, 2021], [Nakatani+, 2021]
Indipendent Vector Extraction
[Scheibler+, 2019], [Ikeshita+, 2020]
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Summary of WPE
Advantages:

• Versatile dereverberation preprocessing
• Applicable to mixed signals

• Require no prior training or knowledge on recording conditions
› Highly adaptive to unknown environments

Limitations:

• Performance degrades in high noise conditions

• Relatively a large number of microphones are required for achieving 
highly accurate processing

• Unable to reduce early reflections

Overcome these limitations by using diffusion model-based approach
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Outline of this talk
1. Approaches to dereverberation
2. Blind inverse filtering-based dereverberation

• Theoretical background

• Weighted Prediction Error (WPE) method

• Extension to joint denoising, dereverberation, and source separation

3. Neural network (NN)-based dereverberation
• Diffusion model-based joint denoising and dereverberation

• Integration with WPE and other SE techniques

4. Future challenges and concluding remarks
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Diffusion model-based joint denoising and dereverberation

Probabilistic prediction [Serra+,2022],[Richter+, 2023]

- Model 𝑝𝑝 𝐬𝐬0 𝐱𝐱 , i.e., conditional distribution of a 
clean speech, 𝐬𝐬0, given the observed signal, 𝐱𝐱

- Perform speech enhancement (SE) by 
sampling 𝐬𝐬𝟎𝟎 from 𝒑𝒑 𝐬𝐬𝟎𝟎 𝐱𝐱

- Score-based Generative Model for Speech 
Enhancement (SGMSE)  [Welker+ 22] [Richter+, 23]

Multi-stream SGMSE (MS-SGMSE) [Nakatani+, 2024]:
- Platform to integrate SE methods using SGMSE
- By conditioning the model with pre-enhanced 

signals by the SE methods

⇒ further improve the SE performance

Observation Pre-enhanced 
signals

Clean speech

𝑝𝑝(𝐬𝐬0|𝐱𝐱,𝜲𝜲)

NN Sampling𝐱𝐱
𝑝𝑝(𝐬𝐬0|𝐱𝐱)

�𝐬𝐬0
Reverberant Estimated 

clean
Conditional
density

Conditional density modeled by MS-SGMSE
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SE using conditional diffusion model

- SE is achieved by the reverse process.

Score model 𝐠𝐠𝑛𝑛 𝐬𝐬𝑛𝑛, 𝐱𝐱, 𝒄𝒄,𝑛𝑛 ; 𝜃𝜃 ≃ ∇𝐬𝐬𝑡𝑡 log 𝑝𝑝 𝐬𝐬𝑛𝑛 𝐱𝐱, 𝐜𝐜 is all we need.

Loss:   J score 𝜃𝜃 = 𝐸𝐸 ∇𝐬𝐬𝑛𝑛 log 𝑝𝑝 𝐬𝐬𝑛𝑛 𝐱𝐱, 𝒄𝒄 − 𝐠𝐠𝑡𝑡 𝐬𝐬𝑛𝑛, 𝐱𝐱, 𝒄𝒄,𝑛𝑛;𝜃𝜃
2
2

- MS-SGMSE incorporates 𝜲𝜲 as condition 𝐜𝐜 for integration

Forward process

Reverse process

Intermediate state at step n

Score
(modeled by Neural network)

𝐬𝐬𝑁𝑁 = 𝐱𝐱 + 𝐯𝐯𝐬𝐬0~𝑝𝑝(𝐬𝐬𝟎𝟎|𝐱𝐱, 𝐜𝐜) 𝑑𝑑𝐬𝐬𝑛𝑛 = 𝐟𝐟(𝐬𝐬𝑛𝑛, 𝐲𝐲)𝑑𝑑𝑑𝑑 + 𝑔𝑔 𝑛𝑛 𝑑𝑑𝐰𝐰

𝑑𝑑𝐬𝐬𝑛𝑛 = [−𝐟𝐟(𝐬𝐬𝑛𝑛, 𝐲𝐲)𝑑𝑑𝑑𝑑 + 𝑔𝑔 𝑛𝑛 2∇𝐬𝐬𝑛𝑛 log𝑝𝑝 𝐬𝐬𝑛𝑛 𝐱𝐱, 𝒄𝒄 ]𝑑𝑑𝑑𝑑 +𝑔𝑔 𝑛𝑛 𝑑𝑑 �𝐰𝐰𝐬𝐬0 𝐬𝐬𝑁𝑁 = 𝐱𝐱 + 𝐯𝐯

[Song+, 2021],[Richter+,2023]
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SGMSE and MS-SGMSE

MS-SGMSE models 𝒑𝒑(𝐬𝐬𝟎𝟎|𝐱𝐱,𝜲𝜲) and improve the accuracy of SE

Pre-SE 1

Pre-SE 𝐼𝐼

Reverse
process

Score
model

… 𝑛𝑛
�𝛘𝛘01

�𝛘𝛘0𝐼𝐼
…

𝐬𝐬𝑛𝑛−∆𝑛𝑛
𝐬𝐬𝑛𝑛

𝐬𝐬𝑛𝑛

𝐱𝐱
�𝐬𝐬0

MS-SGMSE

𝐠𝐠𝑛𝑛(𝜃𝜃)…
𝜲𝜲 = �𝛘𝛘01 , … , �𝛘𝛘0𝐼𝐼 : pre-enhanced signals

Reverse
process

Score
model

𝑛𝑛

𝐬𝐬𝑛𝑛−∆𝑛𝑛
𝐬𝐬𝑛𝑛

𝐬𝐬𝑛𝑛

𝐱𝐱
�𝐬𝐬0

SGMSE

𝐠𝐠𝑛𝑛(𝜃𝜃)

SE methods to be integrated
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PRE-SE methods to be integrated
1. Weighted Prediction Error: WPE

2. Complex Spectral Mapping: CSM
A deterministic prediction approach

Training objective:
𝐿𝐿 𝜃𝜃 = 𝐸𝐸 Re(𝐬𝐬 − �𝐬𝐬0) 1 + Im(𝐬𝐬0 − �𝐬𝐬0) 1 + |𝐬𝐬0| − |�𝐬𝐬0| 1]

3. Cascade configuration of the above two: WPE-CSM

Reverberant Predicted clean
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Experimental setting

43

 Experimental conditions
 Training data: WSJ-CHiME3

• Clean targets: Simulated using room impulse responses truncated at 2 ms.
 Evaluation data

• Matched condition: WSJ0-CHiME3 (the same as training data)
• Mismatched condition: REVERB challenge

# of speakers (WSJ0) 1
# of noises (CHiME3) 10

# of microphones 2
Speaker-mic. Distance [m] 0.5~1.5

Distance between microphones [m] 0.02~0.14

Reverberation time [s] 0.2~1.0
SNR [dB] 10~145 [m]

5 
[m

]

: Speaker
: Noise
: Microphone
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Experimental results

*1) Cascade of WPE and CSM, *2) Scale-Invariant Signal-to-Distortion Ratio,                                                 
*3) Perceptual Evaluation of Speech Quality, *4) Extended Short-Time Objective Intelligibility,                    
*5) Word Error Rate

SE method Input stream(s)
Simulated data Real data

SI-SDR*2) [dB] PESQ *3) ESTOI *4) WER*5) [%]

Obs − -3.5 1.24 0.47 6.14
WPE Obs -0.8 1.32 0.55 4.97
CSM Obs 7.3 2.58 0.86 4.30

WPE-CSM*1) Obs 8.5 2.75 0.88 4.00
SGMSE Obs 7.8 2.68 0.86 4.61

Multi-stream 
SGMSE

Obs, WPE 8.3 2.83 0.88 3.46
Obs, CSM 8.5 2.67 0.87 4.30

Obs, WPE-CSM 9.3 2.81 0.88 3.92
Obs, WPE, CSM 9.4 2.84 0.89 3.81

Obs, WPE, CSM, WPE-CSM 9.8 2.85 0.89 3.84
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Summary of diffusion model-based approach
Pros

• Highly accurate joint denoising and dereverberation
• Direct signal can be recovered

• Further improvement with integration with other SE methods
• Outperform not only blind inverse filtering approach, but also NN-based 

deterministic prediction approach

Cons

• Require prior training
• Still sensitive to mismatch between training and test conditions
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Outline of this talk
1. Approaches to dereverberation
2. Blind inverse filtering-based dereverberation

• Theoretical background

• Weighted Prediction Error (WPE) method

• Extension to joint denoising, dereverberation, and source separation

3. Neural network (NN)-based dereverberation
• Diffusion model-based joint denoising and dereverberation

• Integration with WPE and other SE techniques

4. Future challenges and concluding remarks
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Satisfactory speech quality is not yet achieved for real 
conversation recordings like CHiME-8 challenge

Future challenges

Challenges Inverse filtering NN-based approach
Distributed microphone array 
scenarios Under progress -

Mismatches between training and 
test conditions - Under progress

Unknown and varying number of 
speakers and ambient noises

Tighter integration with speaker diarization
and audio event detection may be the key

Moving speakers Not yet well studied
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WPE-SD for spatially distributed microphones

Reference 
Microphone

Selection

Microphone
Subset

Selection
WPE

Reverberant 
inputs

Dereverberated 
outputs

WPE-SD (spatially distributed)

Distributed array

・・・ ・・・

・・・

Ch-1

Ch-2
Predictable !

Relative 
time delay

Prediction delaySignals used for prediction

[Lohmann+, 2024]
Problems for distributed microphone scenario:

[Lohmann+, 2024]

DRR is high
Time delay 

is small

DRR is low
Time delay 

is large

WPE-SD achieves large improvement

Future work: extension to more realistic scenarios with noisy reverberant mixtures

• DRR*1) largely differs depending on mic. locations
- Performance depends largely on reference microphones

• Time delay between mics may exceed prediction delay
- Direct signal can be predicted and distorted by WPE

Time delay compensation

*1) Direct-to-
Reverberation 
Ratio
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Buddy: unsupervised dereverb with diffusion model (DM)
[Moliner+, 2024]

Jointly estimate clean speech and reverb  
• Modeling clean speech prior 𝑝𝑝 𝐱𝐱0 using DM, and 

• Reverb by exponential energy-decay model A𝜓𝜓 𝐱𝐱0

∇𝐱𝐱𝑡𝑡 log 𝑝𝑝 𝐱𝐱𝜏𝜏 𝐲𝐲
= ∇𝐱𝐱𝑡𝑡 log 𝑝𝑝(𝐱𝐱𝜏𝜏) + ∇𝐱𝐱𝑡𝑡 log 𝑝𝑝(𝐲𝐲|𝐱𝐱𝜏𝜏)
≈ 𝐬𝐬𝜃𝜃(𝑥𝑥𝑡𝑡 ,𝜎𝜎𝑡𝑡) − 𝜁𝜁 𝜏𝜏 ∇𝐱𝐱𝑡𝑡𝐶𝐶(𝐲𝐲, A𝜓𝜓 �𝐱𝐱0 )

Conditional score of DM

Speech prior part
(Environment independent)

Reverb part
(Environment dependent)

Speech 
prior part

Reverb 
part

Matched Mismatched

DNS-MOS PESQ ESTOI DNS-MOS PESQ ESTOI

WPE 3.24 1.81 0.57 3.10 1.74 0.54

Buddy (w/ WPE) 3.76 2.30 0.66 3.74 2.24 0.65

Task: Single channel dereverberation (with no noise)

Future work: extension to more realistic scenarios with noisy reverberant mixtures
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Concluding remarks
Dereverberation is now a solvable problem:
• Blind inverse filtering is applicable to unknown recording 

conditions
• NN can perform highly accurate dereverberation when training 

and test conditions well align
Future work:
• Enhancement of real conversation recordings is still challenging 

- Developing new techniques overcoming current limitations, 
and integrating various approaches could be the key to the 
solution
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