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Abstract— Blind source separation (BSS) for convolutive mix-
tures can be solved efficiently in the frequency domain, where
independent component analysis (ICA) is performed separately
in each frequency bin. However, frequency-domain BSS involves
a permutation problem: the permutation ambiguity of ICA
in each frequency bin should be aligned so that a separated
signal in the time-domain contains frequency components of the
same source signal. This paper presents a robust and precise
method for solving the permutation problem. It is based on two
approaches: direction of arrival (DOA) estimation for sources and
the inter-frequency correlation of signal envelopes. We discuss
the advantages and disadvantages of the two approaches, and
integrate them to exploit their respective advantages. Further-
more, by utilizing the harmonics of signals, we make the new
method robust even for low frequencies where DOA estimation
is inaccurate. We also present a new closed-form formula for
estimating DOAs from a separation matrix obtained by ICA.
Experimental results show that our method provided an almost
perfect solution to the permutation problem for a case where two
sources were mixed in a room whose reverberation time was 300
ms.

Index Terms—Blind source separation, independent compo-
nent analysis, convolutive mixture, frequency domain, permuta-
tion problem, direction of arrival estimation, signal envelope

|. INTRODUCTION

Blind source separation (BSS) [1] is a technique for esti-
mating original source signals from their mixtures at sensors.
Independent component analysis (ICA) [2], [3] is one of
the major statistical tools used for solving this problem. If
signals are mixed instantaneously, we can directly employ an
instantaneous ICA agorithm to separate the mixed signals.
In area room environment, however, signas are mixed in a
convolutive manner with reverberations. This makes the BSS
problem difficult since we need a matrix of FIR filters, not just
a matrix of scalars, to separate convolutively mixed signals.
We need thousands of filter taps to separate acoustic signals
mixed in a room. Many methods have been proposed to solve
the convolutive BSS problem, and they can be classified into
two approaches based on how we apply ICA.

The first approach is time-domain BSS, where ICA is
applied directly to the convolutive mixture model [4]-7].
The approach achieves good separation once the agorithm
converges, since the ICA algorithm correctly evaluates the
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independence of separated signals. However, ICA for con-
volutive mixtures is not as simple as ICA for instantaneous
mixtures, and computationally expensive for long FIR filters
because it includes convolution operations.

The other approach is frequency-domain BSS, where
complex-valued ICA for instantaneous mixtures is applied in
each frequency bin [8]-{17]. The merit of this approach is
that the ICA agorithm becomes simple and can be performed
separately at each frequency. Also, any complex-vaued instan-
taneous ICA agorithm can be employed with this approach.
However, the permutation ambiguity of the ICA solution
becomes a serious problem. We need to align the permutation
in each frequency bin so that a separated signa in the time
domain contains frequency components from the same source
signal. This problem iswell known as the permutation problem
of frequency-domain BSS.

Some methods have been proposed where filter coefficients
are updated in the frequency domain but nonlinear functions
for evaluating independence are applied in the time domain
[18]-{20]. Thereis also afrequency-domain implementation of
time-domain BSS where time-domain convolution is speeded
up by the overlap-save method [21], [22]. In either case, the
permutation problem does not occur since the independence
of separated signals is evaluated in the time domain. However,
the algorithm moves back and forth between the two domains
in every iteration, spending non-negligible time for discrete
Fourier transform (DFT) and inverse DFT. Therefore, we
consider that the permutation problem is essentia if we want
to benefit from the merit of frequency-domain BSS mentioned
above.

Various methods have been proposed for solving the per-
mutation problem. Making separation matrices smooth in the
frequency domain is one solution. This has been redized
by averaging separation matrices with adjacent frequencies
[8], limiting the filter length in the time doman [8], [16],
[17], [22], or considering the coherency of separation matrices
at adjacent frequencies [14]. Another approach is based on
direction of arrival (DOA) estimation in array signal pro-
cessing. By analyzing the directivity patterns formed by a
separation matrix, source directions can be estimated and
therefore permutations can be aligned [9], [10]. If the sources
are audio signals such as speech, we can employ the inter-
frequency correlations of output signal envelopes to align the
permutations [12], [13]. Each of these approaches has different
characteristics, and may perform well under certain specific
conditions but not others.
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Fig. 1.

BSS for convolutive mixtures

We consider that integrating some of these approachesisone
way of obtaining better performance. In this paper, we propose
a new method for solving the permutation problem robustly
and precisely by integrating two of the approaches outlined
above. The first is the DOA approach, which is discussed
in Sec. llI-A, as this will provide the new method with
robustness. The second is based on inter-frequency correlations
of output signal envelopes, which is discussed in Sec. 111-B,
and will make the new method precise. The proposed method
is described in Sec. IV. Experimental results are reported in
Sec. V and are very promising.

As another contribution, we propose a method of estimating
the direction of sources analytically in Sec. 1V-C. Unlike
conventional methods [9], [10], this method does not require
the calculation of directivity patterns. Instead, it calculates the
directions of target signals directly from an estimated mixing
matrix, which is basically the inverse of a frequency-domain
separation matrix obtained by ICA. This method can estimate
the directions of more than two sources, thus enabling us
to separate more than two sources practicaly by frequency-
domain BSS.

Il. BSS FOR CONVOLUTIVE MIXTURES
A. Problem Formulation

Figure 1 shows the block diagram of BSS. Suppose that N
source signals s (t) are mixed and observed a M sensors

N
2y (1) =Y skt —1), (1)

k=1 1
where h (1) represents the impulse response from source k to
sensor j. We assume that the number of sources N is known
or can be estimated in some way, and the number of sensors
M is more than or equal to N (N < M). The god is to
separate the mixtures z;(¢) and to obtain a filtered version of
a source sy(;)(t) at each output

yi(t) = ci(l)sny(t — 1), 2
l

where o, (1) is afilter and II: {1,...,N} — {1,...,N} isa
permutation. The separation system typically consists of a set
of FIR filters w;;({) of length L to produce separated signals
M L-1
yilt) =D > wii(Da;(t —1). (3)
j=1 1=0
The filter «; (1) and the permutation II in (2) represent the
scaling and the permutation ambiguity of BSS, respectively.
We assume that the permutation ambiguity is decided based
on the directions of sources estimated by the method discussed
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Fig. 2. Flow of frequency-domain BSS

in this paper. Thus, let II be identity mapping to have a source
s;(t) at output ¢ for simplicity. As for the scaling ambiguity,
it is desirable to obtain just a delayed version, not a filtered
version (2), of s;(t) at the output y,(¢t). However, it is very
difficult to achieve this with the ICA scheme unless s;(t) is
white, which is not the case for separating natural sounds such
as speech [7]. Hence, we allow a filter
following the minimal distortion principle (MDP) [6].

The separation system can be analyzed by using the impulse
responses from a source sy (t) to a separated signal y;(t):

uir(l) =D Y wig(Nhie(l = 7). ()
j=171=0
The separation performance is evaluated by using a signal-
to-interference ratio (SIR). It is calculated as the ratio of the
power of atarget component >, u;;(1)s;(t—1) and interference
components >, _; > uik(1)sk(t —1).

B. Freguency-Domain BSS

We employ frequency-domain BSS where ICA is applied
separately in each frequency bin to obtain the frequency
responses W; (f) of separation filters w;; (1) [8]-{15]. Figure 2
shows the flow. First, time-domain signals « ; (¢) are converted
into frequency-domain time-series signals X ;(f,t) with an L-
point short-time Fourier transform (STFT):

L/2—1
Xj(f )= > aj(r+t)win(r)e 27 (6)
T=—L/2
where f is one of L frequencies f = 0, 1 fs, ..., 21 fs
(fs: the sampling frequency), win(7) is a window that tapers
smoothly to zero at each end, such as a Hanning window
1(1+cos ZT), and ¢ is now down-sampled with the distance
of the window shift.

Then, to obtain the frequency responses W, (f) of filters

w;; (1), complex-valued ICA

Y(f,t) = W(f)X(f,1) @)
is solved, where X(f,t) = [X1(f,t),..., Xu(f, )7,
Y(f.1) = Vi(ft). ... Yn(£,0)]7, and W(f) isan N x M
separation matrix whose elementsare W, ; ( f). If we have more
sensors than sources (N < M), principal component analysis
(PCA) istypically performed as a preprocessing of ICA [23] so
that the V dimensional subspace spanned by the row vectors
of W(f) is amost identical to the signal subspace.
One of the advantages of frequency-domain BSS is that we
can employ any ICA agorithm for instantaneous mixtures,



such as the information maximization approach [24] combined
with the natural gradient [25], FastICA [26], JADE [27], or
an agorithm based on the non-stationarity of signals [28]. We
use the information maximization approach combined with the
natural gradient in this paper. The separation matrix W is
improved by the learning rule

AW = p[I— (@(Y)YT)] W, 8
where 4 is a step-size parameter, (-); denotes the averaging
operator over time, and ®(-) is an element-wise nonlinear
function for a complex signal Y; = |Y;| e?@9Yi), We use
B(Y,) =~ logn([¥i) @00 ©
as a nonlinear function assuming that the density p(Y;) is
independent of the argument of Y; [15]. Note that the subspace
identified by the PCA for an N < M case is not changed by
the update (8).

The ICA solution in each frequency bin has permutation
and scaling ambiguity: even if we permute the rows of W ( f)
or multiply a row by a constant, it is still an ICA solution.
In matrix notation, A(f)P(f)W(f) is aso an ICA solution
for any permutation P(f) and diagonal A(f) matrix. The
permutation matrix P(f) should be decided so that Y;(f,t)
at all frequencies correspond to the same source s;(t) by the
update of the mixing matrix

W(f) = P(IW(S). (10)
This is the permutation problem, which is the main topic of
this paper. The scaling ambiguity can be decided so that the
MDP [6] is redlized in the frequency-domain [13]. Let H(f)
be the unknown mixing matrix. Considering (4), the diagonal
matrix A(f) should satisfy

A(FYW(f)H(f) = diag[H(f)]. (11)
Although H(f) is unknown, there is another diagonal matrix
D(f) that satisfies W(f)H(f) = D(f) if ICA is success-
fully solved. Thus, H(f) can be estimated up to scaling by
H(f) = W(f)D(f). By substituting this estimation with
(12), we have A(f) = diaglW ~1(f)]. The scaling ambiguity
is therefore decided by

W(f) « diaglW =" (f)]W(f). (12)
If N <M, the Moore-Penrose pseudoinverse W *(f) is used
instead of W~1(f) (see Appendix A). Finaly, separation
filters w;; (1) are obtained by applying inverse DFT to W, (f).

I1l. TWO EXISTING APPROACHES

This section discusses the two approaches that are integrated
into our new method for solving the permutation problem.

A. The direction of arrival (DOA) approach

We first discuss the DOA approach where the directions
of source signals are estimated and permutations are aligned
based on them. If half the wavelength of a frequency is longer
than the sensor spacing, there is no spatial aliasing. In most
such cases, each row of W(f) forms spatial nulls in the
directions of jammer signals and extracts a target signal in
another direction [11]. Once we have estimated the directions
O(f) = [61(f),...,0n(f)]T of target signals extracted by
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Fig. 3. Directivity patterns for two sources

every row of W ( f), we can obtain a permutation matrix P( f)
by sorting or clustering O( f).

Now we review the method [9], [10] that estimates the
directions of sources and aligns permutations by plotting the
directivity pattern of each output Y;(f,t). Let d; be the posi-
tion of sensor x; (we assume linearly arranged array sensors),
and ¢, be the direction of source sy (the direction orthogonal
to the array is90°). In beamforming theory [29], the frequency
response of an impulse response h ;i (t) is approximated as

Hyp(f) = Pl dreost, (13
where ¢ is the propagation velocity. In this approximation,
we assume a plane wavefront and no reverberation. The fre-
quency response U, (f) of (5) can be expressed as U, (f) =
ST Wy (F)Hji () = 330, Wi (f) e2mfe dscost 1f we
regard 6, as a variable 6, the formula is expressed as

M
Ui(f,0) =Y Wij(f) e?mfe dscost, (14)
7j=1
This formula changes according to the direction 6, and is thus
called a directivity pattern.

Figure 3 shows the gain |U,(f,0)| of directivity patterns
for two sources mixed under the conditions shown in Table I.
The upper part (3156 Hz) shows that output Y; extracts a
source signal originating from around 45° and suppresses the
other signal coming from around 125°, which is called a null
direction. A null direction is obtained by searching adirectivity
pattern for the minimum. With a similar consideration regard-
ing Ys, we estimate the directions ©(3156) = [45°,125°]7 of
the target signals. Even if the approximation (13) was used
for the reverberant condition, the estimation was good enough
to decide the permutation. However, not every frequency bin
gives us such an ideal directivity pattern. The lower part of
Fig. 3 is the pattern at a low frequency (176 Hz). We see that
the null is not well formed for Y; and the null of Y3 isin
an obscure direction. In fact, we cannot estimate ©(176) or
decide a permutation for this frequency with confidence.

There are three problems with this method: 1) directions
of arrival cannot be well estimated at some frequencies, espe-
cially at low frequencies where the phase difference caused by
the sensor spacing is very small, and aso at high frequencies
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Fig. 4. Envelopes of two output signals at different frequencies

where spatial aliasing might occur, 2) the calculation of null
directions by plotting directivity patterns is time consuming,
and 3) estimating DOAs from null directions is difficult when
there are more than two sources. The first problem reveals
the limitation of the DOA approach, and will be solved in
Secs. 1V-A and IV-B. The other two problems are caused by
using directivity patterns, and will be solved in Sec. 1V-C.

B. The correlation approach

We discuss an approach to permutation alignment based on
inter-frequency correlations of signals [12], [13]. We use the
envelope

ol (t) = |Yi(£. )]

of a separated signal Y;(f,¢) to measure the correlations. We
define the correlation of two signals z(¢) and y(t) as

cor(@,y) = (fay = fa * fy)/(0x - 0y), (16)
where 11, is the mean and o, is the standard deviation of .
Based on this definition, cor(z,z) = 1, and cor(z,y) = 0
if x and y are uncorrelated. Envelopes have high correlations
at neighboring frequencies if separated signals correspond to
the same source signal. Figure 4 shows an example. Two
envelopes v1°%? and v1566, as well as v1%6% and v1°%6, are
highly correlated. Thus, calculating such corrdations helps us
to align permutations.

Let II; be a permutation corresponding to the inverse
P~1(f) of the permutation matrix of (10). A simple criterion
for deciding II; is to maximize the sum of the correlations
between neighboring frequencies within distance :

N
Ty =argmaxy > > cor(vfy ), vf ),
lg—fI1<s i=1 ‘
where II, is the permutation at frequency g¢. This criterion
is based on local information and has a drawback in that
mistakes in a narrow range of frequencies may lead to the
complete misalignment of the frequencies beyond the range.
To avoid this problem, the method in [13] does not limit the

(15

(17)

frequency range in which correlations are calculated. It decides
permutations one by one based on the criterion:
N
Ty = argmaxy; _ cor( vl > vfi ), (18)
=1 geF
where F is a set of frequencies in which the permutation is
decided. This method assumes high correlations of envelopes
even between frequencies that are not close neighbors. This
assumption is not satisfied for all pairs of frequencies, although
ahigh correlation can be assumed for afundamental frequency
and its harmonics. As shown in Fig. 4, v}55¢ and v516 do
not have a high correlation. Therefore, this method still has
a drawback in that permutations may be misaligned at many
frequencies.

IV. NEW ROBUST AND PRECISE METHOD

This section presents our new method that integrates the two
approaches discussed above to solve the permutation problem
robustly and precisely.

A. Basic idea of the method

We begin by reviewing the characteristics of the two existing
approaches.

o robustness: The DOA approach is robust since a mis-
adignment at a frequency does not affect other fre-
guencies. The corrdation approach is not robust since
a misaignment at a frequency may cause consecutive
misalignments.

« preciseness: The DOA approach is not precise since the
evaluation is based on an approximation of a mixing
system. The correlation approach is precise as long as
signals are well separated by ICA since the measurement
is based on separated signals.

To benefit from both advantages, namely the robustness of the
DOA approach and the preciseness of the correlation approach,
our method basically solves the permutation problem in two
steps:
1) Fix the permutations at some frequencies where the
confidence of the DOA approach is sufficiently high.
2) Decide the permutations for the remaining frequencies
based on neighboring correlations (17) without changing
the permutations fixed by the DOA approach.

Figure 5 shows the pseudo-code. A set F contains frequencies
where the permutation is decided. The key point in the
first DOA approach is that we fix a permutation only if
the confidence of the permutation is sufficiently high. The
procedure confident decides whether the confidence is high
enough. Our criteria for the decision are: 1) the number of
estimated directions is the same as the number of sources, 2)
the directions ©4(f) do not differ greatly from the averaged
directions O, i.e. |Os(f) — Os| is smaler than a threshold
the, 3) the SIR calculated by using (14) is sufficiently large,
i.e. 101ogyo [Ui(f, 0:(f))|* — 10logyg 3=y [Us(f, 0k(f))]? is
larger than a threshold th . In the second step, permutations
are decided one by one for the frequencies where the permuta-
tionis not fixed. The measurement for deciding permutationsis
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Fig. 5. Pseudo-code for the first version of the proposed method

given by the sum of correlations with fixed frequencies g € F
within distance |g — f| < 4.

This method does not cause a large misalignment as long
as the permutations fixed by the DOA approach are correct.
Moreover, the correlation part compensates for the lack of
preciseness of the DOA approach.

B. Exploiting the harmonic structure of signals

The method proposed above works very well in many
cases. However, there is a case where the DOA approach
does not provide any fixed permutation with confidence in
a certain range of frequencies. This occurs particularly at low
frequencies where it is hard to estimate DOAS as discussed in
Sec. I11-A. In such a case, the proposed method has to align
permutations for the range solely through the use of neighbor-
ing correlations, and may yield consecutive misalignments.

To cope with this problem, we explait the harmonic struc-
ture of a signal. As aluded to in Sec. 111-B, there are strong
correlations between the envelopes of afundamental frequency
f and its harmonics 2f, 3f and so forth. Suppose that the
permutation is not fixed at frequency f but fixed at its
harmonics. If the correlation

N
> Zcor(v{}(i),fu%g(i)) (19)
g=setOfHarmonics( f) =1
is larger than a threshold thn,, we fix the permutation at
frequency f with confidence. Figure 6 shows the pseudo-
code for the harmonic part. The procedure setOfHarmonics( f)
provides a set of harmonic frequencies of f.

Ry = maxp

\} v

4 I I
[* Fix permutations by the DOA approach */ /* Fix permutations by harmonic structure */
for (Vf) { for (Vf¢F) {
O(f) = DOA(f,W(f)) Ha = setOfHarmonics(f);
Os(f) = sort(6(f)) Ry = maxi Y eranz Yoie 00y v, )
% CXTE ed directions */ (R 2 thra) {
= * averaged directions * _ N ot
F—0 I the set of fixed frequencies */ Iy = agmaxy . cpanz 22i=1 (Vi) Ui, )
% F=FU{f}
for (V) { _ )
it ( confident(©(f),0s, W(f))) { }
II; = getPermutation(O(f)) NG J

Fig. 6. Pseudo-code for the harmonic part of the proposed method

To incorporate the above idea, the final version of our
method fixes al permutations with four steps:

1) By the DOA approach (the upper part of Fig. 5)

2) By neighboring correlations (the lower part of Fig. 5)
with the exception that the while loop terminates if the
maximum R is smaller than a threshold thcor.

3) By the harmonic method (Fig. 6)

4) By neighboring correlations (the lower part of Fig. 5)
again without the exception.

There are two important points as regards the final version.
The first is that the method becomes more robust because of
the exception in step 2. We do not fix the permutations for
consecutive frequencies without high confidence. The second
point is that step 3 works well only if most of the other
permutations are fixed. This means that the harmonic method
aone does not work well and we need steps 1 and 2 to fix
most of the permutations.

C. A closed-form formula for estimating DOAs

The DOA estimation method reviewed in Sec. 1lI-A has
two problems, a high computational cost and the difficulty of
using it for mixtures of more than two sources. Instead of
plotting directivity patterns and searching for the minimum as
a null direction, we propose a hew method of estimating the
directions ©(f) of source signas. In principle, this method
can be applied to any number of source signals.

It starts by estimating the frequency response H(f) of the
mixing system from a separation matrix W (f) obtained by
ICA. If the ICA is successfully solved, there are a permu-
tation matrix P(f) and a diagonal matrix A(f) that satisfy
AHP(HW(HH(f) = 1. Thus, H(f) can be estimated by
H =W !'P'A"! up to permutation and scaling ambigui-
ties: the H(f) columns can be permuted arbitrarily and have
arbitrary scales compared with the real frequency response.
Again, if N < M, the Moore-Penrose pseudoinverse W+ is
used instead of W—! (see Appendix A). It should be noted
that the scaling ambiguity is canceled out by calculating the
ratio between two elements H . (f) and H,(f) of the same
column of H(f):

Hjy,
Hj/k

[(W-IP—1A1],,

(WIP—IA

(W mw)
[Wil]j/ﬂ(k) ’

(20)



TABLE |
EXPERIMENTAL CONDITIONS

Reverberation time Tr = 300 ms

Source signal speech of 6 s

Direction of sources 120° and 50° (2 sources)
Distance between 2 sensors d=4cm

Sampling rate fs =8kHz

Frame size of DFT L = 2048

Frequency resolution Af = fs/L = 3.90625 Hz
Distance to take correlation 6=3-Af

Harmonics to take correlation Ha={2f—Af, 2f, 2f+Af,
3f—Af, 3f, 3f+Af}

Thresholds for the DOA part the = 1.5 - 0o (standard deviation)

thy = 10 dB
Threshold for the harmonic part | thna =0.1- N - |Ha|
Step size pw=0.1
Number of iterations for (8) 100

Nonlinear function (9) B(Y;) = eranYs)

where II is the permutation corresponding to postmultiplying
Pl

An element H;;(f) of the matrix H(f) obtained in the
above manner may have an arbitrary amplitude. Since the
approximation (13) of the mixing system does not suit this
situation, we remodel the mixing system with attenuation A
(real-valued) and phase modulation e’#* at the origin:

Hj (f) — Ajk eJ‘PkCJQTrfc*Idj cosf)k. (21)
From (20) and (21), we have
(Wi T
m = Ajk/Ajrk eI2mfem (dj—dyr) cos by 22)

Then, taking the argument yields a formula for estimating 6, :
arg([w_l]jﬂ(k)/[W_l]j’H(k))
2nfe=1(d; — dy)

If the absolute value of the input variable of arccos is larger
than 1, 6, becomes complex and no direction is obtained. In
this case, formula (23) can be tested with another pair j and
4’. By calculating 0, for all Kk =1,..., N, we can obtain the
directions of all source signals whatever permutation T may

be.

The new method offers an advantage in terms of computa-
tional cost. Estimated directions are provided by the closed-
form formula (23), whereas the minima of |U;(f,6)| should
be searched for with the previous method using directivity pat-
terns (14). For a two-source case, we prove that 6, calculated
by the above formula is the same as a null direction that is
the minimum of directivity patterns (see Appendix B).

(23)

0 = arccos

V. EXPERIMENTAL RESULTS

We performed experiments to separate speech signals in a
reverberant environment whose conditions are summarized in
Table |. The sensor spacing was selected so that there was no
spatial aliasing for any frequency. We generated mixed signals
by convolving speech signals s (t) and impulse responses
hjx(t) so that we could calculate SIRs defined in Sec. 11-A.
Figure 7 shows the overall separation results in terms of SIR.
We separated 12 pairs of speech signals with six different
methods for the permutation problem, as explained in the
caption. Table Il shows the computational time for STFT, ICA
and each of the 6 different methods used for permutation

18f
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a4t v -+- 9th pair
v -+ Other 11 pairs
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D Cc2 C1 D+Cl1 D+Cl+Ha MaxSIR
Fig. 7. Separation results for 12 pairs of speech signals with six different

methods for the permutation problem: the DOA approach “D”, the correlation
approach “C2” based on (18), the correl ation approach “C1” based on (17), the
first version “D+C1” of the proposed method, the final version “D+C1l+Ha”
of the proposed method, and the permutations maximizing the SIR at each
frequency “MaxSIR” (see Appendix C). Although “MaxSIR” is not aredlistic
solution, it gives a rough estimate of the upper bound of performance.

TABLE Il
COMPUTATIONAL TIME (SECONDS)

STFT | ICA Permutation alignment
D C2 C1 D+Cl D+Cl+Ha MaxSIR
018 [11.72 ][ 0.07] 039 048] 060 | 063 [ 043

aignment. They are for source signals of 6 seconds, and
averaged over the 12 pairs. The BSS program was coded in
Matlab and run on Athlon XP 3200+.

The performance with “D” is stable, but not sufficient. The
results with “C1” and “C2” are not stable and sometimes very
poor, athough most of the time they are very good. Both
proposed methods “D+C1” and “D+C1+Ha” offer good stable
results. In particular, the method exploiting the harmonic struc-
ture “D+C1+Ha” offers almost the same results as “MaxSIR”.
As regards computational time, method “D”, where DOA is
calculated by (23) instead of plotting directivity patterns,
is very fast. The other methods, including both proposed
methods, can be performed in a feasible computationa time.

Now we examine the effectiveness of the proposed meth-
ods by looking at the 9th pair of speech signals in detail.
Figure 8 shows the SIRs at each frequency for “C1”, “D+C1”
and “D+C1l+Ha". We see a large region (from 450 to 1400
Hz) of permutation misalignments for the “C1” case, where
permutations were decided only with neighboring correlations.
Figure 9 shows the difference between the correlation sums
i cor(vl .05 ) for different permutations. We see
that the différence is very smal around 1400 Hz, and the
criterion based on (17) does not provide a clear-cut decision.
Therefore, the risk of the permutations being misaligned is
very high around 1400 Hz only with (17) in this case.

With the “D+C1” method, the misalignments of the region
(from 450 to 1400 Hz) were corrected. This is because
the DOA approach provided correct permutations for some
frequencies in the region. Figure 10 shows the DOA esti-
mations for each frequency with confidence. We see many
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estimations from 450 to 1400 Hz. However, there was no
DOA estimation with confidence at frequencies lower than 250
Hz. This is why consecutive misalignments occurred even for
“D+C1". As shown at the bottom of Fig. 8, the misalignments
were corrected with the “D+C1+Ha” method. This shows
the effectiveness of explaiting the harmonic structure for low
frequencies.

Although the results shown here are only for two sources,
the method can also be applied for more than two sources.
In [30], the separation performance for four sources was
compared. The results corresponding to “D+C1+Ha” were
satisfactory and superior to the others. In [31], six sources
were separated with a planar array of eight sensors. Again,
the separation performance is superior when both the DOA
approach and the correlation approach were used.

VI. CONCLUSION

We have proposed a robust and precise method for solving
the permutation problem. Our method effectively integrates
two approaches. the DOA approach and the correlation ap-
proach. The criterion of the DOA approach is based on
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Fig. 10. DOA estimations with confidence

directions that are absolute. This makes the approach robust.
By contrast, the criterion of the correlation approach is calcu-
lated from the separated signals themselves. This makes the
approach precise. Our proposed method benefits from both
advantages. In the experiments, the proposed method solved
permutation problems amost perfectly under the conditions
shown in Table I. The method even performs well for more
than two sources [30], [31]. We consider that the proposed
method has expanded the applicability of frequency-domain
BSS.

APPENDIX A
ESTIMATING THE MIXING MATRIX FOR AN N < M CASE

As discussed in Sec. 11-B and IV-C, estimating the mixing
matrix H up to scaling and permutation by the inverse W —!
is very useful in frequency-domain BSS. When the number
of sensors M is larger than the number of sources N (IV <
M), the Moore-Penrose pseudoinverse W+ is used instead
of WL, This appendix discusses the condition where this
operation gives a proper estimation of the mixing matrix.

If ICA is solved, there is a permutation matrix P and a
diagonal matrix A that satisfy APWH =1.If N=M, H is
uniquely given by H = WP~ 1A~!. However, if N <M,
there are an infinite number of solutions H for WH =
P~'A~'. Among them, the solution H = WP 1A~!
realized by the Moore-Penrose pseudoinverse has a specia
property: the subspace C(H) spanned by the N column vectors
of H is identica to the subspace R(W) spanned by the N
row vectors of W [32]. Therefore, if the subspace R(W)
is properly selected, H can be used as an estimation of the
mixing matrix up to scaling and permutation. Otherwise, H
does not give a good estimation, and the frequency-domain
version of MDP (12) and the DOA estimation (23) may fail.
It is safe to employ PCA to decide the subspace R(W) as
described in Sec. 11-B, since it is almost identical to the
subspace spanned by the N column vectors of the mixing
matrix.

APPENDIX B
EQUIVALENCE BETWEEN 6, AND A NULL DIRECTION
For atwo-source case, we prove that 6 calculated by (23) is
the same as anull direction that isthe minimum of adirectivity



pattern (14). When |U;(f, 0)| is minimized, 6 corresponds to a
null direction. Let ¢; = 2 fc™1d; and f be omitted in (14).
The value to be minimized is

J(O) = Ui(0) Ui(0)"
= (Wi 1910 4 Wg eto20st).
(W e ercostd L yyx emapacosty  (24)
Let p = w2 — 1. The first and second derivatives are
d
d—b] = —p sinf-2 |m(W11 W;ée—]apcosf))’ (25)
d>J * —Jpcosf
-7 = —pcosf-21m(W; Whe *%)
—p?sin? 0-2 Re(W;; Wie 790 (26)

where Re and Im extract the rea and imaginary part of a
aJ

complex, respectively. If arg(WyWhe72sf) = 1, 42 is
zero and 327‘2’ is positive, and .J(6) is minimized. Thus, the

null direction formed by the i-th row of W is given by
ag(—Wn W) = pcosM o

arg(—Wi1 /Wia)

27Tf071(d2 — dl) '

Considering [W_l]gl = —ng/det(W) and [W_l]ll =

Was/ det(W), we see that 6, and 654" are the same:

arg((W a1 /[W 1)

2 feL(ds — dy)

arg(—Way /Was)

27TfC_1(d2 — dl)

The derivation of 6™ is based on derivatives. We have another

derivation of #™!' based on the graphical interpretation of a

directivity pattern [33].

o (27)

— arccos

0, =

arccos

= arccos = o (28)

APPENDIX C
CALCULATION OF MAXSIR

If we know the individual observations

4k (t) = 22y by (Dsi(t = 1) (29)
of source signals sy (t) at sensors x;, a good permutation can
be calculated by maximizing the SIR in each frequency bin.
We first apply STFT to g¢;x(t) in the same manner as (6):

L/2—1
Q)= D au(r +t)win(r) e 7>,
T=—L/2
Let Q(f,t) be a matrix whose elements are Q ;x(f,t), and
P be a permutation matrix that permutes the rows of the
right hand matrix according to a permutation II. Then, the
permutation at frequency f is obtained by

II; = argmaxytrace((|PrnW (f)Q(f,t)[*)e),  (31)
where | - |? calculates the power of each element, and trace(:)
returns the sum of the diagonal elements of a matrix.

(30)
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