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Abstract— This paper proposes a new formulation and op-
timization procedure for grouping frequency components in
frequency-domain blind source separation (BSS). We adopt two
separation techniques, independent component analysis (ICA)
and time-frequency (T-F) masking, for the frequency-domain
BSS. With ICA, grouping the frequency components corresponds
to aligning the permutation ambiguity of the ICA solution in
each frequency bin. With T-F masking, grouping the frequency
components corresponds to classifying sensor observations in
the time-frequency domain for individual sources. The grouping
procedure is based on estimating anechoic propagation model
parameters by analyzing ICA results or sensor observations.
More specifically, the time delays of arrival and attenuations from
a source to all sensors are estimated for each source. The focus of
this paper includes the applicability of the proposed procedure for
a situation with wide sensor spacing where spatial aliasing may
occur. Experimental results show that the proposed procedure
effectively separates two or three sources with several sensor
configurations in a real room, as long as the room reverberation
is moderately low.

Index Terms— Blind source separation, convolutive mixture,
frequency domain, independent component analysis, permuta-
tion problem, sparseness, time-frequency masking, time delay
estimation, generalized cross correlation

I. INTRODUCTION

The technique for estimating individual source components
from their mixtures at multiple sensors is known as blind
source separation (BSS) [3]–[6]. With acoustic applications
of BSS, such as solving a cocktail party problem, signals are
generally mixed in a convolutive manner with reverberations.
Let s1, . . . , sN be source signals and x1, . . . , xM be sensor
observations. The convolutive mixture model is formulated as

xj(t) =
N∑

k=1

∑
l

hjk(l) sk(t− l), j=1, . . . , M, (1)

where t represents time and hjk(l) represents the impulse
response from source k to sensor j. In a practical room
situation, impulse responses hjk(l) can have thousands of taps
even with an 8 kHz sampling rate. This makes the convolutive
BSS problem very difficult compared with the BSS of simple
instantaneous mixtures.

Earlier versions of this work were presented in [1] and [2] as confer-
ence papers. The authors are with NTT Communication Science Laborato-
ries, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-
0237, Japan (e-mail: sawada@cslab.kecl.ntt.co.jp; shoko@cslab.kecl.ntt.co.jp;
ryo@cslab.kecl.ntt.co.jp; maki@cslab.kecl.ntt.co.jp, phone: +81-774-93-5272,
fax: +81-774-93-5158). EDICS: AUD-SSEN, AUD-LMAP

An efficient and practical approach for such convolutive
mixtures is frequency-domain BSS [7]–[25], where we apply a
short-time Fourier transform (STFT) to the sensor observations
xj(t). In the frequency domain, the convolutive mixture (1)
can be approximated as an instantaneous mixture at each
frequency:

xj(f, t) =
N∑

k=1

hjk(f)sk(f, t), j =1, . . . , M, (2)

where f represents frequency, hjk(f) is the frequency re-
sponse from source k to sensor j, and sk(f, t) is the time-
frequency representation of a source signal sk.

Independent component analysis (ICA) [3]–[6] is a major
statistical tool for BSS. With the frequency-domain approach,
ICA is employed in each frequency bin with the instanta-
neous mixture model (2). This makes the convergence of
ICA stable and fast. However, the permutation ambiguity of
the ICA solution in each frequency bin should be aligned
so that the frequency components of the same source are
grouped together. This is known as the permutation problem of
frequency-domain BSS. Various methods have been proposed
to solve this problem. Early work [7], [8] considered the
smoothness of the frequency response of separation filters. For
non-stationary sources such as speech, it is effective to exploit
the mutual dependence of separated signals across frequencies
either with simple second order correlation [9]–[12] or with
higher order statistics [17], [18].

Spatial information of sources is also useful for the per-
mutation problem, such as the direction-of-arrival of a source
[12]–[14] or the ratio of the distances from a source to two
sensors [15]. Our recent work [16] generalizes these methods
so that the two types of geometrical information (direction
and distance) are treated in a single scheme and also the BSS
system does not need to know the sensor array geometry.
When we are concerned with the directions of sources, we
generally prefer the sensor spacing to be no larger than half the
minimum wavelength of interest to avoid the effect of spatial
aliasing [26]. We typically use 4 cm sensor spacing for an
8 kHz sampling rate. However, there are cases where widely
spaced sensors are used to achieve better separation for low
frequencies. Or, if we increase the sampling rate, for example
up to 16 kHz, to obtain better speech recognition accuracy
for separated signals, spatial aliasing occurs even with 4 cm
spacing. If spatial aliasing occurs at high frequencies, the ICA
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solutions in these frequencies imply multiple possibilities for a
source direction. Such a problem is troublesome for frequency-
domain BSS as previously pointed out [14], [27].

There is another method for frequency-domain BSS, which
is based on time-frequency (T-F) masking [19]–[23]. It does
not employ ICA to separate mixtures, but relies on the
sparseness of source signals exhibited in time-frequency rep-
resentations. The method groups sensor observations together
for each source based on spatial information extracted from
them. In [22], we applied a technique similar to that used
with ICA [16] to classify sensor observations for T-F masking
separation. From this experience, we consider the two meth-
ods, ICA-based separation and T-F masking separation, to be
very similar in terms of exploiting the spatial information of
sources.

Based upon the above review of previous work and re-
lated methods, this paper proposes a new formulation and
optimization procedure for grouping frequency components
in the context of frequency-domain BSS. Grouping frequency
components corresponds to solving the permutation problem in
ICA-based separation, and to classifying sensor observations
in T-F masking separation. In the formulation, we use relative
time delays and attenuations from sources to sensors as
parameters to be estimated. The idea of parameterizing time
delays and attenuations has already been proposed in previous
studies [20], [21], [24], where only simple two-sensor cases
were considered without the possibility of spatial aliasing. The
novelty of this paper compared with these previous studies and
our recent work [16], [22] can be summarized as follows:

1) Two methods of ICA-based separation and T-F masking
separation are considered uniformly in terms of grouping
frequency components.

2) The problem of spatial aliasing is solved by the proposed
procedure, not only for ICA-based separation but also
for T-F masking separation, thanks to 1).

3) It is shown that the time delay parameters in the for-
mulation are estimated with a function similar to the
Generalized Cross Correlation PHAse Transform (GCC-
PHAT) function [23], [28]–[30].

And the proposed procedure inherits the attractive properties
of our recently proposed approaches [16], [22]:

4) The procedure can be applied to any number of sensors,
and is not limited to two sensors.

5) The complete sensor array geometry does not have to
be known, only the information about the maximum
distance between sensors. If the complete geometry were
known, the location (direction and/or distance from the
sensors) of each source could be estimated [31], [32].

This paper is organized as follows. The next section pro-
vides an overview of frequency-domain BSS. It includes
both the ICA-based method and the T-F masking method.
Section III presents an anechoic propagation model with the
time delays and attenuations from a source to sensors, and also
cost functions for grouping frequency components. Section IV
proposes a procedure for optimizing the cost function for
permutation alignment in ICA-based separation. Section V
shows a similar optimization procedure for classifying sensor
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Fig. 1. System structure of frequency-domain BSS. We consider two methods
for separating the mixtures, (a) ICA and (b) T-F masking. For both methods,
grouping frequency components, basis vectors or observation vectors, is the
key technique discussed in this paper.

observations in T-F masking separation, together with the re-
lationship with the GCC-PHAT function. Experimental results
for various setups are summarized in Sec. VI. Section VII
concludes this paper.

II. FREQUENCY-DOMAIN BSS

This section presents an overview of frequency-domain
BSS. Figure 1 shows the system structure. First, the sen-
sor observations (1) sampled at frequency fs are converted
into frequency-domain time-series signals (2) by a short-time
Fourier transform (STFT) of frame size L:

xj(f, t)←
L/2−1∑

q=−L/2

xj(t + q)win(q) e−ı2πfq, (3)

for all discrete frequencies f ∈ {0, 1
Lfs, . . . , L−1

L fs}, and
for time t, which is now down-sampled with the distance of
the frame shift. We denote the imaginary unit as ı =

√−1
in this paper. We typically use a window win(q) that tapers
smoothly to zero at each end, such as a Hanning window
win(q) = 1

2 (1 + cos 2πq
L ).

Let us rewrite (2) in a vector notation:

x(f, t) =
N∑

k=1

hk(f)sk(f, t), (4)

where hk = [h1k, . . . , hMk]T is the vector of frequency re-
sponses from source sk to all sensors, and x = [x1, . . . , xM ]T

is called an observation vector in this paper. We consider two
methods for separating the mixtures as shown in Fig. 1. They
are described in the following two subsections. In either case,
we can limit the set of frequencies F where the operation is
performed by

F = {0,
1
L

fs, . . . ,
1
2
fs} (5)

due to the relationship of the complex conjugate:

xj(n
Lfs, t) = x∗

j (
L−n

L fs, t) , n = 1, . . . , L
2 −1 . (6)



3

A. Independent Component Analysis (ICA)

The first method employs complex-valued instantaneous
ICA in each frequency bin f ∈ F :

y(f, t) = W(f)x(f, t), (7)

where y = [y1, . . . , yN ]T is the vector of separated frequency
components and W is an N×M separation matrix. There are
many ICA algorithms known in the literature [3]–[6]. We do
not describe these ICA algorithms in detail. More importantly,
here let us explain how to estimate the mixing situation, such
as (4), from the ICA solution. We calculate a matrix A whose
columns are basis vectors ai,

A = [a1, · · · ,aN ], ai = [a1i, . . . , aMi]T , (8)

in order to represent the vector x by a linear combination of
the basis vectors:

x(f, t) = A(f)y(f, t) =
N∑

i=1

ai(f)yi(f, t) . (9)

If W has an inverse, the matrix A is given simply by the
inverse A = W−1. Otherwise it is calculated as a least-mean-
square estimator [33]

A = E{xyH}(E{yyH})−1 ,

which minimizes E{||x − Ay||2}. The above procedure is
effective only when there are enough sensors (N ≤ M ).
Under-determined ICA (N > M ) is still difficult to solve,
and we do not usually follow the above procedure, but directly
estimate basis vectors ai(f), as shown in e.g. [25].

In any case, if ICA works well, we expect the separated
components y1(f, t), . . . , yN(f, t) to be close to the original
source components s1(f, t), . . . , sN (f, t) up to permutation
and scaling ambiguity. Based on this, we see that a basis vector
ai(f) in (9) is close to hk(f) in (4) again up to permutation
and scaling ambiguity. The use of different subscripts, i and
k, indicates the permutation ambiguity. They should be related
by a permutation Πf : {1, . . . , N} → {1, . . . , N} for each
frequency bin f as

i = Πf (k) (10)

so that the separated components yi originating from the
same source sk are grouped together. Section IV presents a
procedure for deciding a permutation Πf for each frequency.
After permutations have been calculated, separated frequency
components and basis vectors are updated by

yk(f, t)← yΠf (k)(f, t), ak(f)← aΠf (k)(f), ∀ k, f, t.
(11)

Next, the scaling ambiguity of ICA solution is aligned. The
exact recovery of the scaling corresponds to blind derever-
beration [34], [35], which is a challenging task especially
for colored sources such as speech. A much easier way has
been proposed in [10], [11], [36], which involves adjusting
to the observation xJ (f, t) of a selected reference sensor
J ∈ {1, . . . , M}:

yk(f, t)← aJk(f)yk(f, t), ∀ k, f, t. (12)

We see in (9) that aJk(f)yk(f, t) is a part of xJ (f, t) that
originates from source sk.

Finally, time-domain output signals yk(t) are calculated
with an inverse STFT (ISTFT) to the separated frequency
components yk(f, t).

B. Time-Frequency (T-F) Masking

The second method considered in this paper is based on T-F
masking, in which we assume the sparseness of source signals,
i.e., at most only one source makes a large contribution to each
time-frequency observation x(f, t). Based on this assumption,
the mixture model (4) can simply be approximated as

x(f, t) = hk(f)sk(f, t), k ∈ {1, . . . , N} (13)

where the index k of the dominant source depends on each
time-frequency slot (f, t).

The method classifies observation vectors x(f, t) of all time-
frequency slots (f, t) into N classes so that the k-th class
consists of mixtures where the k-th source is the dominant
source. The notation

C(f, t) = k (14)

is used to represent a situation that an observation vector
x(f, t) belongs to the k-th class. Section V provides a
procedure for classifying observation vectors x. Once the
classification is completed, time domain separated signals
yk(t) are calculated with an inverse STFT (ISTFT) to the
following classified frequency components

yk(f, t) =

{
xJ (f, t) if C(f, t) = k,

0 otherwise.
(15)

C. Relationship between ICA based and T-F Masking Methods

As mentioned in the Introduction, this paper handles the
cases of ICA and T-F masking uniformly in terms of grouping
frequency components. Let us discuss the relationship between
the two [1]. If the approximation (13) in T-F masking is
satisfied, the linear combination form (9) obtained by ICA
is reduced to

x(f, t) = ai(f)yi(f, t), i ∈ {1, . . . , N} (16)

where i depends on each time-frequency slot (f, t). Thus,
the spatial information expressed in an observation vector
x(f, t) with the approximation (13) is the same as that of
the basis vector ai(f) up to scaling ambiguity, with yi(f, t)
being dominant in the time-frequency slot. Therefore, we can
use similar techniques for extracting spatial information from
observation vectors x and basis vectors ai.

III. PROPAGATION MODEL AND COST FUNCTIONS

A. Problem Statement

The problem of grouping frequency components considered
in this paper is stated as follows:

Classify all basis vectors ai(f), ∀ i, f or all observa-
tion vectors x(f, t), ∀ f, t into N groups so that each
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Fig. 2. Anechoic propagation model with the time delay τjk and the
attenuation λjk from source k to sensor j. The time delay τjk depends on the
distance djk from source k to sensor j, and is normalized with the distance
dJk of a selected reference sensor J ∈ {1, . . . , M}. The attenuation λjk has
no explicit dependence on the distance, and is normalized so that the squared
sum over all the sensors is 1.

group consists of frequency components originating
from the same source.

Solving this problem corresponds to deciding permutations
Πf in ICA-based separation, and to obtaining classification
information C(f, t) in T-F masking separation, respectively.

As discussed in the previous section, from (4) and (9),
basis vectors a1(f), . . . ,aN (f) obtained by ICA are close to
h1(f), . . . ,hN (f) up to permutation and scaling ambiguity.
Also from (13), an observation vector x(f, t) is a scaled
version of hk(f) with k being specific to the time-frequency
slot (f, t). Therefore, we see that modeling the vector hk(f)
of frequency responses is an important issue as regards solving
the grouping problem.

B. Propagation Model with Time Delays and Attenuations

We model the propagation from a source to a sensor with
the time delay and attenuation (Fig. 2), i.e., with an anechoic
model. This model considers only direct paths from sources
to sensors, even though in reality signals are mixed in a
multi-path manner (1) with reverberations. Such an anechoic
assumption has been used in many previous studies exploiting
spatial information of sources, some of which are enumerated
in the Introduction. As shown by the experimental results in
Sec. VI, modeling only direct paths is still effective for a real
room situation as long as the room reverberation is moderately
low. With this model, we approximate the frequency response
hjk(f) in (2) with

cjk(f) = λjk · exp(−ı 2πfτjk), (17)

where τjk and λjk > 0 are the time delay and attenuation
from source k to sensor j, respectively. In the vector form,
hk(f) in (4) is approximated with

ck(f) =

⎡
⎢⎣

λ1k · exp(−ı 2πfτ1k)
...

λMk · exp(−ı 2πfτMk)

⎤
⎥⎦ . (18)

Since we cannot distinguish the phase (or amplitude) of
sk(f, t) and hjk(f) of the mixture (2) in a blind scenario, the
two types of parameters τjk and λjk can be considered to be
relative. Thus, without loss of generality, we normalize them
by

τjk = (djk − dJk)/v, (19)

∑M
j=1 λ2

jk = 1, (20)

where djk is the distance from source k to sensor j (Fig. 2),
and v is the propagation velocity of the signal. Normalization
(19) makes τJk = 0 and arg(cJk) = 0, i.e., the relative time
delay is zero at a selected reference sensor J ∈ {1, . . . , M}.
Normalization (20) makes the model vector ck have unit-norm
||ck|| = 1.

If we do not want to treat reference sensor J as a special
case, we normalize the time delay in a more general way:

τjk = (djk − dpair(j)k)/v, (21)

where pair(j) �= j is the sensor that is pairing with sensor j.
We can arbitrarily specify the pair(·) function . An example
is a simple pairing with the next sensor:

pair(j) =

{
1 if j = M,

j + 1 otherwise.
(22)

In either case, the normalized time delay τjk can now be
considered as the time difference of arrival (TDOA) [30], [31]
of source sk between sensor j and sensor J or pair(j).

C. Phase & Amplitude Normalization

As mentioned in Sec. III-A, basis vectors ai and observation
vectors x have scaling (phase and amplitude) ambiguity. To
align the ambiguity, we apply the same kind of normalization
as discussed in the previous subsection, and then obtain
phase/amplitude normalized vectors ãi and x̃.

As regards phase ambiguity, if we follow (19), we apply

ãi ← ai · exp[−ı arg(aJi)] , or (23)

x̃← x · exp[−ı arg(xJ )] (24)

leading to arg(ãJi) = 0 or arg(x̃J ) = 0. If we prefer (21),
we apply

ãji ← aji · exp[−ı arg(apair(j)i)] , or (25)

x̃j ← xj · exp[−ı arg(xpair(j))], (26)

for j = 1, . . . , M to construct ãi = [ã1i, . . . , ãMi]T or x̃ =
[x̃1, . . . , x̃M ]T . Next, the amplitude ambiguity is aligned based
on (20) by

ãi ← ãi / ||ãi|| , or (27)

x̃← x̃ / ||x̃|| (28)

leading to ||ãi|| = 1 or ||x̃|| = 1.

D. Cost Functions

Given that the phase and amplitude are normalized accord-
ing to the above procedures, the task for grouping frequency
components can be formulated as minimizing a cost function.

With ICA-based separation, the task is to determine a
permutation Πf for each frequency f ∈ F that relates the sub-
scripts i and k with (10), and to estimate parameters τjk, λjk

in the model (18) so that the cost function is minimized:

Da({τjk}, {λjk}, {Πf}) =
N∑

k=1

∑
f∈F
||ãi(f)−ck(f)||2 ∣∣

i=Πf (k)

(29)
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Fig. 3. Arguments of ã21 and ã22 before permutation alignment.

where {τjk} denotes the set {τ11, . . . , τMN} of time delay
parameters, and similarly for {λjk} and {Πf}.

With T-F masking separation, the task is to determine
classification C(f, t) defined in (14) for each time-frequency
slot, and to estimate parameters τjk, λjk in the model (18) so
that the cost function is minimized:

Dx({τjk}, {λjk}, C) =
N∑

k=1

∑
C(t,f)=k

||x̃(f, t)− ck(f)||2,

(30)
where the right-hand summation is across all the time-
frequency slots (f, t) that belong to the k-th class.

The cost function Da or Dx can become zero if 1) the
real mixing situation follows the assumed anechoic model (17)
perfectly and 2) the ICA is perfectly solved or the sparseness
assumption (13) is satisfied in a T-F masking case. However, in
real applications, none of these conditions is perfectly satisfied.
Thus, these cost functions end up with a positive value, which
corresponds to the variance in the mixing situation modeling.
Yet minimizing them provides a solution to the grouping
problem stated in Sec. III-A.

E. Simple Example

To make the discussion here intuitively understandable, let
us show a simple example performed with setup A. We have
three setups (A, B and C) shown in Fig. 9, and their common
experimental configurations are summarized in Table I. Setup
A was a simple M = N = 2 case, but the sensor spacing
was 20 cm, which induced spatial aliasing for a 16 kHz
sampling rate. The example here is with ICA-based separation,
and Fig. 3 shows the arguments of ã21 and ã22 after the
normalization (23) where we set J = 1 as a reference sensor.
The arguments of ã1i are not shown because they are all zero.
The time delays τ21 and τ22 can be estimated from these data,
as we see the two lines with different slopes corresponding to
τ21 and τ22. However, the following two factors complicate
the time delay estimation. The first is that different symbols
(’•’ and ’+’) constitute each of the two lines, because of the
permutation ambiguity of the ICA solutions. The second is the
circular jumps of the lines at high frequencies, which are due
to phase wrapping caused by spatial aliasing. We will explain
how to group such frequency components in the next section.

IV. PERMUTATION ALIGNMENT FOR ICA RESULTS

This section presents a procedure for minimizing the cost
function Da in (29), and for obtaining a permutation Πf for

each frequency. Figure 4 shows the flow of the procedure. We
adopt an approach that first considers only the frequency range
where spatial aliasing does not occur, and then considers the
whole range F .

A. For Frequencies without Spatial Aliasing

Let us first consider the lower frequency range

FL = {f : −π < 2πfτjk < π, ∀ j, k} ∩ F (31)

where we can guarantee that spatial aliasing does not occur.
Let dmax be the maximum distance between the reference
sensor J and any other sensor if we take (19), or between
sensor pairs of j and pair(j) if we take (21). Then the relative
time delay is bounded by

max
j,k
|τjk| ≤ dmax/v (32)

and therefore FL can be defined as

FL = {f : 0 < f <
v

2 dmax
} ∩ F . (33)

For the frequency range FL, appropriate permutations Πf

can be obtained by minimizing another cost function

D̄a({τjk}, {λjk}, {Πf}) =
N∑

k=1

∑
f∈FL

||āi(f)− c̄k||2
∣∣
i=Πf (k)

(34)
as proposed in our previous work [16]. The cost function D̄a

is different from (29) in that āi(f) and c̄k are frequency
normalized versions of basis vectors and the model vector.
They are obtained by a procedure that divides their elements’
argument by a scalar proportional to the frequency:

āi(f) = [ā1i(f), . . . , āMi(f)]T ,

āji(f)← |ãji(f)| exp
(

ı
β arg[ãji(f)]

f

)
(35)

and

c̄k =

⎡
⎢⎣

c̄1k

...
c̄Mk

⎤
⎥⎦ =

⎡
⎢⎣

λ1k · exp(−ı2πβτ1k)
...

λMk · exp(−ı2πβτMk)

⎤
⎥⎦ . (36)

where β is a constant scalar (its role will be discussed
afterwards). Since the original model (17) has a linear phase,
the above procedure removes the frequency dependency so that
the resultant model vector c̄k does not depend on frequency.

The advantage of introducing the frequency-normalized cost
function D̄a is that it can be minimized efficiently by the fol-
lowing clustering algorithm similar to the k-means algorithm
[37]. The algorithm iterates the following two updates until
convergence:

Πf ← argminΠ

N∑
k=1

||āΠ(k)(f)− c̄k||2, ∀ f ∈ FL, (37)

c̄k ← 1
|FL|

∑
f∈FL

āi(f)
∣∣
i=Πf (k)

, c̄k ← c̄k/||c̄k||, ∀ k (38)

where |FL| is the number of elements (cardinality) of the
set. The first update (37) optimizes the permutation Πf for
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Fig. 4. Flow of the permutation alignment procedure presented in Sec. IV, which corresponds to the grouping part of (a) separation with ICA in Fig. 1.

0.85

Fig. 5. Arguments of ā21 and ā22 after permutations are aligned only for
frequency range FL = {f : 0 < f < 850 Hz} ∩ F .

each frequency with the current model c̄k. The second update
(38) calculates the most probable model c̄k with the current
permutations.

The constant scalar β in (35) and (36) affects how much the
phase part is emphasized compared to the amplitude part in
frequency-normalized vectors āi(f) and c̄k . In general micro-
phone setups, time delays provide more reliable information
than attenuations for distinguishing frequency components that
originate from different source signals. Thus, it is advanta-
geous to emphasize the phase part by using as large a β value
as possible. However, too large a β value may cause phase
wrapping. We use β = v/(4 dmax) as an appropriate value.
The reason for using this value is discussed in [16].

Figure 5 shows the arguments of ā21 and ā22 calculated by
operation (35) in the setup A experiment. For frequency range
FL, the clustering algorithm of iterating (37) and (38) was
performed to decide the permutations Πf and the subscripts
were updated by (11). We see two clusters whose centroids
are the two lines represented by arg(c̄21) and arg(c̄22). For
frequencies higher than 850 Hz, we see that operation (35) did
not work effectively because of the effect of spatial aliasing.
We need another algorithm to minimize the cost function (29)
for such higher frequencies.

B. For Frequencies where Spatial Aliasing may Occur

This subsection presents a procedure for deciding permu-
tations Πf for frequencies where spatial aliasing may occur.
Thus far, the frequency-normalized model c̄k has been cal-
culated by (38), and it contains model parameters τ jk, λjk as
shown in (36). They can be extracted from the elements of c̄k

Fig. 6. Arguments of ã21 and ã22 after permutation alignment using model
parameters estimated with low frequency range FL data. Because τ21 and
τ22 are not precisely estimated, there are some permutation errors at high
frequencies.

as

τjk = −arg(c̄jk)
2πβ

, λjk = |c̄jk|, ∀ j, k. (39)

A simple way of deciding permutations for higher frequencies
is to use these extracted parameters for the vector form ck(f)
in (18) and calculate a permutation Πf based on the original
cost function (29) with

Πf ← argminΠ

N∑
k=1

||ãΠ(k)(f)− ck(f)||2 , ∀ f ∈ F . (40)

However, τjk and λjk estimated only with frequencies in
FL may not be very accurate. Figure 6 shows arg(ã21) and
arg(ã22) after the permutations had been calculated by (40)
using the model parameters extracted by (39). We see some
estimation error for τ21 and τ22, as the data (shown in marks
’•’ and ’+’) are not lined up along the model line (shown as
dashed lines) at high frequencies.

A better way is to re-estimate parameters τjk and λjk by
minimizing the original cost function Da in (29), where the
frequency range is not limited to FL. In our earlier work
[2], we used a gradient descent approach to refine these
parameters, where we needed to carefully select a step size
parameter that guaranteed a stable convergence. In this paper,
we adopt the following direct approach instead. With a simple
mathematical manipulation (see Appendix VIII-A), the cost
function Da becomes
N∑

k=1

∑
f∈F

M∑
j=1

{
1
M

+ λ2
jk − 2λjkRe[ãji(f) eı2πfτjk ]

∣∣
i=Πf (k)

}
(41)



7

Fig. 7. Arguments of ã21 and ã22 after permutation alignment using model
parameters re-estimated with data from the whole frequency range F . Now
τ21 and τ22 are precisely estimated, and permutations are aligned correctly.

where Re[·] takes only the real parts of a complex number.
Thus, the optimum time delay τjk for minimizing the cost
function with the current permutations Πf is given by

τjk ← argmaxτ

∑
f∈F

Re[ãji(f) eı2πfτ ]
∣∣
i=Πf (k)

, ∀ j, k.

(42)
And, the optimum attenuation λjk with the current permuta-
tions Πf and the delay parameter τjk is given by

λjk ← 1
|F|

∑
f∈F

Re[ãji(f) eı2πfτjk ]
∣∣
i=Πf (k)

, ∀ j, k. (43)

This is because the gradient of (41) with respect to λjk is

∂Da

∂λjk
= 2

∑
f∈F

{
λjk − Re[ãji(f) eı2πfτjk ]

∣∣
i=Πf (k)

}

and setting the gradient zero gives the equation (43).
We can iteratively update Πf by (40) and τjk, λjk by (42)-

(43) to obtain better estimations of the model parameters and
consequently better permutations. Note that the structure that
iterates (40) and (42)-(43) has the same structure as (37) and
(38). Figure 7 shows arg(ã21) and arg(ã22) after Πf and
τjk, λjk were refined by (40) and (42)-(43). We see that τ21

and τ22 were precisely estimated and the permutations were
aligned correctly even for high frequencies.

V. CLASSIFICATION OF OBSERVATIONS FOR T-F MASKING

This section presents a procedure for minimizing the cost
function Dx in (30), and for obtaining a classification C(f, t)
of observation vectors x(f, t) for the T-F masking separation
described in Sec. II-B.

A. Procedure

The structure of the procedure is shown in Fig. 8. It is
almost the same as that of the permutation alignment (Fig. 4)
presented in the last section. The modification made for T-
F masking separation involves replacing ai, ãi, āi, Πf and
“Permutation optimization” with x, x̃, x̄, C and “Classification
optimization,” respectively.

Let us assume here that observation vectors x have been
converted into x̃ by the phase and amplitude normalization

presented in Sec. III-C. For frequency range FL where spa-
tial aliasing does not occur, frequency normalization [22] is
applied to the elements of x̃(f, t):

x̄j(f, t)← |x̃j(f, t)| exp
(

ı
β arg[x̃j(f, t)]

f

)
, ∀ j, f, t.

(44)
With the frequency normalization, the cost function (30) is
converted into

D̄x({τjk}, {λjk}, C) =
N∑

k=1

∑
C(f,t)=k

||x̄(f, t)− c̄k||2, (45)

where x̄ = [x̄1, . . . , x̄M ]T , and the right-hand summation with
C(f, t) = k is limited to the frequency range FL given by
(33). The cost function D̄x can be minimized efficiently by
iterating the following two updates until convergence:

C(f, t)← argmink||x̄(f, t)− c̄k||2 , ∀ f, t, (46)

c̄k ← 1
Nk

∑
C(f,t)=k

x̄(f, t), c̄k ← c̄k/||c̄k|| , ∀ k, (47)

where Nk is the number of time-frequency slots (f, t) that
satisfy C(f, t) = k.

For higher frequencies where spatial aliasing may occur,
model parameters τjk and λjk are first extracted from c̄k as
shown in (39), and then substituted into the vector form c k(f)
in (18). Then, the classification of the observation vectors can
be decided by

C(f, t)← argmink||x̃(f, t)− ck(f)||2 , ∀ f, t. (48)

As with (42)-(43) for permutation alignment in the previous
section, the parameters are better estimated according to the
original cost function Dx in (30) by

τjk ← argmaxτ

∑
C(f,t)=k

Re[x̃j(f, t) eı2πfτ ] , ∀ j, k, (49)

λjk ← 1
Nk

∑
C(f,t)=k

Re[x̃j(f, t) eı2πfτjk ] , ∀ j, k, (50)

where the summation with C(f, t) = k is not limited to FL but
covers the whole range F . We can iteratively update C(f, t)
by (48) and τjk, λjk by (49)-(50) to obtain better estimations
of the model parameters and consequently better classification.

B. Relationship to GCC-PHAT

This subsection discusses the relationship between (49) and
the GCC-PHAT function [23], [28], [29]. Let us assume that
only the first source s1 is active in an STFT frame centered
at time t. The TDOA τ[j,J](t) of the source between sensor j
and J can be estimated with the GCC-PHAT function as

τ[j,J](t) = argmaxτ

∑
f

xj(f, t)x∗
J (f, t)

|xj(f, t)x∗
J (f, t)|e

ı2πfτ (51)

where the summation is over all discrete frequencies.
If the same assumption holds for T-F masking separation,

all the observation vectors at time frame t are classified into
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Fig. 8. Flow of the classification procedure presented in Sec. V, which corresponds to the grouping part of (b) separation with T-F masking in Fig. 1.

the first one, i.e., C(f, t) = 1, ∀ f . Then, the delay parameter
estimation by (49) using only the time frame is reduced to

τj1 ← argmaxτ

∑
f∈F

Re[x̃j(f, t) eı2πfτ ] , ∀ j, (52)

where x̃j(f, t) can be expressed in

x̃j(f, t) =
xj(f, t)x∗

J (f, t)
||x(f, t)|| · |x∗

J (f, t)|
if we follow the phase and amplitude normalization (24) and
(28). Time delay τj1 can be considered as the TDOA of source
s1 between sensors j and J .

We see that (51) and (52) are very similar. The summation
in (51) and (52) has the same effect because of the conjugate
relationship (6). Thus, the only difference is in the denomi-
nator part, ||x(f, t)|| or |xj(f, t)|, but this difference has very
little effect in the argmax operation if we can approximate
||x(f, t)|| ≈ α · |xj(f, t)| with the same constant α for all
frequencies. In [23], T-F masking separation and time delay
estimation with GCC-PHAT were discussed, but there was no
mathematical statement relating these two.

Based on this observation, we recognize that iterative up-
dates with (48) and (49) perform time delay estimation with
the GCC-PHAT function by selecting frequency components
of the source. The estimations τjk are improved by a better
classification C(f, t) of the frequency components, and con-
versely the classification C(f, t) is also improved by better
time delay estimations τjk .

VI. EXPERIMENTS

A. Experimental setups and evaluation measure

To verify the effectiveness of the proposed formulation and
procedure, we conducted experiments with the three setups
A, B and C shown in Fig. 9. They differs as regards number
of sources and sensors, and sensor spacing. The configurations
common to all setups are summarized in Table I. We tested the
BSS system mainly with a low reverberation time (130 ms) so
that the system can exploit spatial information of the sources
accurately when grouping frequency components, but we also
tested the system in more reverberant conditions to observe
how the separation performance degrades as the reverberation
time increases (reported in Sec. VI-E).

TABLE I

COMMON EXPERIMENTAL CONFIGURATIONS

Room size 4.45 × 3.55 × 2.5 m
Reverberation time RT60 = 130 ms

130 ∼ 450 ms for setup A
Sampling rate 16 kHz
STFT frame size 2048 points (128 ms)
STFT frame shift 512 points (32 ms)
Source signals Speeches of 3 s
Propagation velocity v = 340 m/s

The separation performance was evaluated in terms of
signal-to-interference ratio (SIR) improvement. The improve-
ment was calculated by OutputSIRi − InputSIRi for each
output i, and we took the average over all output i = 1, . . . , N .
These two types of SIRs are defined by

InputSIRi = 10 log10

∑
t |

∑
l hJi(l)si(t− l)|2∑

t |
∑

k �=i

∑
l hJk(l)sk(t− l)|2 (dB),

OutputSIRi = 10 log10

∑
t |yii(t)|2∑

t |
∑

k �=i yik(t)|2 (dB),

where J ∈ {1, . . . , M} is the index of a selected reference
sensor, and yik(t) is the component of sk that appears at output
yi(t), i.e., yi(t) =

∑N
k=1 yik(t).

B. Main experiments

Figure 10 summarizes the experimental results with a re-
verberation time of 130 ms. We performed experiments with
eight combinations of 3-second speeches, for pairs consisting
of each method (ICA or T-F masking) and setup (A, B or
C). As regards phase normalization, a reference sensor was
selected (19) for setups A and B, and pairing with the next
sensor (21) was employed in setup C. To observe the effect
of the multi-stage procedures presented in Secs. IV and V, we
measured the SIR improvements at three different stages and
for two special options:

Stage I Grouping frequency components only at low fre-
quency range FL where spatial aliasing does not
occur, by (37) and (38) for permutations Π f , or
by (46) and (47) for classification C(f, t). At
the remaining frequencies, the permutations or
classification were random.
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Fig. 9. Three experimental setups. Setup A: two sources and two sensors with large spacing. Setup B: three sources and three sensors with large spacing.
Setup C: three sources and four sensors with small spacing. All the microphones were omni-directional.

Stage II After Stage I, grouping frequency components at
the remaining high frequencies by (40) or (48)
with the model parameters τjk, λjk extracted by
(39), which were not so accurate because they
were estimated only with the data from the low
frequency range FL.

Stage III After Stage II, re-estimating model parameters
τjk, λjk by (42)-(43) with ai, or by (49)-(50) with
x. This re-estimation was interleaved with group-
ing frequency components at the high frequencies
by (40) or (48).

Only III Only the core part of stage III was applied.
Grouping frequency components by interleaving
(40) and (42)-(43) for permutations Π f , or (48)
and (49)-(50) for classification C(f, t), starting
from random initial permutations or classification.

Optimal Optimal permutations Πf or classification C(f, t)
was calculated using the information on source
signals. This is not a practical solution, but is to
enable us to see the upper limit of the separation
performance.

SIR improvements became better as the stage proceeded from
I to III. This is noticeable in setups A and B where the sensor
spacing was large and the frequency range FL without spatial
aliasing was very small. On the other hand, in setup C, the
difference was not so large because the sensor spacing was
small and the range FL occupied more than half the whole
range F .

Even if only stage III was employed with random initial
permutations or classification, the results were sometimes
good. In some cases, however, especially for setup B with
T-F masking, the results were not good. These results show
that the classification problem for T-F masking has a much
larger possible solution space than the permutation problem
for ICA, and it is easy to get stuck in a local minimum of the
cost function Dx. Therefore, the multi-stage procedure has an
advantage in that it is not likely to become stuck in local
minima.

Table II shows the total computational time for the BSS
procedure, and also those of the ICA and Grouping sub-
components depicted in Fig. 1. They are for 3-second source

TABLE II

COMPUTATIONAL TIME

Total ICA Grouping (#iterations)

Setup A, ICA 4.87 s 4.07 s 0.48 s (4.9)
Setup B, ICA 8.05 s 6.85 s 0.80 s (6.4)
Setup C, ICA 7.71 s 6.81 s 0.42 s (4.2)
Setup A, T-F masking 1.64 s - 1.44 s (9.4)
Setup B, T-F masking 2.68 s - 2.37 s (11.5)
Setup C, T-F masking 4.18 s - 3.83 s (8.1)

signals, and are averaged over the eight different source
combinations. The BSS program was coded in Matlab and run
on an AMD 2.4 GHz Athlon 64 processor. The computational
time of the Grouping procedure was not very large and was
smaller than that of ICA. Table II also shows the average
number of iterations to converge for the Grouping procedure,
(40) and (42)-(43) with ICA, or (48) and (49)-(50) with T-F
masking. The T-F masking grouping procedure requires more
iterations than that of ICA because of the larger solution space,
but it converges within a reasonable number of iterations.

C. Comparison with null beamforming

Let us compare the separation capability of the proposed
methods (ICA and T-F masking) with that of null beamform-
ing, which is a conventional source separation method that
similarly exploits the spatial information of sources. In null
beamforming, filter coefficients are designed by assuming the
anechoic propagation model (17). In this sense, all these three
methods rely on delay τjk and attenuation λjk parameters.

We designed the null beamformer in the frequency domain.
The separation matrix W(f) in each frequency bin was given
by the inverse (or Moore-Penrose pseudo inverse if N < M )
of the assumed mixing matrix⎡

⎢⎣
c11(f) . . . c1N (f)

...
. . .

...
cM1(f) . . . cMN (f)

⎤
⎥⎦ ,

where cjk(f) is the propagation model defined in (17). The
delay τjk and attenuation λjk parameters were accurately
estimated in the experiment, from the individual source con-
tributions on the microphones for each source.
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Fig. 10. SIR improvements at different stages. The first and second rows correspond to ICA-based separation and T-F masking separation, respectively. The
first, second, and third columns correspond to setups A, B, and C, respectively. Each dotted line shows an individual case, and a solid line with squares shows
the average of the eight individual cases.

TABLE III

SIR IMPROVEMENTS (DB) WITH DIFFERENT SEPARATION METHODS

Anechoic Setup A Setup B Setup C
Null beamforming 37.29 8.14 7.93 6.94
ICA 27.53 16.67 16.85 16.44
T-F masking 17.92 14.10 14.27 14.90

Table III reports SIR improvements with these methods for
four different setups. An anechoic setup was added to the ex-
isting three setups (A, B, and C) to contrast the characteristics
of these three methods. In the anechoic setup, the positions
of loudspeakers and microphones were the same as those of
setup A.

We observe the following from the table. Null beamforming
performs the best in the anechoic setup, but worse than
the other two methods in the three real-room setups. With
null beamforming, propagation model parameters are used for
designing the filter coefficients in the separation system. Thus,
even a small discrepancy between the propagation model and
a real room situation directly affects the separation. With ICA
or T-F masking, on the other hand, the propagation model is
used only for grouping separated frequency components. The
discrepancy between the propagation model and a real room
situation is reflected in the cost functionDa orDx as discussed
in Sec. III-D. Therefore, these methods are robust to such a
discrepancy if it is not very severe.

D. Comparison of ICA and T-F masking

In terms of grouping frequency components, the ICA-based
and T-F masking methods have a lot in common as discussed

above. However, they are of course different in terms of the
whole BSS procedure. Here we compare these two methods.

With ICA, separated frequency components are generated
by the ICA formula (7). The separation matrix W(f) is
designed for each frequency so that it adapts to a mixing
situation (anechoic or real reverberant). This is why ICA
performs well in all the setups in Table III and also in Fig. 10.

In contrast, with T-F masking, separated frequency compo-
nents are simply frequency-domain sensor observations cal-
culated by an STFT (3). How well these components are
separated depends on how well the sparseness assumption (13)
holds for the original source signals. In general, a speech signal
follows the sparseness assumption to a certain degree, but it
does less accurately than the anechoic situation follows the
propagation model (17). This is why the SIR improvement of
T-F masking for the anechoic setup saturated compared with
the other two in Table III. It should also be noted that violation
of the sparseness assumption leads to an undesirable musical
noise effect.

In summary, if the number of sensors is sufficient for the
number of sources as shown in Table III, the ICA based
method performs better than the T-F masking method. How-
ever, a T-F masking approach has a separation capability for
an under-determined case where the number of sensors is
insufficient.

E. Experiments in more reverberant conditions

We also performed experiments in more reverberant con-
ditions. The reverberation time was controlled by changing
the area of cushioned wall in the room. We considered five
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Fig. 11. SIR improvements with ICA-based BSS for setup A for various
reverberation times (RT60 = 130, 200, 270, 320, 380, and 450 ms) and two
different distances (60 and 120 cm) from the sources to the microphones. Each
square shows the average SIR improvement of the eight different combinations
of speech sources.

additional different reverberation times for setup A, namely
200, 270, 320, 380, and 450 ms. We also considered another
distance of 60 cm from the sources to the microphones. As
regards the experiments reported here, let us focus on ICA-
based separation for simplicity.

Figure 11 shows SIR improvements at stage III and also
with optimal permutations. Reverberation affects the ICA
solutions as well as the permutation alignment. Even with
optimal permutations, the ICA separation performance de-
grades as the reverberation time increases. The difference
between “Optimal” and “Stage III” SIR improvements in-
dicates the performance degradation caused by permutation
misalignment. In the shorter distance case (60 cm), the degree
of degradation was uniformly small for various reverberation
times. This is because the contribution of the direct path
from a source to a microphone is dominant compared with
those of the reverberations, and thus the situation is well
approximated with the anechoic propagation model. However,
with the original distance (120 cm), the degradation became
large as the reverberation time became long. These results
show the applicability/limitation of the proposed method for
permutation alignment in more reverberant conditions as a case
study.

Figure 12 shows the arguments of ã21 and ã22 after the
permutations were aligned at stage III, in an experiment with
a reverberation time of 380 ms and a distance of 120 cm.
Compared with Fig. 7 (where the reverberation time was
130 ms), we see that the basis vector elements were widely
scattered around the estimated anechoic model due to the long
reverberation time, and thus permutation misalignments oc-
curred more frequently. However, the model parameters were
reasonably estimated, capturing the center of the scattered
samples to minimize the cost function (29).

VII. CONCLUSION

We proposed a procedure for grouping frequency compo-
nents, which are basis vectors ai(f) in ICA-based separation,
or observation vectors x(f, t) in T-F masking separation. The
grouping result is expressed in permutations Πf for ICA-
based separation, or in classification information C(f, t) for

Fig. 12. Arguments of ã21 and ã22 after permutations were aligned at
stage III. The room reverberation time was 380 ms and the distance from
the sources to the microphones was 120 cm, which made the situation very
different from the assumed anechoic model. Consequently, the samples of
the arguments were widely scattered around the estimated model parameters.
However, the model parameters were reasonably estimated so the source
directions can be approximately estimated together with the information about
the microphone array geometry.

T-F masking separation. The grouping is decided based on the
estimated parameters of time delays τjk and attenuations λjk

from source to sensors. The proposed procedure interleaves
the grouping of frequency components and the estimation of
the parameters, with the aim of achieving better results for
both. We adopt a multi-stage approach to attain a fast and
robust convergence to a good solution. Experimental results
show the validity of the procedure, especially when spatial
aliasing occurs due to wide sensor spacing or a high sampling
rate. The applicability/limitation of the proposed method under
reverberant conditions is also demonstrated experimentally.

The primary objective of this work was blind source separa-
tion of acoustic sources. However, with the proposed scheme,
the time delays and attenuations from sources to sensors are
also estimated with a function similar to that of GCC-PHAT. If
we have information on the sensor array geometry, we can also
estimate the locations of multiple sources. This point should
be interesting also to researchers working in the field of source
localization.

VIII. APPENDIX

A. Calculating and simplifying the cost functions

The squared distance ||ãi − ck||2 that appears in (29) can
be transformed into

(ãi − ck)H(ãi − ck) = ãH
i ãi + cH

k ck − ãH
i ck − cH

k ãi

where
ãH

i ãi = ||ãi||2 = 1 ,

cH
k ck =

M∑
j=1

λ2
jk = 1

from the assumptions, and

−ãH
i ck − cH

k ãi = −2Re(cH
k ãi) .

Thus, the minimization of the squared distance || ãi − ck||2
is equivalent to the maximization of the real part of the inner
product cH

k ãi, whose calculation is less demanding in terms of
computational complexity. We follow this idea in calculating
the argmin operators in (37), (40), (46) and (48).
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The mathematical manipulations conducted for obtaining
(41) were the above equations and

Re[cH
k (f)ãi(f)] =

M∑
j=1

λjkRe[ãji(f) eı2πfτjk ] .
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