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Abstract— This paper presents a blind source separation
method for convolutive mixtures of speech/audio sources. The
method can even be applied to an underdetermined case where
there are fewer microphones than sources. The separation op-
eration is performed in the frequency domain and consists of
two stages. In the first stage, frequency-domain mixture samples
are clustered into each source by an expectation-maximization
(EM) algorithm. Since the clustering is performed in a frequency
bin-wise manner, the permutation ambiguities of the bin-wise
clustered samples should be aligned. This is solved in the second
stage by using the probability on how likely each sample belongs
to the assigned class. This two-stage structure makes it possible
to attain a good separation even under reverberant conditions.
Experimental results for separating four speech signals with three
microphones under reverberant conditions show the superiority
of the new method over existing methods. We also report
separation results for a benchmark data set and live recordings
of speech mixtures.

Index Terms— Blind source separation, convolutive mixture,
short-time Fourier transform, sparseness, time-frequency mask-
ing, EM algorithm, permutation problem

I. INTRODUCTION

The technique for estimating individual source components
from their mixtures at multiple sensors is known as blind
source separation (BSS) [1]–[5]. With acoustic applications
of BSS, such as solving a cocktail party problem, signals are
mixed in a convolutive manner with reverberation. Since a
typical room reverberation time is about 300 ms, we need
thousands of coefficients estimated for the separation filters
even with an 8 kHz sampling rate. This makes the convolutive
BSS problem much more difficult than the BSS of simple
instantaneous mixtures. Various attempts have been made to
solve the convolutive BSS problem. Among them, frequency-
domain approaches [6]–[13] are popular ones where time-
domain observation signals are converted into frequency-
domain time-series signals by a short-time Fourier transform
(STFT).

Another difficulty stems from the fact that there may be
more source signals of interest than sensors (or microphones in
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acoustic applications). If we have a sufficient number of micro-
phones, i.e., a determined case, linear filters that are estimated
for example by independent component analysis (ICA) [1]–[4]
effectively separate the mixtures. However, if the number of
microphones is insufficient, i.e., an underdetermined case,
such linear filters do not work well. Instead, time-frequency
(T-F) masking [14]–[23] or a maximum a posteriori (MAP)
estimator [24]–[27] is widely used to separate such under-
determined mixtures. For underdetermined cases, frequency-
domain approaches are also popular. This is because most
interesting acoustic sources, such as speech and music, exhibit
a sparseness property in the time-frequency representation, and
this sparseness property helps the design of T-F masking or
MAP estimation.

Therefore, underdetermined convolutive BSS has been
recognized as a challenging task, and a lot of research ef-
fort has been devoted to it [14]–[25]. The majority of the
existing techniques [14]–[21] rely on time-difference-of-arrival
(TDOA) estimations for each source at multiple microphones,
or interaural time difference (ITD) estimations for a two-
microphone stereo case and a human/animal auditory sys-
tem. A nice simplicity of these techniques is that clustering
frequency components for each source is conducted in a
full-band manner as shown in Fig. 3 (a). Such techniques
work effectively under low reverberant conditions, where the
assumed anechoic model is satisfied to a certain degree. How-
ever, under severe reverberant conditions, TDOA estimations
become unreliable and such techniques do not work well.

The main goal of this paper is to develop an underdeter-
mined convolutive BSS method that realizes good separation
performance even under reverberant conditions. The method
employs a widely used T-F masking scheme to separate the
mixtures. We adopt a two-stage approach where the first stage
is responsible for frequency bin-wise clustering as shown in
Fig. 3 (b). Since the clustering is conducted in a frequency
bin-wise manner rather than a full-band manner, it is robust as
regards room reverberations as long as the frame length of the
STFT analysis window is long enough to cover the main part
of the impulse responses. Moreover, the method is immune
to the spatial aliasing problem [28], [29] encountered when
TDOAs/ITDs are estimated with widely spaced microphones
(e.g., spatial aliasing occurs for frequencies f > 850 Hz with
20 cm spacing microphones).

With such a two-stage approach, an additional task is
performed in the second stage to group together bin-wise sep-
arated frequency components coming from the same source.
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This task is almost identical to the permutation problem
of frequency-domain ICA-based BSS [6]–[10], [13]. A few
methods [24], [25] that employ such a two-stage structure for
underdetermined convolutive BSS have already been proposed.
With these methods, permutation alignment is performed by
maximizing the correlation coefficients of amplitude en-
velopes, which basically represent sound source activity, of the
same source. As also presented in this paper, the correlation
coefficient of the amplitude envelopes is not always a good
criterion with which to judge whether two sets of separated
frequency components come from the same source or not.

In the proposed method, the bin-wise clustering results of
the first stage are represented by a set of posterior prob-
abilities P (Ci|x(τ, f)), the probability that the observation
vector x at time τ and frequency f belongs to the i-th class.
The permutation alignment procedure in the second stage uti-
lizes these posterior probabilities instead of traditionally-used
amplitude envelopes. Posterior probabilities also represent
sound source activity. We observed that the time sequences
of posterior probabilities exhibited a much clearer contrast
between a same-source pair and a different-source pair when
we calculated their the correlation coefficients, as long as
different sources were not synchronized. As a result, the per-
mutation alignment capability has been considerably improved
compared to previous methods using amplitude envelopes.

This paper is organized as follows. Section II provides
a system overview of the proposed method. Sections III
and IV present detailed explanations of the first and second
stages of the proposed method, respectively. Section V reports
experimental results. Section VI concludes this paper.

II. SYSTEM OVERVIEW

This section provides a system overview of the proposed
BSS method. Figure 1 shows our signal notations for the
convolutive BSS problem. Figure 2 shows a processing flow
for T-F masking based BSS. Figure 3 details the Clustering
part by comparing widely used methods and our proposed
method. The example spectrograms in Fig. 4 help us to
understand intuitively how signals are processed.

A. Signal notations

As shown in Fig. 1, let s1, . . . , sN be source signals and
x1, . . . , xM be microphone observations. The numbers of
sources and microphones are denoted by N and M , respec-
tively. A case where N > M is called an underdetermined
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Fig. 2. Generic processing flow for BSS with time-frequency (T-F) masking
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Fig. 3. Comparison of the Clustering part shown in Fig. 2 for widely used
methods and the proposed method

BSS (our focus here), and alternatively a case where N ≤M
is called a determined BSS. The observation xj at microphone
j is described by a mixture

xj(t) =
N∑

k=1

simg
jk (t) , (1)

of source sk images at the microphone j

simg
jk (t) =

∑
l

hjk(l) sk(t− l) , (2)

where t represents time and hjk(l) represents the impulse
response from source k to microphone j.

Our goal for the BSS task is to obtain sets of separated
signals {y11, . . . , y1M}, . . . , {yN1, . . . , yNM}, where each set
corresponds to each of the source signals s1, . . . , sN . More
specifically, ykj is an estimated source k image simg

jk at the
j-th microphone. The task should be performed only with M
observed mixtures x1, . . . , xM , and without information on the
sources sk, the impulse responses hjk , and the source images
simg
jk .

B. Short-time Fourier transform (STFT)

The rest of this section explains the processing parts shown
in Fig. 2, starting with STFT. The microphone observations
(1) sampled at a sampling frequency fs, or with a sampling
period ts = 1/fs, are converted into frequency-domain time-
series signals xj(τ, f) by a short-time Fourier transform
(STFT) with an L-sample frame and its S-sample shift:

xj(τ, f) ←
∑

t′=0,ts,··· ,(L−1)ts

wina(t′) xj(t′ + τ) e−ı2πft′ (3)

for frame time indices τ = 0, Sts, . . . , T − 1 and frequencies
f = 0, 1

Lfs, . . . , L−1
L fs. Note that τ represents the starting



3

time of the corresponding frame. We typically use an analysis
window wina(t) that tapers smoothly to zero at each end, such
as a Hanning window wina(t) = 1

2 (1− cos 2πt
Lts

).
If the frame size L is long enough to cover the main part 1

of the impulse responses hjk , the convolutive mixture model
(1) and (2) can be approximated as an instantaneous mixture
model [6], [9] at each frequency:

xj(τ, f) =
N∑

k=1

hjk(f)sk(τ, f) + nj(τ, f) , (4)

where hjk(f) is the frequency response from source k to mi-
crophone j, sk(τ, f) is a frequency-domain time-series signal
of sk(t) obtained by an STFT similar to (3), and nj(τ, f) is
a noise term that consists of additive background noise and
reverberant components outside the analysis window. We also
use a vector notation

x(τ, f) =
N∑

k=1

hk(f)sk(τ, f) + n(τ, f), (5)

where hk = [h1k, . . . , hMk]T , n = [n1, . . . , nM ]T , and x =
[x1, . . . , xM ]T .

C. Time-frequency (T-F) masking

Separated signals {y11, . . . , y1M}, . . . , {yN1, . . . , yNM} in
the frequency domain are constructed by time-frequency (T-F)
masking:

ykj(τ, f) =Mk(τ, f)xj(τ, f) (6)

where 0 ≤ Mk(τ, f) ≤ 1 is a mask specified for each
separated signal yk and each time-frequency slot (τ, f).

For the design of masks Mk(τ, f), we rely on the sparse-
ness property of source signals [17]. A sparse source can be
characterized by the fact that the source amplitude is close
to zero most of the time. A time-frequency-domain speech
source is a good example of a sparse source. Based on this
property, it is likely that at most only one source signal has a
large contribution to each time-frequency observation x(τ, f).
Thus, the mixture model (5) can be further approximated as

x(τ, f) = hk�(f)sk�(τ, f) + ñ(τ, f), k� ∈ {1, . . . , N} (7)

for sparse sources. The subscript k� = k�(τ, f) depends on
each time-frequency slot (τ, f), and represents the index of
the most dominant source for the corresponding T-F slot. The
noise term now becomes ñ = n +

∑
k′ �=k� hk′sk′ . The index

k� should be identified or estimated for each (τ, f) to separate
the sources by T-F masking.

For that purpose, observation vectors x(τ, f) for all time-
frequency slots (τ, f) are clustered into N classes C1, . . . , CN ,
each of which corresponds to a source signal sk. A vector
x(τ, f) should belong to class Ck if the source sk is the
most dominant in the observation x(τ, f). We perform the
clustering in a soft sense. A posterior probability P (Ck|x),
which represents how likely the vector x belongs to the k-th

1The definition of the main part of the impulse responses is not rigorous,
and in general the frame size L is determined empirically. An experimental
analysis of the relationship between frame sizes and separation performance
is presented in [30].

class, is calculated in the “Clustering” part shown in Fig. 2.
Then, the T-F masks that are required in (6) are specified by

Mk(τ, f) =

{
1 if P (Ck|x) ≥ P (Ck′ |x) , ∀k′ �= k

0 otherwise.
(8)

In other words, the k-th mask Mk at a time-frequency slot
(τ, f) is specified as 1 if and only if the k-th source is
estimated as the most dominant source in the observation x at
the T-F slot.

D. Inverse STFT

At the end of the processing flow, time-domain separated
signals ykj(t), k = 1, . . . , N, j = 1, . . . , M are calculated
with an inverse STFT applied to the separated frequency
components ykj(τ, f):

ykj(t) ←
∑

τ

wins(t− τ)

⎡
⎣ 1

L

∑
f

ykj(τ, f) eı2πf(t−τ)

⎤
⎦ (9)

where the summation over frequencies f is with f =
0, 1

Lfs, · · · , L−1
L fs, and the summation over frame time in-

dices τ is with those that satisfy 0 ≤ t− τ ≤ (L − 1)ts. We
use a synthesis window wins that is defined as non-zero only
in the L-sample interval [0, (L − 1)ts] and tapers smoothly
to zero at each end to mitigate the edge effect. To realize
a perfect reconstruction, the analysis and synthesis windows
should satisfy the condition,∑

τ

wins(t− τ)wina(t− τ) = 1

Again, the summation over frame time indices τ is with those
that satisfy 0 ≤ t− τ ≤ (L− 1)ts.

E. Comparison with Widely Used Methods

This subsection compares the proposed method with widely
used methods [14]–[21] by focusing on the Clustering proce-
dure shown in Fig. 2 and detailed in Fig. 3.

With the widely used methods, a set Θ of features is
extracted from an observation vector x for each T-F slot (τ, f).
A typical feature is the time-difference-of-arrival (TDOA) that
occurs at microphone pairs. Based on an anechoic assumption,
the features of all times τ and all frequencies f (full-band) are
expected to form several clusters, each of which corresponds
to a source signal located at a specific position. Although such
methods perform well under low reverberant conditions, the
separation performance degrades as the reverberation becomes
heavy. This is because the anechoic assumption imposes a lin-
ear phase constraint on the vector hk(f) in the mixture model
(7), and the constraint contradicts the observations affected
by reverberations. Some improvement for highly reverberant
conditions could be gained by modeling TDOA variations
with a mixture of Gaussians [18] or gradually making the
parameters frequency dependent [19].

The Clustering procedure of the method proposed in this
paper has a two-stage structure. The first stage performs
frequency bin-wise clustering, and the second stage performs
permutation alignment. Example spectrograms corresponding
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Fig. 4. Spectrogram examples: a case with three speech sources and two microphones.

to these two stages are shown in Fig. 4 (c) and (d). The purpose
of the two-stage structure is to tackle the reverberation problem
mentioned above. The proposed method has no assumption as
regards the vector hk(f) in (7). It can be adapted to various
impulse responses hjk(l) caused typically by reverberations,
as long as the STFT analysis window wina(t) covers the main
part of the impulse responses.

The next two sections explain how to calculate in the
proposed method the posterior probability P (Ck|x) that the
k-th source is the most dominant source in the observation x.
The procedure consists of two stages, “Bin-wise clustering”
and “Permutation alignment”.

III. BIN-WISE CLUSTERING

This section describes the first stage “Bin-wise clustering”
in detail.

A. Model

Since the operation is performed in a frequency bin-wise
manner, let us omit the frequency dependence in (5) and (7)
for simplicity in this section:

x(τ) =
∑N

i=1 hisi(τ) + n(τ) = hi�si�(τ) + ñ(τ) . (10)

The subscript i� = i�(τ) is the index of the most dominant
source for each time τ . We changed the use of the source
subscript from k to i, intending to clarify that there are
permutation ambiguities in the frequency bin-wise clustering.
Such permutation ambiguities will be aligned in the second
stage, which is detailed in the next section.

We see in (10) that clustering can be performed according
to the information on the vectors h1, . . . ,hN . To eliminate the
effect of source amplitude si�(τ) from x, we normalize them
so that they have a unit norm

x(τ)← x(τ)
||x(τ)|| =

hi�

||hi� || ·
si�(τ)
|si�(τ)| . (11)

Subspace spanned by 

Fig. 5. Illustration of the line orientation idea. Two-dimensional real vector
space is presented for simplicity.

An unknown phase si�(τ)/|si�(τ)| ambiguity still remains in
x(τ). To model such a vector for each source, we follow
the line orientation idea in [26], [27] and employ a complex
Gaussian density function of the form:

p(x|ai, σi) =
1

(πσ2
i )M−1

exp
(
−||x− (aH

i x) · ai||2
σ2

i

)
(12)

where ai is the centroid with unit norm ||ai||2 = 1, and σ2
i is

the variance. Since (aH
i x)·ai is the orthogonal projection of x

onto the subspace spanned by ai, the distance ||x−(aH
i x)·ai||

represents the minimum distance between the point x and the
subspace, which implies how probable x belongs to the i-th
class (Fig. 5).

Since the observation vector x is modeled as (10), the
density function p(x) can be described by a mixture model

p(x|θ) =
∑N

i=1 αi p(x|ai, σi) (13)

with a parameter set

θ = {a1, σ1, α1, . . . ,aN , σN , αN}. (14)

The mixture ratios αi should satisfy α1 + · · · + αN = 1 and
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0 ≤ αi ≤ 1, and are modeled by a Dirichlet distribution as

p(α1, . . . , αN ) =
Γ(N · φ)
Γ(φ)N

N∏
i=1

α
(φ−1)
i , (15)

where φ is a hyper-parameter.

B. EM algorithm

We employ the EM algorithm [31], [32] to estimate the
parameters in the set θ and posterior probabilities P (Ci|x(τ))
for all times τ and i = 1, . . . , N . The EM algorithm iterates
the E-step and the M-step until convergence.

In the E-step, posterior probabilities are calculated by

P (Ci|x, θ′) =
α′

i p(x|a′
i, σ

′
i)

p(x|θ′) =
α′

i p(x|a′
i, σ

′
i)∑N

i=1 α′
i p(x|a′

i, σ
′
i)

(16)

with the current parameter set

θ′ = {a′
1, σ

′
1, α

′
1, . . . ,a

′
N , σ′

N , α′
N} .

In the M-step, the parameter set θ is updated by maximizing

Q(θ, θ′) + log p(θ) (17)

where Q(θ, θ′) is an auxiliary function defined by

Q(θ, θ′) =
∑T

τ

∑N
i=1 P (Ci|x(τ), θ′) log αi p(x(τ)|ai, σi) ,

and p(θ) is a prior distribution for the parameters. We consider
the prior (15) for the mixture ratios α i but no prior for the
Gaussian parameters ai and σi. Thus, we have

log p(θ) = (φ− 1)
∑N

i=1 log αi + const.

As described in detail in Appendix, each parameter is updated
as follows. The new centroid ai is given by the eigenvector
corresponding to the maximum eigenvalue of

R =
∑T

τ P (Ci|x(τ), θ′) · x(τ)xH (τ) . (18)

The variance σ2
i and the mixture ratio αi are updated by

σ2
i =

∑T
τ P (Ci|x(τ), θ′) · ||x(τ) − (aH

i x(τ)) · ai||2
(M − 1) ·∑T

τ P (Ci|x(τ), θ′)
(19)

and

αi =
∑T

τ P (Ci|x(τ), θ′) + φ− 1
T + N · (φ − 1)

, (20)

respectively.
After convergence, the clustering results are represented by

the posterior probabilities P (Ci|x, θ) shown in (16).

C. Practical issues

Pre-whitening [3] the observation vectors x(τ) is effective
for a robust execution of the clustering procedure, and can be
simply performed by

x(τ)← Vx(τ)

where the whitening matrix V is calculated by V =
D−1/2EH with an eigenvalue decomposition E{xxH} =
EDEH of the correlation matrix. The unit-norm procedure
(11) must be employed again after the pre-whitening process.

In the experiments shown in Section V, we assumed that the
information on the number N of sources was given a priori.
For such a case, it is advantageous to choose a large number
for the hyper-parameter φ in (15) so that each cluster has
almost the same weight αi based on (20).

We confirmed empirically that the EM algorithm presented
in the previous subsection generally exhibits satisfactory con-
vergence behaviors as long as the initial parameters are set
appropriately, for instance as follows. We choose the initial
centroids from the samples in such a way that we specify
N time points τ1, . . . , τN beforehand and then set them by
ai ← x(τi) for i = 1, . . . , N . The other parameters are
initially set as σ2

i = 0.1 and αi = 1/N .

IV. PERMUTATION ALIGNMENT

This section describes the second stage “Permutation
Alignment” in detail.

A. Purpose

After the first stage, we have posterior probabilities
P (Ci|x(τ, f)) according to (16) for i = 1, . . . , N and all
time-frequency slots (τ, f). However, since the class order
C1, . . . , CN may be different from one frequency to another
(Fig. 4 (c)), we need to reorder the indices so that the same in-
dex corresponds to the same source over all frequencies (Fig. 4
(d)). In other words, we need to determine a permutation

Πf : {1, . . . , N} → {1, . . . , N}
for all frequencies f , and then update the posterior probabili-
ties by

P (Ck|x)← P (Ci|x)
∣∣
i=Πf (k)

, k = 1, . . . , N , (21)

to construct proper separated signals. Such a permutation
problem has been extensively studied for frequency-domain
ICA-based BSS applied to a determined case, e.g., [6]–[10],
[13].

B. Posterior Probability Sequence

In this paper, we propose utilizing the sequence of posterior
probabilities P (Ck|x) along the time axis at a frequency. Let
us define a posterior probability sequence 2

vf
i (τ) = P (Ci|x(τ, f)) (22)

for the i-th class (separated components) at frequency f . As
Fig. 6 shows intuitively, posterior probability sequences that
belong to the same source generally have similar patterns
among different frequencies. This is because a sound source
has a specific activity pattern along the time axis, and more
specifically, it has common silence periods, onsets and offsets.
Inversely with different sound sources, posterior probability
sequences have dissimilar patterns.

2A similar sequence defined for ICA-based determined BSS is presented
by Eq. (15) in our previous work [13].



6

2 2.5 3 3.5 4 4.5 5
0

1
f = 1070 Hz

2 2.5 3 3.5 4 4.5 5
0

1
g = 1266 Hz

Time (sec)

   
   

   
   

   
   

  P
os

te
rio

r 
pr

ob
ab

ili
ty

Fig. 6. Posterior probability sequences vf
1 , vf

2 , vf
3 at frequency f = 1070 Hz

and vg
1 , vg

2 , vg
3 at frequency g = 1266 Hz. Permutations are aligned and the

sequences originating from the same sound source are shown in the same
color for ease of interpretation.

Such similarity and dissimilarity can be calculated by a
correlation coefficient defined for two sequences v i and vj

ρ(vi, vj) =
E{(vi − μi)(vj − μj)}

σiσj
,

where μi = E{vi} is the mean and σi =
√

E{v2
i } − μ2

i is
the standard deviation of vi

3. The correlation coefficient of
any two sequences is bounded by −1 ≤ ρ(vi, vj) ≤ 1 , and
becomes 1 if the two sequences are identical up to a positive
scaling and an additive offset.

Let us calculate the correlation coefficients ρ(vf
i , vg

j ) for the
posterior probability sequences shown in Fig.6, i.e., v f

i and vg
j

for output indices i, j = 1, 2, 3 and frequencies f = 1070 and
g = 1266:

2
4

ρ(vf
1 , vg

1 ) ρ(vf
1 , vg

2 ) ρ(vf
1 , vg

3 )

ρ(vf
2 , vg

1 ) ρ(vf
2 , vg

2 ) ρ(vf
2 , vg

3 )

ρ(vf
3 , vg

1 ) ρ(vf
3 , vg

2 ) ρ(vf
3 , vg

3 )

3
5 =

2
4

0.37 −0.02 −0.33
−0.06 0.39 −0.29
−0.30 −0.32 0.57

3
5 .

(23)
We observe that ρ(vf

i , vg
j ) is positive for two sequences orig-

inating from the same sound source, and inversely ρ(v f
i , vg

j )
is negative for those originating from different two sources.
Therefore, permutation alignment should be conducted so that
ρ(vf

i , vg
j ) is positive for i = j and is negative or close to zero

for i �= j.

C. Score value optimized by permutation

To describe our permutation alignment procedure in a
more formal manner, we introduce certain notations. Let
{vf

i } = [vf
1 , . . . , vf

N ] be an ordered list of sequences vf
i ,

and let {vf
i }|Πf

= [vf
Πf (1), . . . , v

f
Πf (N)] be a permuted list

of sequences with a permutation Πf . Also, let Q({vf
i }, {vg

j })
be an N × N matrix whose (i, j)-element is ρ(vf

i , vg
j ). For

example if N = 3,

Q({vf
i }, {vg

j }) =

[
ρ(vf

1 , vg
1 ) ρ(vf

1 , vg
2 ) ρ(vf

1 , vg
3 )

ρ(vf
2 , vg

1 ) ρ(vf
2 , vg

2 ) ρ(vf
2 , vg

3 )

ρ(vf
3 , vg

1 ) ρ(vf
3 , vg

2 ) ρ(vf
3 , vg

3 )

]
(24)

like (23). Then, let us define a scalar

score[Q] = sum(diag(Q))− sum(offdiag(Q)) (25)

3Here, σi is used differently from that used in Section III.

where diag() and offdiag() take the diagonal and off-diagonal
elements of a matrix, respectively, and sum() calculates the
sum of the elements. For (23), the score value is 2.66.

A primitive operation in the permutation alignment proce-
dure is to maximize the score[Q] value by a permutation Πf .
For example, if

Q({vf
i }, {vg

j }) =

[
−0.06 0.39 −0.29

0.37 −0.02 −0.33
−0.30 −0.32 0.57

]

is given, we employ a permutation Πf : [1, 2, 3]→ [2, 1, 3] that
converts the ordered list {vf

i } into a permuted list {vf
i }|Πf

to
obtain the maximum score value with

Q({vf
i }|Πf

, {vg
j }) =

[
0.37 −0.02 −0.33

−0.06 0.39 −0.29
−0.30 −0.32 0.57

]
.

D. Permutation Optimization

This subsection describes the procedure for permutation
optimization. The permutations Πf in (21) of all frequency
bins f should be optimized so that∑

f,g∈F
score

[
Q({vf

i }|Πf
, {vg

j }|Πg)
]

is maximized, where the set F consists of all frequency bins.
However, considering all the possible pair-wise frequencies is
computationally heavy in that even one sweep needs O(|F|2)
score value calculations. Thus, we employ a strategy where
we first perform a rough global optimization followed by
a fine local optimization. These optimization procedures are
explained in this subsection. With this strategy, the number of
score value calculations is reduced down to O(|F|) for one
sweep.

1) Global optimization with single centroid per source:
First, we perform a rough global optimization, where a cen-
troid ck is explicitly identified for each k and accordingly the
goal function

J ({ck}, {Πf}) =
∑
f∈F

score
[
Q({vf

i }|Πf
, {ck})

]
(26)

is maximized. The centroid ck is calculated for each source
as the average of the posterior probability sequences with the
current permutations Πf :

ck(τ)← 1
|F|

∑
f∈F

vf
i (τ)

∣∣
i=Πf (k)

, ∀ k, τ , (27)

where |F| is the number of elements in the set F . Note
that the sequences vf

i are normalized to zero-mean and unit-
variance. On the other hand, the permutation Πf is optimized
to maximize the correlation coefficients ρ between posterior
probability sequences vf

i and the current centroid:

Πf ← argmaxΠ score
[
Q({vf

i }|Π, {ck})
]
. (28)

The two operations (27) and (28) are iterated until conver-
gence.

In (28), an exhaustive search through N ! permutations for
the best one is feasible only with a very small N . Thus, we
apply a simple yet effective heuristic method that reduces the



7

F
re

qu
en

cy
 (

kH
z)

1 2 3 4 5
0

2

4

6

8

1 2 3 4 5

−1
0
1
2
3

Time (sec)

Fig. 7. Permutation aligned posterior probabilities P (Ck |x) for separation of
speech signals sampled at 16 kHz (above). And, two centroids ck,1 and ck,2
for the k-th source obtained after the goal function (29) is maximized (below).
Note that the centroids are normalized to zero-mean and unit-variance.

size of Q one by one until it becomes very small: the mapping
i = Π(k) related to the maximum correlation coefficient ρ is
decided immediately, and the i-th row and the k-th column
are eliminated in the next step.

2) Global optimization with multiple centroids per source:
According to the goal function (26), one centroid c k is
identified for each source k. This means that we expect
similar posterior probability sequences for all the frequencies.
However, if we increase the sampling rate, for example up
to 16 kHz, the sequences are significantly different for the
low and high frequency ranges. To model such source signals
precisely, we introduce multiple centroids for a source, and
modify the goal function (26) to

J ({ck,m}, {Πf}) =
∑
f∈F

maxmscore
[
Q({vf

i }|Πf
, {ck,m})

]
,

(29)
where ck,m is the m-th centroid for source k. In practice, each
source has two or three centroids (m = 1, 2 or m = 1, 2, 3).

Figure 7 shows an example. The upper plot shows permuta-
tion aligned posterior probabilities P (Ck|x) for the separation
of speech signals sampled at 16 kHz. The lower plot shows two
centroids ck,1 and ck,2 obtained after the goal function (29) had
been maximized. We observe that the blue line corresponds
to most of the lower half frequencies and the green line
corresponds to most of the higher half frequencies. In this
way, multiple centroids model the activity pattern of a sound
source more accurately than a single centroid.

The optimization procedure for the multiple-centroid goal
function (29) is slightly complicated but not seriously so.
Instead of using the simple average (27), the centroids ck,m are
obtained through another level of clustering, where posterior
probability sequences vf

i (τ)
∣∣
i=Πf (k)

that belong to the k-th
source of all frequencies f are clustered. We employ the k-
means algorithm [33] for the clustering. Then, ck,m is obtained
as the average sequence of the m-th cluster in the k-means
algorithm. As regards the permutation optimization at each
frequency, the equation (28) is slightly modified to

Πf ← argmaxΠmaxmscore
[
Q({vf

i }|Π, {ck,m})
]

(30)

in the multiple-centroid version. As with the single centroid

version, the calculation of multiple centroids by k-means
and the permutation optimization by (30) are iterated until
convergence.

3) Local optimization: After completing the rough global
optimization described above, we perform a fine local opti-
mization for better permutation alignment. This maximizes the
score values over a set of selected frequencies R(f) for a
frequency f :

Πf ← argmaxΠ

∑
g∈R(f)

score
[
Q({vf

i }|Π, {vg
j }|Πg )

]
. (31)

The set R(f) preferably consists of frequencies g where a
high correlation coefficient ρ(vf

i , vg
j ) would be attained for vf

i

and vg
j corresponding to the same source. We typically select

adjacent frequencies A(f) and harmonic frequencies H(f) so
that R(f) = A(f) ∪H(f). For example, A is given by

A(f) = {f−3Δf, f−2Δf, f−Δf, f+Δf, f+2Δf, f+3Δf}
where Δf = 1

Lfs, and H is given by

H(f) = {round(f/2)−Δf, round(f/2), round(f/2)+Δf,

2f−Δf, 2f, 2f +Δf}
where round(·) selects the nearest frequency to · from the
set F . The fine local optimization (31) is performed for
one selected frequency f at a time, and repeated until no
improvement is found for any frequency f .

E. Comparison to Amplitude Envelope

So far this section has described the procedure embodied in
the Permutation Alignment stage. This subsection is devoted
to a comparison of a posterior probability sequence and
an amplitude envelope, used in the context of permutation
alignment. Amplitude envelopes are widely used [9], [10],
[24], [25] to represent the activity of separated signals and
thus for permutation alignment.

An amplitude envelope is a sequence of the absolute values
of separated frequency components

vf
i (τ) = |yij(τ, f)|

defined along the time axis at a frequency. Here, the micro-
phone index j is arbitrarily specified, but it should be the same
over all frequencies f . Even before permutation alignment is
conducted, yij(τ, f) can be temporarily calculated using (6)
and (8).

Figure 8 shows example amplitude envelopes. They are
calculated from the separated frequency components in the
same BSS execution and at the same frequencies as those
shown in Fig. 6. We see some pattern similarity for the
same source. The correlation coefficients ρ(vf

i , vg
j ) for these

amplitude envelopes are
2
4

ρ(vf
1 , vg

1) ρ(vf
1 , vg

2 ) ρ(vf
1 , vg

3 )

ρ(vf
2 , vg

1) ρ(vf
2 , vg

2 ) ρ(vf
2 , vg

3 )

ρ(vf
3 , vg

1) ρ(vf
3 , vg

2 ) ρ(vf
3 , vg

3 )

3
5 =

2
4

0.29 0.05 −0.14
0.11 0.55 −0.11

−0.14 −0.12 0.66

3
5 .

(32)
We observe that ρ(vf

i , vg
j ) is positive for two sequences

originating from the same sound source, and ρ(v f
i , vg

j ) has
a small value around zero for those originating from two
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Fig. 9. score [Q] values defined in (25) calculated for every pair of
frequencies. A case of the separation of three sources with two microphones.
A larger number indicates a higher confidence in the permutation alignment
between the corresponding two frequencies. Posterior probability sequences
generally yield higher score [Q] values (1.11 in average) than amplitude
envelopes (0.54 in average).

different sources. For (32), the score value is 1.85, which is
smaller than 2.66 that (23) has.

Figure 9 shows score values for every pair of frequencies.
We can see that posterior probability sequences generally
exhibit higher score values, i.e., there is a clearer contrast
between same-source pairs and different-source pairs. This
means that a posterior probability sequence has an advantage
over an amplitude envelope in that permutation alignment is
performed correctly and with more confidence.

A major difference between posterior probability sequences
and amplitude envelopes can be found in the off-diagonal
elements of a permutation aligned Q matrix (24), i.e., the
correlation coefficients of two sequences from different sound
sources. For posterior probability sequences, those correlations
tend to be negative. This is because of the exclusiveness of a
posterior probability. Namely, if the posterior probability for a
class is high, that probability for another class is automatically
low. The tendency helps in deciding permutations: pairing two
sequences originating from different sources can clearly be
avoided with a negative correlation.

V. EXPERIMENTS

A. Experimental Setups and Evaluation Measure

To verify the effectiveness of the proposed method, we con-
ducted experiments designed to separate four speech sources

TABLE I

EXPERIMENTAL CONDITIONS

Number of microphones M = 3
Number of sources N = 4
Source signals Speeches of 6 s
Reverberation time RT60 = 130 ∼ 450 ms
Sampling rate fs = 8 kHz or 16 kHz
STFT frame size L = 1024 (8 kHz) or 2048 (16 kHz)

128 ms
STFT frame shift S = 256 (8 kHz) or 512 (16 kHz)

32 ms

Distance: 120cm

Loudspeakers

Microphones
On edges of 4cm triangle 70°

150°
245°

315°

Room size: 4.45 × 3.55 × 2.5 m
Height of microphones and loudspeakers: 120 cm

Fig. 10. Experimental setup

with three microphones. The experimental conditions are sum-
marized in Table I. We measured impulse responses hjk(l)
in a real room under the conditions shown in Fig. 10. The
mixtures at the microphones were constructed by convolving
the impulse responses and 6-second English speech sources.

The separation performance was evaluated in terms of the
signal-to-distortion ratio (SDR) defined in [34]. To calculate
SDRk for output k, we first decompose the separated signals
yk1, . . . , ykM as

ykj(t) = simg
jk (t) + yspat

kj (t) + yint
kj (t) + yartif

kj (t) (33)

where yspat
kj (t), yint

kj (t), and yartif
kj (t) are unwanted error com-

ponents that correspond to spatial (filtering) distortion, inter-
ferences, and artifacts, respectively. These can be calculated
by using a least-squares projection if we know all the source
images simg

jk for all j and k. Then, SDRk is calculated by the
power ratio between the wanted and unwanted components

SDRk = 10 log10

∑M
j=1

∑
t simg

jk (t)2∑M
j=1

∑
t

[
yspat

kj (t) + yint
kj (t) + yartif

kj (t)
]2 .

B. Separation Results with Various Reverberation Times

This subsection reports experimental results when the room
reverberation time was varied from 130 to 450 ms by keep-
ing/detaching some of the cushion walls in the experiment
room. Figure 11 shows the results. We examined six methods
as shown in the figure. The first three methods were actual BSS
methods. “Posterior” corresponds to the proposed method.
“TDOA” and “Envelope” correspond to existing methods
based on TDOA estimation [20] (compared in Subsection
II-E), and based on amplitude envelope-based permutation
alignment [10] (compared in Subsection IV-E), respectively.
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Fig. 11. Experimental results with various room reverberation times. Each
point shows the averaged SDR over eight combinations of speeches under a
specific experimental condition, which was defined by the reverberation time,
the T-F mask design methodology and the permutation alignment method
(detailed explanations are provided in the main text). The sampling rate was
8 kHz for the TDOA-based method to work properly without being affected
by spatial aliasing.

The other three methods were cheating methods that utilized
source information. They were introduced to reveal the upper
limit of the T-F masking separation performance and also to
reveal the cause of separation performance degradation in the
proposed BSS method. For “Ideal mask”, we designed ideal
T-F masks by

Mk(τ, f) =

{
1 if

∑
j |simg

jk |2 ≥
∑

j |simg
jk′ |2 , ∀k′ �= k

0 otherwise.

For “Ideal bin-wise mask”, ideal frequency bin-wise T-F
masks were designed in the same way as above, but permuta-
tion alignment were conducted by the proposed method using
posterior probabilities, which were confined to 0 or 1 because
of the ideal masks. With “Ideal permutation”, T-F masks
were designed by the method proposed in Section III, and
then permutation ambiguities were ideally aligned by using
the information on the source images s img

jk . More specifically,

true posterior probability sequences {uf
k} were calculated by

using the source information, and then the permutation Π f for
each frequency f was calculated so that score[Q({vf

i }, {uf
k})]

was maximized.
We observe the following tendencies from the results. Our

proposed method “Posterior” performed the best among the
three actual BSS methods. “TDOA” performed moderately
well only in the low reverberant (130 ms) condition. “Enve-
lope” did not perform very well in many cases. We found that
there was little difference between the separation performance
of “Posterior” and “Ideal permutation”, or “Ideal mask”
and “Ideal bin-wise mask”. This means that the proposed
permutation alignment method utilizing posterior probabilities
provided close to optimal performance. On the other hand,
there was a large difference between “Ideal mask” and “Ideal
permutation”, especially with long reverberations.

The program was coded in Matlab and run on an Intel
Core i7 965 (3.2GHz) processor. The computational time was
around 5 seconds for a set of 6-second speech mixtures. For
permutation alignment by “Posterior” and “Envelope”, we
employed two centroids in the multiple-centroid cost function
(29).

#ce=1 #ce=2 #ce=3 #ce=4 #ce=5 Ideal
2

3

4

5

6

7

S
D

R
 (

dB
)

Fig. 12. Separation performance measured in SDR when employing multiple
centroids in permutation alignment. The number of centroids varies from 1
to 5. Results with ideal permutations are also reported. A case with 270 ms
room reverberation time, and 16 kHz sampling frequency. Separation runs of
eight combinations of speech sources were evaluated. The error bars represent
one standard deviation.

C. Effect of Permutation Alignment with Multiple Centroids

In the experiments described above, we used two centroids
for modeling a source activity, where the sampling rate was
8 kHz. Even with a single centroid, the proposed permutation
alignment method “Posterior” worked well, and the SDR
numbers were almost the same with two centroids.

However, when we increased the sampling rate to 16 kHz,
the effect of multiple centroids became prominent. Figure 12
shows the SDR numbers for the separation of speech mixtures
sampled at 16 kHz. We see that increasing the number of cen-
troids from one or two to three had a great impact on the stable
realization of good separation performance, whereas further
increases in the number of centroids had little effect. These
results support the discussion in Sect. IV-D.2 numerically.

D. SiSEC 2008 data

This subsection reports experimental results for publicly
available benchmark data. We applied the proposed method
to a set of data organized in the Signal Separation Evaluation
Campaign (SiSEC 2008) [35]. We used the first development
data (dev1.zip) in “Under-determined speech and music
mixtures” data sets. Only live recording “liverec” data
were used. Table II shows separation results measured in
SDR. We found that the results for speech mixtures were sub-
stantially good compared to those reported in [35]. However,
for music mixtures (wdrums and nodrums), the separation
performance was not good. This is because the instrumental
components, which were to be separated in the task, were
often synchronized to each other. This situation was very
difficult for the proposed permutation alignment method to
deal with, because it is based on source activity sequences.
An effective alternative way [36] is to employ nonnegative
matrix factorization [37] in the context of convolutive BSS.

E. Live recording

We also made recordings in a room using a portable audio
recorder with two microphones, and separated the mixtures of
three speeches. Sound examples can be found on our web site
[38].
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TABLE II

SEPARATION RESULTS FOR SISEC 2008 RECORDED DATA (IN SDR)

RT60 = 130 ms RT60 = 250 ms
mic. spacing 5cm 1m 5cm 1m
male3 5.73 dB 6.46 dB 4.17 dB 5.95 dB
female3 6.45 dB 8.69 dB 5.91 dB 7.45 dB
male4 3.31 dB 4.44 dB 2.62 dB 3.41 dB
female4 3.92 dB 5.82 dB 3.49 dB 4.59 dB
wdrums — — 0.04 dB -0.69 dB
nodrums — — 2.52 dB 1.20 dB
average 5.60 dB 3.39 dB

VI. CONCLUSION

This paper presented a method for underdetermined convo-
lutive blind source separation. The two stage structure of the
Clustering part considerably improves the separation perfor-
mance compared with widely used methods based on time-
difference-of-arrival (TDOA). Permutation ambiguities that
occur in the first stage are aligned by utilizing the information
on posterior probabilities obtained in the first stage. This per-
mutation alignment method performs better than a traditional
method based on amplitude envelopes. For mixtures sampled
at 16 kHz rate, the use of multiple centroids effectively models
the source activities and yields better permutation alignment
than a single centroid. Experimental results support these ar-
guments very well. By comparing the separation performance
in Fig. 11 with certain cheating methods (utilizing source
information), we can see that there is room for improvement
as regards frequency bin-wise clustering and separation. This
could constitute future work.

APPENDIX

In the M-step shown in Subsection III-B, Q(θ, θ ′)+log p(θ)
by (17) is maximized with the parameter set θ by (14). This
appendix shows the derivation of the parameter update rules.

As regards ai, it has the unit-norm constraint ||ai||2 = 1.
Thus, with a Lagrange multiplier λ, we consider a function

L1(ai, λ) = Q(θ, θ′) + log p(θ) + λ(||ai||2 − 1) .

Setting the derivative of L1(ai, λ) with respect to ai, we obtain

Rai = − λ

σ2
i

ai

with R defined by (18). Therefore, at stationary points, a i

should be an eigenvector of R. By going back to the density
function (12), we see that the eigenvector corresponding to the
maximum eigenvalue gives the maximum of L1(ai, λ).

The update rule (19) is easily obtained by the derivative of
Q(θ, θ′) with respect to σ2

i .
As regards αi, the property of mixture ratios

∑N
i=1 αi = 1

should be satisfied. Thus, again with a Lagrange multiplier λ,
we consider a function

L2(αi, λ) = Q(θ, θ′) + log p(θ) + λ(
∑N

i=1 αi − 1) .

Setting the derivative of L2(αi, λ) with respect to αi for i =
1, . . . , N , we obtain∑T

τ P (Ci|x(τ), θ′) + φ− 1 + αiλ = 0

for i = 1, . . . , N . Summing these up with i = 1, . . . , N , we
have

λ = −[T + N · (φ − 1)] .

Then, we have (20).
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