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This paper presents a method for estimating location information about multiple sources.
The proposed method uses independent component analysis (ICA) as a main statistical tool.
The nearfield model as well as the farfield model can be assumed in this method. As an
application of the method, we show experimental results for the direction-of-arrival (DOA)
estimation of three sources that were positioned 3-dimensionally.

Introduction

Source localization is a basic and important technique in array signal processing not
only for wireless communication systems, but also for audio/speech processing systems
[1, 2]. Many source localization methods have been proposed. A well-known method is
the MUSIC (MUltiple SIgnal Classification) algorithm [3]. It identifies the noise subspace
with second order statistics and searches for location parameters that orthogonalize the
steering vector and the noise subspace. The proposed ICA-based method, on the other
hand, employs higher order statistics and directly identifies basis vectors, each of which
contains the location information about a source. Consequently, the resolution of source
localization for a multiple source case is superior with the ICA-based method [4], and it is
easy to adapt it to the nearfield model as well as the farfield model.

The ICA-based source localization technique is a by-product of research on frequency-
domain blind source separation (BSS), where the permutation ambiguity of the ICA solu-
tion in each frequency bin should be aligned in order to reconstruct time-domain signals
properly [5]. One of the approaches for aligning this permutation ambiguity involves clus-
tering estimated source locations [6–9]. Earlier works [6, 7] calculated directivity patterns
from the separation matrix W obtained by ICA, and then searched for null directions,
which correspond to the directions of sources [10]. However, it is simpler and more ef-
fective to estimate the directions directly from the basis vectors ai, which are given by the
pseudoinverse of W. The method presented in this paper is based on this idea.

Independent Component Analysis

We consider a situation where N sources are convolutively mixed and observed at
M sensors. Convolutive mixtures in the time domain can be approximated as multiple
instantaneous mixtures in the frequency domain:

x(f, τ) =
∑N

i=1 hi(f)si(f, τ), (1)

where x(f, τ) = [x1(f, τ), . . . , xM (f, τ)]T is a sensor vector at frequency f and frame
index τ , and hi(f) = [h1i(f), . . . , hMi(f)]T is the vector of the frequency responses from
source si(f, τ) to all M sensors. We obtain only x(f, τ) by applying the short-time Fourier
transform (STFT) to time-domain sensor observations.

The first step of the proposed method is to solve complex-valued ICA

y(f, τ) = W(f)x(f, τ), (2)

where y(f, τ) = [y1(f, τ), . . . , yN (f, τ)]T is a vector of separated signals and W(f) is an
N×M separation matrix. There are various algorithms available for ICA as summarized in
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Figure 1: Nearfield (left) and farfield (right) model

e.g. [11]. Then, we calculate the Moore-Penrose pseudoinverse W+ (which is equivalent
to the inverse W−1 if N = M ) of W

[a1, · · · ,aN ] = W+, ai = [a1i, . . . , aMi]T . (3)

It is not difficult to make W invertible by using an appropriate ICA procedure, such as
whitening followed by unitary transformation (e.g. FastICA [11]). By multiplying both
sides of (2) by W+, the sensor vector x(f, τ) is represented by a linear combination of
basis vectors a1, . . . ,aN :

x(f, τ) =
∑N

i=1 ai(f)yi(f, τ). (4)

By comparing (1) and (4), we observe the following fact. If the ICA algorithm works
well and the outputs y1, . . . , yN are the estimation of the sources s1, . . . , sN , then the basis
vectors a1, . . . ,aN are also estimations of the mixing vectors h1, . . . ,hN up to permutation
and scaling ambiguity: ai = αihΠ(i). Here, scalar αi represents scaling ambiguity and
Π : {1, . . . , N} → {1, . . . , N} represents permutation ambiguity.

Source Localization with Nearfield Model

Let pj and qi be 3-dimensional vectors representing the locations of sensor j and
source i, respectively. To estimate source location qi from basis vectors ai and sensor po-
sitions pj , we approximate the frequency response hji(f) with a nearfield model (Fig. 1):

hji(f) =
1

||qi − pj ||e
2πfc−1(||qi−pj ||−||qi||), (5)

where c is the propagation velocity of the signals. We assume that the phase depends on
the difference between the distances ||qi − pj || − ||qi|| from the source to the sensor and
to the origin o = [0, 0, 0]T . This makes the phase zero at the origin. In accordance with the
model (5), the ratio between two elements aji, aj′i of the same basis vector ai provides the
key equation for source localization:

aji

aj′i
=

αihji

αihj′i
=
||qi − pj′ ||
||qi − pj|| e

2πfc−1(||qi−pj ||−||qi−pj′ ||), (6)

where the scaling ambiguity αi is canceled out by calculating the ratio. The permutation
ambiguity still remains. However, if we estimate the location qi for all i = 1, . . . , N , the
set of all estimated locations does not depend on the permutation.

The set of vectors qi in the argument of (6)

||qi − pj || − ||qi − pj′ || = arg(aji/aj′i)
2πfc−1

. (7)
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Figure 2: Source localization by the intersection of two hyperboloids and a sphere

defines a surface where the difference between the distances from pj and pj′ is constant.
The surface is one sheet of a two-sheeted hyperboloid. Alternatively, the modulus of (6)

||qi − pj′ ||
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(8)

defines a sphere where the ratio of the distances from pj and pj′ is constant. With these
two equations (7) and (8), we can estimate the possible location qi of source si. Such a
hyperboloid and sphere are defined for a pair of sensors j and j′. If we select another pair,
a different hyperboloid and sphere are obtained. In this way, the location qi is estimated as
the intersection of several hyperboloids and spheres. An example is shown in Fig. 2.

DOA Estimation with Farfield Model

Although it is useful to estimate a 3-dimensional location, calculating the intersections
of hyperboloids and spheres is computationally demanding. There are many cases where it
is sufficient to estimate just the DOA of source si. If we assume that the source location qi

is far from sensors pj and pj′ , (7) can be approximated as a farfield model (Fig. 1)

(pj − pj′)T
qi

||qi|| =
arg(aji/aj′i)

2πfc−1
. (9)

The set of vectors qi satisfying (9) represents a cone [8], which is the asymptotic surface
of the corresponding hyperboloid (7). The intersections of several cones specify the DOA
of a source. Let us assume that we select u cones whose corresponding sensor pairs are
(j1, j

′
1), . . . , (ju, j′u). Then, the set of equations (9) for the u pairs is represented as

D
qi

||qi|| =
ri

2πfc−1
, (10)

where D = [pj1−pj′1 , . . . , pju−pj′u ]T, ri = [ arg(aj1i/aj′1i), . . . , arg(ajui/aj′ui) ]T .
In practical situations, there is no exact solution for (10) because the u conditions do not
coincide exactly. We typically solve it in the least-square sense by using the Moore-Penrose
pseudoinverse [9]:

qi

||qi|| =
D+ri

2πfc−1
. (11)

If rank(D) ≥ 3, the set of vectors qi that satisfy (11) represents a line in 3-dimensional
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Figure 3: 3-dimensional arrangement of eight microphones and three loudspeakers (left)
and DOA estimation results for this case (right)

space, and thus the DOA of a source i is estimated as qi(f)
||qi(f)|| .

The left photograph in Fig. 3 shows a case where eight microphones and three loud-
speakers are arranged 3-dimensionally, and the right plot shows the DOA estimations for
this case. Each point shows a location vector normalized to unit norm qi(f) ← qi(f)

||qi(f)|| .
The estimations are obtained for all frequencies f and all output indexes i. As shown in
the plot, they form clusters, each of which corresponds to the location of each source.
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