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Abstract— The technique of blind source separation (BSS) has
been well studied. In this paper, we apply the BSS technique,
particularly based on independent component analysis (ICA), to
a meeting situation. The goal is to enhance the spoken utterances
and to estimate the location of each speaker by means of multiple
microphones. The technique may help us to take the minutes of
a meeting.

I. INTRODUCTION
The theory and algorithms of blind source separation (BSS)

and independent component analysis (ICA) became popular in
the signal processing community, as many textbooks [1]–[3]
have been published. One of the well recognized applications
of ICA/BSS is the separation of speeches mixed in a real-
room reverberant environment (i.e. solving a cocktail party
problem). The difficulty of this problem lies in the fact that
the mixing system is not simply instantaneous but convolutive.
Thus, additional effort has been devoted to the separation of
convolutive speech mixtures by many researchers in recent
years, as reported in many papers [4]–[12]. Some of these pa-
pers describe effective methods that can attain successful sep-
aration, namely an improvement in the signal-to-interference
ratio (SIR) of 10∼15 dB or more, for real recorded speech
mixtures. However, the situations are commonly well set up
so that these conditions are satisfied:
1) The mixing system is roughly time-invariant.
2) All speakers are active most of the time.
3) The number of speakers is known, and less than or equal
to the number of microphones.

This paper reports a trial where BSS techniques are applied
to a meeting situation. The goal is to obtain the enhanced
spoken utterances of each speaker and to identify the loca-
tion of each speaker from the signals observed at multiple
microphones. It should be noted that the above conditions are
not necessarily met in a meeting situation. First, it is hard to
assume time-invariance of the mixing system for hundreds or
thousands of seconds of observed signals. Our approach here is
to apply block processing to signals of several seconds where
time-invariance can be assumed. Second, speaker activity is
non-stationary in a meeting, and the second condition in the
above list is basically not met. If a person speaks continuously
in one block and then falls silent throughout the next block,
the separation filters of the BSS system change drastically.
If such situations happen frequently, a speaker in the specific
BSS output may change across blocks. We call this problem a
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block-wise permutation problem, and propose a solution based
on speaker localization in this paper.
As related work, there are many meeting room projects (e.g.

[13]–[15]). The goal of such projects is to develop techniques
for the transcription, summarization and understanding of a
meeting. Of the many research topics in this field, speaker
diarization [16], [17], which identifies when each participant
speaks, is one that is strongly related to the goal of this paper.
However, they generally assumed that at most one speaker
is active at a time, and BSS techniques have not yet been
substantially considered in these projects.
This paper is organized as follows. Section II presents an

overview of the proposed method, which basically consists of
block-wise BSS and speaker localization. An implementation
of the block-wise BSS is presented in Sec. III. Since we
employ a small size microphone array in this trial, where
the microphone spacing is around 4 cm, we focus only on
the direction of each speaker in the processing of speaker
localization. Therefore, a method for estimating the direction-
of-arrival (DOA) of each speaker is presented in Sec. IV. Also,
the clustering of such estimated DOAs for aligning block-wise
permutations is explained in the same section. Experimental
results are shown in Sec. V, and Sec. VI concludes this paper.

II. GLOBAL FLOW

Figure 1 shows the global flow of the proposed method. We
apply block-wise BSS to several seconds (e.g. 10 seconds)
of observed mixtures, to obtain separated signals for each
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block. As discussed in the introduction, there is a possibility
that block-wise permutation occurs. The problem is solved
by estimating the DOA for each speaker in each block. To
accomplish this, we first estimate the mixing system from the
BSS results. And then the DOA of each speech is estimated
together with the array geometry. Finally, we permute the
outputs of block-wise BSS if necessary so that the same
speaker appears at the same BSS output.

III. BLOCK-WISE BSS
We can apply any method/approach [4]–[12] to the block-

wise BSS in Fig. 1. We here adopt a frequency-domain
approach similar to [6]–[10] for convolutive BSS. This section
explains the procedure in detail.
Figure 2 shows the system structure. First, sensor ob-

servations x1(t), . . . , xM (t) in the time domain sampled at
frequency fs are converted into frequency-domain time-series
signals x1(f, t), . . . , xM (f, t) by a short-time Fourier trans-
form (STFT) with frame size L:

xj(f, t)←
L/2−1∑

q=−L/2

xj(t + q)win(q) e−ı2πfq, (1)

for all discrete frequencies ∀f ∈ F = {0, 1
Lfs, . . . , L−1

L fs},
and for time t which is now down-sampled with a distance
equal to the frame shift. We typically use a window win(q)
that tapers smoothly to zero at each end, such as a Hanning
window win(q) = 1

2 (1 + cos 2πq
L ).

Next, ICA is employed in each frequency bin:

y(f, t) = W(f)x(f, t), ∀f ∈ F , (2)

where x = [x1, . . . , xM ]T is an observation vector, y =
[y1, . . . , yN ]T is a separated signal vector, andW is anN×M
separation matrix. We can apply any instantaneous ICA [1]–
[3] for the calculation of W. Then, we calculate a matrix A
whose columns are basis vectors ai,

A = [a1, · · · , aN ], ai = [a1i, . . . , aMi]T , (3)

in order to represent the vector x by a linear combination of
the basis vectors:

x(f, t) = A(f)y(f, t) =
N∑

i=1

ai(f)yi(f, t), ∀f ∈ F . (4)

IfW has the inverse, the matrix is given simply byA = W−1.
Otherwise it is calculated as a least-mean-square estimator

A = E{xyH}(E{yyH})−1 , (5)

which minimizes E{||x−Ay||2}. The notation ·H represents
the conjugate transpose of ·.
The next step is to solve the internal permutation prob-

lem, which is caused by the fact that ICA (2) is employed
independently in each frequency bin and ICA solutions have
permutation ambiguities. Many methods have been proposed
[6]–[10] for the internal permutation problem. However, we
employ a recently developed approach in the experiments,
which is explained in detail in a paper under review [18].
Whatever method we use, we calculate a permutation Πf :
{1, . . . , N} → {1, . . . , N} for each frequency bin f , and then
the separated signals and the basis vectors are permuted by

yi(f, t)← yΠf (i)(f, t), ai(f)← aΠf (i)(f), ∀i, f, t. (6)

so that the separated components yi originating from the same
source have the same index at all frequency bins.
Next, scaling ambiguities of the ICA solutions are aligned

by adjusting yi(f, t) to the observation xJ (f, t) of a selected
reference sensor J ∈ {1, . . . , M}:

yi(f, t)← aJk(f)yi(f, t), ∀i, f, t. (7)

We see in (4) that aJi(f)yi(f, t) is a part of xJ (f, t).
Finally, time-domain output signals yi(t) are calculated by

applying an inverse STFT (ISTFT) to the separated signals
yi(f, t).

IV. DOA ESTIMATION AND CLUSTERING

This section presents a method for estimating the DOAs
of sources from the result of block-wise BSS. The flow is
depicted in the lower half of Fig. 1.

A. Mixing system estimation

First, the mixing system is estimated from the BSS results.
If we take the frequency-domain approach, the frequency
responses of the mixing system have already been estimated
as A(f) by (5). If we take another approach (e.g. time-domain
BSS) for the block-wise BSS and thus obtain just the set of
time-domain mixtures x1(t), . . . , xM (t) and separated signals
y1(t), . . . , yN (t), the mixing system could be estimated as a
matrix of filters A(l) by performing a least-mean-square esti-
mation in the time domain. However, this is computationally
demanding if the filters are long. An efficient alternative way
is to convert the time-domain signals into frequency-domain
time-series signals by STFT (1), and apply the same equation
(5) to the frequency-domain vectors x(f, t) and y(f, t) to
estimate A(f) for each frequency f .
As shown in (3), the columns of matrix A are called basis

vectors. The i-th basis vector ai = [a1i, . . . , aMi]T is an
estimation of the way in which the source i was observed
at all the sensors. This means that we can estimate the source
directions by analyzing the basis vectors.
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B. TDOA estimation

Before estimating the DOA of a source, we estimate the
time-difference-of-arrival (TDOA) τ jj′

i of source i between
sensors j and j ′ (Fig. 3). We employ the well-known GCC-
PHAT (Generalized Cross Correlation PHAse Transform)
function [19], [20] for TDOA estimations. In the original
formulation, frequency-domain sensor observations x j(f, t)
and xj′ (f, t) are used in the GCC function. In our scenario,
however, sensor observations may contain multiple source
components, which disturb the estimation. On the other hand,
the basis vectors ai(f), f ∈ F , of source i represent infor-
mation specific only to source i. Thus, we use basis vector
elements aji(f) and aj′i(f) corresponding to sensors j and
j′ instead. The formula

τ jj′
i = argmaxτ

∑
f

aji(f)a∗j′i(f)
|aji(f)a∗j′i(f)|e

ı2πfτ , (8)

where ·∗ denotes the complex conjugate of ·, estimates the
TDOA of source i between sensors j and j ′.

C. DOA estimation with array geometry

Then, by incorporating the array geometry information, the
DOA of source i can be estimated. Let us define a DOA vector

qi =

⎡
⎣

cos θi cosφi

sin θi cosφi

sin φi

⎤
⎦

that has unit norm ||qi|| = 1. The azimuth and elevation
of the corresponding source i are represented by θ i and φi,
respectively.
If we start by considering a simple two-sensor case, such

as that shown in Fig. 4, the DOA vector of source i should
satisfy

pT
jj′qi = τ jj′

i · v (9)
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Fig. 5. DOA estimation with multiple sensor pairs

where pjj′ is a 3-dimensional vector representing the location
of sensor j relative to that of sensor j ′, τ jj′

i is the TDOA
estimated by (8), and v represents the signal velocity. The
possible solutions for the DOA vector qi in (9) represent a
cone, not a direction [10].
If we have more sensor pairs that provide additional equa-

tions, the direction can be specified as the intersection of
the cones given by the multiple equations. Figure 5 shows
a situation where we have four sensors and take three sensor
pairs into consideration. In such a case, we have the following
simultaneous linear equations for the DOA vector q i:⎡

⎣
pT

12

pT
23

pT
34

⎤
⎦qi =

⎡
⎣

τ12
i

τ23
i

τ34
i

⎤
⎦ v .

In most cases, such simultaneous linear equations do not have
an exact solution for qi because it is hard to obtain precise
array geometry information, and hard to estimate TDOAs
correctly in a real reverberant situation. Hence we practically
compromise with an approximated solution. An efficient way
[10] is to multiply the Moore-Penrose pseudo-inverse of the
array geometry matrix

D =

⎡
⎣

pT
12

pT
23

pT
34

⎤
⎦

to obtain

qi = D+

⎡
⎣

τ12
i

τ23
i

τ34
i

⎤
⎦ v ,

and then normalize it to unit-norm

qi =
qi

||qi|| .

D. DOA clustering and block-wise permutation alignment

So far, we have calculated DOA vectors qi for each block
and for each output of the block-wise BSS. Figure 6 shows
an example of calculated DOAs. These data were obtained for
the situation shown in Fig. 9, where we have four speakers
and four microphones. The DOA estimations are simply rep-
resented by the azimuth values θi in degrees, and the elevations
φi are all zero, since all the microphones were placed in
a 2-dimensional space in this case. There are four different
plot symbols, each of which corresponds to each of the BSS
outputs. As seen in Fig. 6, the BSS outputs of the speakers
interchange at some block transition points. This shows an
example of the block-wise permutation problem.
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Fig. 6. Unsorted DOA estimations from the results of block-wise BSS.

Fig. 7. Clustering DOA estimations into four classes

In order to align these block-wise permutations, we apply a
clustering algorithm to the DOA vectors to identify the DOA
cluster for each speaker. There are many clustering algorithms
that can be used for this purpose. In this paper we employ a
simple k-means algorithm [21], assuming that the number of
speakers is known a priori. Figure 7 shows the clustering result
applied to the DOA estimations shown in Fig. 6. In this figure,
DOA vectors are plotted on a unit circle since the microphone
array was 2-dimensional.
Based on the clustering result, we can permute the block-

wise BSS outputs so that the same speaker appears at the same
BSS output. Figure 8 shows the sorted DOA estimations. We
observe that the misalignments found in Fig. 6 are reduced.
Sometimes, someone is silent for the whole time in a block,

and consequently multiple DOA estimations belong to one
cluster in the block. In such a case, we preserve only the
DOA estimation whose corresponding separated signal is the
loudest, and reassign the other DOA estimations to other
clusters.

V. EXPERIMENTS

Figure 9 shows the meeting situation to which we applied
the BSS system. We have four speakers and four microphones
together with some noise sources such as desktop computers
(PC) and a projector. Each of the four human speakers was
sitting on a chair. The four microphones were arranged in
the horizontal 2-dimensional plane about 4 cm apart. The
reverberation time of the room was around RT60 = 350 ms.
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Fig. 8. Sorted DOA estimations from the results of block-wise BSS.
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We recorded mixed sounds consisting of human speech and
PC/projector noise as the input signals for the BSS sys-
tem. We also measured the impulse response hji(l) from a
source i to a microphone j for a quantitative evaluation of
the separation performance in terms of signal-to-interference
ratio (SIR) improvement. The improvement was calculated by
OutputSIRi− InputSIRi for each output i. These two types of
SIRs are defined by

InputSIRi = 10 log10

∑
t |

∑
l hJi(l)si(t− l)|2∑

t |
∑

k �=i

∑
l hJk(l)sk(t− l)|2 (dB),

OutputSIRi = 10 log10

∑
t |yii(t)|2∑

t |
∑

k �=i yik(t)|2 (dB),

where si is the i-th source, J ∈ {1, . . . , M} is the index of a
selected reference sensor, and yik(t) is the component of sk

that appears at output yi(t), i.e. yi(t) =
∑N

k=1 yik(t).
Examples of recorded mixtures and separated sounds are

shown in Figs. 10 and 11, respectively. The utterances of the
speakers were well separated, and also the PC/projector noise
was reduced, as a result of BSS. In an informal listening
test, however, we observed that some leaks could still be
heard. Estimated DOAs for recorded mixtures have already
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Fig. 10. Four channels of observed mixed signals at the four microphones
in the meeting situation. 30 second excerpts.

Fig. 11. Separated signals generated from the mixed signals shown in Fig. 10
with the BSS system.

been shown in Fig. 8, whose result was obtained through the
intermediate results shown in Figs. 6 and 7.
An evaluation in terms of the SIR was conducted by

using the measured impulse responses and speech signals
drawn from a speech database. Table I shows the average
SIR improvements for 8 different speech combinations. We
performed tests using three different lengths (30, 60, and 90
seconds) of total data, while the block length for BSS was
10 seconds in all cases. To observe the effect of block-wise
permutation, we compare the results that we obtained when
block-wise permutations were aligned and untouched. As the
total data length increases, the SIR improvement decreases in
the untouched case. This is why the chance for block-wise
permutation increases as the total data length increases.

TABLE I
SIR IMPROVEMENTS. AVERAGE OF 8 SPEECH COMBINATIONS.

Block-wise permutation 30 seconds 60 seconds 90 seconds
Aligned 14.99 dB 15.54 dB 14.29 dB
Untouched 9.87 dB 7.98 dB 7.62 dB

VI. CONCLUSION
This paper discussed the application of BSS techniques to

a meeting situation. The proposed approach consists of block-
wise BSS and DOA clustering. The separation performance
is good in terms of SIR improvement (Table I) and with
the waveforms (Fig. 11). However, we can still hear another
speaker’s utterances and their reverberations in the separated
signals. Post-processing is a way to reduce such interference.
Other future work will include an online implementation and
tracking, a combination with a speech recognition system, and
the application to underdetermined cases where the speakers
outnumber the microphones.
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