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Abstract variables is not an expensive operation. Thus, such decom-
positions are easily detectable. In this paper, we show that

Simple disjunctive decomposition is a special case of Simple disjunctive decompositions using a 2-input function
logic function decompositions, where variables are divided at the output are also easily detectable. They can be detected
into two disjoint sets and there is only one newly introduced PY checking variable cofactors of the function, and this task
variable. This paper presents that many simple disjunctive is performed by traversing OBDD nodes.
decompositions can be found easily by detecting symmetric ~ For cases of simple disjunctive decompositions, it is
variables or Checking variable cofactors. We also propose not straightforward to construct the representations of new
an algorithm that constructs a new logic representation for functionsg andh, because decomposition test is performed
a simple disjunctive decomposition by assigning constanton the logic functionf of an original representation and
values to variables in the original representation. The al- We can obtain only functions fog and ~. Constructing
gorithm enables us to apply the decomposition with keep-Néw representations from scratch ignores good structures
ing good structures of the original representation. We have (for example, optimum sum-of-products forms or multi-
performed experiments to restructure fanout free cones oflevel forms) in the original representation, and moreover is

multi-level logic circuits, and obtained better results than time consuming. In this paper, we propose an algorithm
when not restructuring them. that constructs new |Og|C representations by assigning con-

stant values to variables in the original representation. By

. using the algorithm, we can apply simple disjunctive de-

1. Introduction compositions with keeping good structures in the original
representation.

Decomposition of a logic representation is an important This paper is organized as follows. In Section 2, we
operation in multi-level logic synthesis. A simple disjunc- give some definitions for simple disjunctive decompositions
tive decompositiorf (X,Y) = h(g(X),Y) isaspecialcase and symmetric variables. Section 3 shows our method to
of logic decompositions, where variables pfare divided  detect simple disjunctive decompositions of a function. In
into two disjoint sets,X andY’, andg is a single-output  Section 4, we show an algorithm that constructs new logic
function [1, 2, 3]. If a function has a simple disjunctive representations when a simple disjunctive decomposition
decomposition, we had better apply the decomposition toexists. Section 5 presents experimental results. We con-
obtain a good multi-level logic representation. clude this paper in Section 6.

To examine whether a simple disjunctive decomposi-
tion exists for f and X, we have to calculate all resul-
tant functions assigning constant valyés1}*! to X and
check whether the number of distinct functions is only two.
Recently, efficient methods [4, 5, 6] using an ordered binary 2.1. Simple disjunctive decomposition
decision diagram (OBDD) [7] have been proposed. In these
methods, all distinct functions are constructed in an OBDD A simple disjunctive decomposition of a function
with a variable order wheré precedes’”. Itis, however,  f(X Y): {0, 1}XI+IY] — {0,1} is of the form
difficult to find an appropriate variable sét that gives a
decomposition. The number of possible variable sets grows f(X,Y) =h(g9(X),Y),
exponentially with the number of variables.

In [8], we have shown that a set of symmetric vari- whereX andY are sets of variables such th¥tn Y = (),
ables is a good candidate faf that gives a decomposition. andg: {0,1}XI — {0,1} andh: {0,1}V+1 — {0,1}
Thanks to the idea of asymmetry [9], detecting symmetric are completely specified logic functions. The s&tandY

2. Preliminaries
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Figure 1. A simple disjunctive decompaosition

SDF(f, X) = { df,, df,}

are called thdbound setand thefree set In this papery is
called thesubfunction andh is called theémage

Ashenhurst [1] used a decomposition chart to examine
whether there exists a simple disjunctive decomposition. It

is a truth table where the columns correspond to the bound

set and the rows correspond to the free set. If the num-
ber of distinct column vectors is two, there exists a simple
disjunctive decomposition. In this paper, we defireetof
distinct functions SDF (f, X ) for a functionf and a bound
setX as follows;SDF(f,X) = {df | df = f(e,Y),Ve €
{0,1}X1}. It corresponds to a set of distinct column vec-

function invariant. A functiory is symmetric in{z;, z; } (or
{:L'ia wlj}) if and onIy i fa:la:; = fa::ac] (Or fa:ia:j = fa:;a:;)

For a complete specified function, symmetry is an
equivalence relation. Thus, symmetry in a set of variables
can be calculated from a set of symmetries in two variables.
We call the set of variables symmetric variable group.

For example, a functiofi = ab’c+d is symmetric in{a, b’}
and{¥', c}, and thereforda, v, c} is a symmetric variable
group.

In addition, we also use the following definitions found
in [10]. A function f is multiform symmetric in variables
z; andz; if fis symmetric in botHz;, z;} and{x;, ¥ }. A
function f is single-variable symmetricin z; in the space
x; = 1if z;'s two cofactors off,; are identical;fz/izj =
fz.z;- A function f is single-variable symmetric im; in
the spacer; = 0 if z;'s two cofactors offI; are identical;

If f has a symmetric variable group arfdis multi-
form symmetric (or single-variable symmetric) in a pair of
variables in the group, thefi is multiform symmetric (or
single-variable symmetric) in all pairs of variables in the

group.

3. Easily detectable simple disjunctive decom-
positions
This section shows that many simple disjunctive de-
compositions can be found easily by detecting symmetric
variables or checking variable cofactors.

3.1. By detecting symmetric variables

tors in a decomposition chart. Recently, several researchers

[4, 5, 6] have proposed a method to calcul&fer (f, X)
efficiently by constructing an OBDD of where variables
in X are ordered before variables¥h

When a simple disjunctive decomposition exists for
it can be expressed ds= g(X)' - dfo(Y) + g(X) - df1(Y),
where SDF(f,X) = {dfo(Y),df1(Y)}. Therefore,g is
obtained by replacindf,(Y") anddf; (Y") with 0 and 1, and
hisgivenbyh = ¢ - dfo(Y) + g - df1(Y).

Figure 1 shows an example. For a functipra= a’b +
cd, a simple disjunctive decomposition exists for a bound
set{a, b} becaus&DF(f,{a,b}) = {cd, 1} and the size is
two. The subfunctiom is obtained by replacindf, anddf;
withOand 1. Thug = a’b. Theimage i = ¢'-cd+g-1 =
cd+g.

2.2. Symmetric variables

The cofactors of f with respect tar; = 1 andx; =
0aref,, = flx1,...,2i—1,1,Zip1,. .., Tp) andfw; =
flz1, ..o @i-1,0,2541, ..., 2,), respectively.

Afunction f(x1,...,x,) issymmetricin {z;, z;} (or
{m;, 2 }) if the interchange of; andz; (or ;) leaves the

In [8], we have shown that a symmetric variable group
is a good candidate for the bound set that gives a decompo-
sition. Here, we summarize the decomposition procedure.

1. Detect the symmetric variable groups of a functfon
Symmetric variables can be detected at low computa-
tion cost by applying the idea of asymmetry [9] to fil-
ter out the possibility of symmetries, which is exam-
ined by depth-first traversals in an OBDD. As for pairs
of variables that are not filtered out by the asymmetry
check, we perform depth-first traversals in the OBDD
again to examine symmetries [8].

. If a symmetric variable group contains multiform
symmetric variablesf,, = f.»» andf,, = forp hold
for each variable paii,b € S. This leads to the size
of SDF'(f,S) is two, and there exists a simple disjunc-
tive decomposition off whose bound set i§. The
subfunction is obtained by replacing the two elements
of SDF(f,S) with 0 and 1. It is implemented in an
XOR gate.

. If a symmetric variable grougs contains single-
variable symmetric variables, we can invert some of



the variables irS such thatf,,, = f.y = fu holds 4. Constructing new logic representations

for each variable paiti, b € S. This leads to the size

of SDF(f,S) is two, and there exists a simple disjunc- In this section, we propose an algorithm that restruc-
tive decomposition off whose bound set iS. The  tyres alogic representation (for example, a sum-of-products
subfunction is obtained by replacing the two elements form or a multi-level form) after a simple disjunctive de-
of SDF(f,S) with 0 and 1. Itis implemented in an  composition is found. This algorithm is applicable to all

AND gate and some inverters. types of simple disjunctive decompositions, that is, it is not
4. For a symmetric variable group that contains nei- limited to ones described in Section 3. o
ther multiform symmetric variables nor single-variable Suppose that a functiori has a simple disjunctive

symmetric variables, calculatéDF(f,S) for the ~ decomposition formf(X,Y) = h(g(X),Y) = g(X)" -
groups and examine whether a simple disjunctive de- @o(Y) +g(X) - df1(Y). Let the logic representation gf
composition exists. If a decomposition exists, the sub- P&F'- The algorithm makes new logic representatiGrend
function is a symmetric function. H of g andh by assigning constant values to some variables

. i in F' instead of making them from scratch.
The computation cost of the above procedure is not

expensive because candidate bound sets are just symmejr
ric variable groups. We can say that decompositions whose
subfunction is a symmetric function are easily detectable.

1. Constructing arepresentation G of g(X)

At first, we show an algorithm that constructs a rep-
resentationG by assigning constant valuésthat satisfy
dfo(0) # df1(9) to variables inY” of F.

Here, we show another type of simple disjunctive de- 1 Calculatedp(Y) = dfo(Y) - df1(Y) anddy (V) =
compositions, which can be detected by checking variable dfo(Y) - dfy (V).

cofactors. They are ones whose image is a 2-input function.
There are five cases for such decompositions. We summer- 2. Select mintermsip, 6y < {0,1}Y! which satisfy

3.2. By checking variable cofactors

ize the forms and the conditions for existence. dp(dp) = 1ordy(dn) = 1, respectively. At least
o If for = (f.)', f has a decompositiofi = = @ f.. e?th_erzSp or 61_\; exists becauséfy(Y) anddf; (Y) are
distinct functions. There may be a case when ldgth
e If f,r =0, f has a decompositiofi=z - f,. anddy exist.
e If f, =0, f has a decompositiofi = =" - f. 3. If §p exists, make a new representatiGp by assign-
e If f,, =1, f has a decompositiofi = 2’ + f.. ing the mintermyp to the representatiof.
o If f, =1, f has a decompositiofi= x + f,. 4. If 0y exists, make a new representat@g by assign-

ing the mintermy i to the representatiof’ and invert-

For example, consider a functigh= a'd’c + a’bd + :
P an ing the output.

abd'+ab'c’. The two cofactors of variableare f,, = ¥'c+
bdandf, = bd +b'c/, andf, = (f,) holds. Thusf has a
simple disjunctive decomposition forifh=a @ (b'c + bd).

To examine whether such decompositions exist, all we
have to do is checking the above five conditions for each
variablex of f. This task can be done by traversing the The representatiot¥ made by the above procedure repre-
OBDD representation of. For all nodes labeled withx sents a functiory(X). The proof is as follows. Notice
and the functiony® thatv represents, we examine whether that f(X,Y) = g(X) - dfo(Y) + g(X) - df1(Y). Be-
fv satisfiesf?, = (f2), fX =0, f2 =0, f2 =1 causeip satisfiesdfy(dp) = 0 anddf,(dp) = 1, Gp rep-
or fi = 1. The functionsf?, and f; are represented by resents;(X)" -0+ g(X)-1 = g(X). Becausé, satisfies
the nodes pointed by the edgeswolabeled with 0 and 1. dfy(dy) = 1 anddf,(dx) = 0, Gy represents the comple-
Checking whethef;, = (f7)’ can be done in constanttime ment ofg(X)’ -1+ g(X) -0 = g(X)".
if negative edges [11] are introduced. Checking whether
2 =0, fr=0f) =1andf) = 1can also be done Example 1 Figure 2 shows an example. Suppose that a
in constant time. We can say that these decompositions ardunction f is given by a representatidn = a’bc’+(a+b')c.
also easily detectable. There exists a simple disjunctive decomposition for a bound

We have shown two types of simple disjunctive de- set{a,b} becauseSDF(f,{a,b}) = {¢,'}. Letdfy = ¢
compositions that are easily detectable. We can expect thaanddf; = ¢’. Here we make a representati6éhof g from
many of the other types of simple disjunctive decomposi- the representatioR’. At first, calculatelp = df - df; = ¢
tions are also detectable by applying the above two recur-and select a minterdi> = 0(= ¢’) that satisfieslp(dp) =
sively. 1. Then, makeGp = a’b by assigningip to F. In the

5. Eliminate useless sub-representationsGof and/or
G v whose output represent constant functions. Select
a better representation which costs less, and letdt be



Figure 2. Constructing new representations

same manner, calculatey = dfy - df] = ¢ and select a
mintermdy = 1(= ¢) that satisfiesiy (65) = 1. Then,
makeGy = (a + ')’ by assigningy to F' and inverting
the output. The costs @f p andG yy are the same. Here we
selectG p asG.

4.2. Constructing arepresentation H of h(g,Y)

Then we show an algorithm that constructs a represen-

tation H by selecting a variable from the bound seX and
assigning a constant valdehat satisfieg, (6) # g.(J) to
variables inX — {z} of F.

1. Select avariable in X.
2. Calculatel(X —{x}) = g (X —{2}) D g (X —{z}).

3. Select a minterms € {0, 1}XI=1 which satisfies
d(6) = 1. For any variabler in X, there exists a
minterm ¢ that satisfiey,’ (6) @ ¢,(d) = 1, unless
x is a redundant variable.

4. Make a representatiafi; by assigning the minterm
to the representatioR’.

5. Becausé(d) = 1, eitherg(d) = x or g(§) = 2/ holds.
If g(9) = , make a representatidii by replacing the
variablez in H; with g. If g(6) = 2/, make a rep-

resentationd by replacing the variable in H; with
/

g .

The representatiolf made by the above procedure rep-

resents a functioi(g,Y). The proof is as follows. No-
tice thatf = h(g(X),Y). Wheng(é) = =, Hy repre-
sentsh(z,Y), andH representd(g,Y). Wheng(d) = o/,
Hj representd:(z/,Y), and H representd:((¢'),Y) =
h(g,Y).

for each node {
if (v has a multiple fanout or
v is connected to a primary outpuf)
C = maximumfanoutfree_ congv);
newC' = simpledisjunctivedecompositiofC’);
if (cos{newC) < cos(C)) {
replacéC, newC);
¥

}
}

Figure 3. Restructuring procedure

Example 2 (Continued from Example 1) As shown in
Figure 2, the subfunction ig = a’b. Then we make
a representatiol{ of h from the representatio’. At
first, select a variable from the bound sef{a,b}. Cal-
culated = gy ® go = b® 0 = b and select a minterm
d = 1 (= b) that satisfiesi(§) = 1. Assigné to F' and
makeH; = a’¢ + ac. Because(d) = d/, replaces in H;
with ¢’ and obtainil = gc¢’ + ¢'c.

We can select an arbitrary variablefrom X. When
the given representatidfi is of a sum-of-products form, se-
lecting the variable that appears the least is a good heuristic
to obtain a smaller sum-of-products form. When the given
representatiorf’ is a multi-level circuit, selecting the vari-
able that appears the least or is nearest to the output is a
good heuristic to obtain a circuit of smaller area or fewer
levels.

5. Experiments

We performed experiments to restructure multi-level
logic circuits using simple disjunctive decompositions.
The procedure is shown in Figure 3, whermaxi-
mumfanoutfree.congv) returns the maximum fanout free
cone [12] of a node, simpledisjunctivedecompositiofC')
makes a new logic representation for a caneusing the
techniques described so far, asplac€C, newC) replaces
a coneC' with newC'. Only our procedure does not arrow
sharing common logic blocks among maximum fanout free
cones, nor simplification of nodes using don't cares. To per-
form these optimizations, we used SIS [13] after our proce-
dure.

Table 5 shows the experimental results for several
multi-level logic circuits [14] shown in the column “Cir-
cuit”. The column “SIS only” shows the results of the
“script.rugged” script of SIS. The column “SDD + SIS”
shows the results when our procedure was applied followed
by “script.rugged”. The subcolumns “literal” show the to-
tal numbers of literals in factored forms. The subcolumn
“ratio” shows the ratio of the number of literals of “SDD +
SIS” to that of “SIS only”. The subcolumns “time” give the



Table 1. Experimental results

Circuit SDD + SIS SIS only

name || literal ratio time literal time
alu2 356 0.99| 3.0+ 52.1 361 49.0
apex6 736 0.99| 1.7+ 10.0 743 7.5
apex?7 248 1.01| 0.6+ 2.2 245 2.1
b9 126 1.03] 0.7+ 1.3 122 1.1
c8 127 0.91| 0.6+ 0.8 139 1.0
cordic 62 0.97| 0.9+ 34 64 0.5
dalu 938 0.96| 4.9+ 69.1 979| 128.5
des 3454 0.99| 4.2+226.7|| 3472| 218.7
f51m 71 0.78] 04+ 04 91 1.2
frgl 136 1.00| 0.9+ 22.1 136 5.2
frg2 731 0.83| 3.8+ 20.0 886| 35.0
i8 987 0.97| 5.6+ 26.7|| 1015| 36.4
k2 1120 0.99| 3.1+ 93.5|| 1135| 95.4
lal 104 0.99|] 0.7+ 1.1 105 1.3
pml 48 0.96| 0.4+ 0.3 50 0.4
rot 672 1.00| 1.6+ 12.8 672| 12.6
sct 80 1.01] 0.6+ 0.9 79 1.3
t481 36 0.04| 14.9+ 0.2 881| 137.4
terml 137 0.81] 2.4+ 4.7 170 8.2
ttt2 189 0.86| 0.8+ 1.8 219 2.7
x1 297 1.00| 2.5+ 3.8 298 3.3
X3 759 0.97| 2.7+ 9.7 785| 10.0
x4 389 1.01| 1.4+ 4.2 385 4.4
z4ml 36 0.88| 0.4+ 0.2 41 0.5
Total 11839 0.91] 58.9+568.0| 13073| 763.7

CPU time in seconds on a Sun Ultra 2 Model 2200. In the
column “SDD + SIS”, the left hand number of “+” shows

ple disjunctive decomposition with keeping good structures
of the original representation. In experiments, we restruc-
tured multi-level logic circuits using these techniques. Al-
though we achieved some improvements, they were limited
within each fanout free cone. Thus the result heavily de-
pends on the initial circuit structure. In future work, we
want to develop more powerful techniques that restructures
logic representations across each fanout free cone.
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