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Abstract

Simple disjunctive decomposition is a special case of
logic function decompositions, where variables are divided
into two disjoint sets and there is only one newly introduced
variable. This paper presents that many simple disjunctive
decompositions can be found easily by detecting symmetric
variables or checking variable cofactors. We also propose
an algorithm that constructs a new logic representation for
a simple disjunctive decomposition by assigning constant
values to variables in the original representation. The al-
gorithm enables us to apply the decomposition with keep-
ing good structures of the original representation. We have
performed experiments to restructure fanout free cones of
multi-level logic circuits, and obtained better results than
when not restructuring them.

1. Introduction

Decomposition of a logic representation is an important
operation in multi-level logic synthesis. A simple disjunc-
tive decompositionf(X,Y ) = h(g(X), Y ) is a special case
of logic decompositions, where variables off are divided
into two disjoint sets,X andY , andg is a single-output
function [1, 2, 3]. If a function has a simple disjunctive
decomposition, we had better apply the decomposition to
obtain a good multi-level logic representation.

To examine whether a simple disjunctive decomposi-
tion exists forf andX, we have to calculate all resul-
tant functions assigning constant values{0, 1}|X| toX and
check whether the number of distinct functions is only two.
Recently, efficient methods [4, 5, 6] using an ordered binary
decision diagram (OBDD) [7] have been proposed. In these
methods, all distinct functions are constructed in an OBDD
with a variable order whereX precedesY . It is, however,
difficult to find an appropriate variable setX that gives a
decomposition. The number of possible variable sets grows
exponentially with the number of variables.

In [8], we have shown that a set of symmetric vari-
ables is a good candidate forX that gives a decomposition.
Thanks to the idea of asymmetry [9], detecting symmetric

variables is not an expensive operation. Thus, such decom-
positions are easily detectable. In this paper, we show that
simple disjunctive decompositions using a 2-input function
at the output are also easily detectable. They can be detected
by checking variable cofactors of the function, and this task
is performed by traversing OBDD nodes.

For cases of simple disjunctive decompositions, it is
not straightforward to construct the representations of new
functionsg andh, because decomposition test is performed
on the logic functionf of an original representation and
we can obtain only functions forg and h. Constructing
new representations from scratch ignores good structures
(for example, optimum sum-of-products forms or multi-
level forms) in the original representation, and moreover is
time consuming. In this paper, we propose an algorithm
that constructs new logic representations by assigning con-
stant values to variables in the original representation. By
using the algorithm, we can apply simple disjunctive de-
compositions with keeping good structures in the original
representation.

This paper is organized as follows. In Section 2, we
give some definitions for simple disjunctive decompositions
and symmetric variables. Section 3 shows our method to
detect simple disjunctive decompositions of a function. In
Section 4, we show an algorithm that constructs new logic
representations when a simple disjunctive decomposition
exists. Section 5 presents experimental results. We con-
clude this paper in Section 6.

2. Preliminaries

2.1. Simple disjunctive decomposition

A simple disjunctive decomposition of a function
f(X,Y ): {0, 1}|X|+|Y | → {0, 1} is of the form

f(X,Y ) = h(g(X), Y ),

whereX andY are sets of variables such thatX ∩ Y = ∅,
andg: {0, 1}|X| → {0, 1} andh: {0, 1}|Y |+1 → {0, 1}
are completely specified logic functions. The setsX andY
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Figure 1. A simple disjunctive decomposition

are called thebound setand thefree set. In this paper,g is
called thesubfunction andh is called theimage.

Ashenhurst [1] used a decomposition chart to examine
whether there exists a simple disjunctive decomposition. It
is a truth table where the columns correspond to the bound
set and the rows correspond to the free set. If the num-
ber of distinct column vectors is two, there exists a simple
disjunctive decomposition. In this paper, we define aset of
distinct functions SDF (f,X) for a functionf and a bound
setX as follows;SDF (f,X) = {df | df = f(ε, Y ),∀ε ∈
{0, 1}|X|}. It corresponds to a set of distinct column vec-
tors in a decomposition chart. Recently, several researchers
[4, 5, 6] have proposed a method to calculateSDF (f,X)
efficiently by constructing an OBDD off where variables
in X are ordered before variables inY .

When a simple disjunctive decomposition exists forf ,
it can be expressed asf = g(X)′ · df0(Y ) + g(X) · df1(Y ),
whereSDF (f,X) = {df0(Y ), df1(Y )}. Therefore,g is
obtained by replacingdf0(Y ) anddf1(Y ) with 0 and 1, and
h is given byh = g′ · df0(Y ) + g · df1(Y ).

Figure 1 shows an example. For a functionf = a′b +
cd, a simple disjunctive decomposition exists for a bound
set{a, b} becauseSDF (f, {a, b}) = {cd, 1} and the size is
two. The subfunctiong is obtained by replacingdf0 anddf1

with 0 and 1. Thusg = a′b. The image ish = g′·cd+g·1 =
cd+ g.

2.2. Symmetric variables

The cofactors of f with respect toxi = 1 andxi =
0 are fxi = f(x1, . . . , xi−1, 1, xi+1, . . . , xn) and fx′

i
=

f(x1, . . . , xi−1, 0, xi+1, . . . , xn), respectively.
A functionf(x1, . . . , xn) is symmetric in {xi, xj} (or

{xi, x′j}) if the interchange ofxi andxj (or x′j) leaves the

function invariant. A functionf is symmetric in{xi, xj} (or
{xi, x′j}) if and only if fxix′j = fx′

i
xj (or fxixj = fx′

i
x′
j
).

For a complete specified function, symmetry is an
equivalence relation. Thus, symmetry in a set of variables
can be calculated from a set of symmetries in two variables.
We call the set of variables asymmetric variable group.
For example, a functionf = ab′c+d is symmetric in{a, b′}
and{b′, c}, and therefore{a, b′, c} is a symmetric variable
group.

In addition, we also use the following definitions found
in [10]. A functionf is multiform symmetric in variables
xi andxj if f is symmetric in both{xi, xj} and{xi, x′j}. A
functionf is single-variable symmetricin xi in the space
xj = 1 if xi's two cofactors offxj are identical;fx′

i
xj =

fxixj . A function f is single-variable symmetric inxi in
the spacexj = 0 if xi's two cofactors offx′

j
are identical;

fx′
i
x′
j

= fxix′j .
If f has a symmetric variable group andf is multi-

form symmetric (or single-variable symmetric) in a pair of
variables in the group, thenf is multiform symmetric (or
single-variable symmetric) in all pairs of variables in the
group.

3. Easily detectable simple disjunctive decom-
positions

This section shows that many simple disjunctive de-
compositions can be found easily by detecting symmetric
variables or checking variable cofactors.

3.1. By detecting symmetric variables

In [8], we have shown that a symmetric variable group
is a good candidate for the bound set that gives a decompo-
sition. Here, we summarize the decomposition procedure.

1. Detect the symmetric variable groups of a functionf .
Symmetric variables can be detected at low computa-
tion cost by applying the idea of asymmetry [9] to fil-
ter out the possibility of symmetries, which is exam-
ined by depth-first traversals in an OBDD. As for pairs
of variables that are not filtered out by the asymmetry
check, we perform depth-first traversals in the OBDD
again to examine symmetries [8].

2. If a symmetric variable groupS contains multiform
symmetric variables,fab = fa′b′ andfab′ = fa′b hold
for each variable paira, b ∈ S. This leads to the size
of SDF (f, S) is two, and there exists a simple disjunc-
tive decomposition off whose bound set isS. The
subfunction is obtained by replacing the two elements
of SDF (f, S) with 0 and 1. It is implemented in an
XOR gate.

3. If a symmetric variable groupS contains single-
variable symmetric variables, we can invert some of



the variables inS such thatfa′b′ = fab′ = fa′b holds
for each variable paira, b ∈ S. This leads to the size
of SDF (f, S) is two, and there exists a simple disjunc-
tive decomposition off whose bound set isS. The
subfunction is obtained by replacing the two elements
of SDF (f, S) with 0 and 1. It is implemented in an
AND gate and some inverters.

4. For a symmetric variable group that contains nei-
ther multiform symmetric variables nor single-variable
symmetric variables, calculateSDF (f, S) for the
groupS and examine whether a simple disjunctive de-
composition exists. If a decomposition exists, the sub-
function is a symmetric function.

The computation cost of the above procedure is not
expensive because candidate bound sets are just symmet-
ric variable groups. We can say that decompositions whose
subfunction is a symmetric function are easily detectable.

3.2. By checking variable cofactors

Here, we show another type of simple disjunctive de-
compositions, which can be detected by checking variable
cofactors. They are ones whose image is a 2-input function.
There are five cases for such decompositions. We summer-
ize the forms and the conditions for existence.

• If fx′ = (fx)′, f has a decompositionf = x⊕ fx′ .
• If fx′ = 0, f has a decompositionf = x · fx.

• If fx = 0, f has a decompositionf = x′ · fx′ .
• If fx′ = 1, f has a decompositionf = x′ + fx.

• If fx = 1, f has a decompositionf = x+ fx′ .

For example, consider a functionf = a′b′c + a′bd +
abd′+ab′c′. The two cofactors of variablea arefa′ = b′c+
bd andfa = bd′+b′c′, andfa′ = (fa)′ holds. Thus,f has a
simple disjunctive decomposition formf = a⊕ (b′c+ bd).

To examine whether such decompositions exist, all we
have to do is checking the above five conditions for each
variablex of f . This task can be done by traversing the
OBDD representation off . For all nodesv labeled withx
and the functionfv thatv represents, we examine whether
fv satisfiesfvx′ = (fvx )′, fvx′ = 0, fvx = 0, fvx′ = 1
or fvx = 1. The functionsfvx′ andfvx are represented by
the nodes pointed by the edges ofv labeled with 0 and 1.
Checking whetherfvx′ = (fvx )′ can be done in constant time
if negative edges [11] are introduced. Checking whether
fvx′ = 0, fvx = 0, fvx′ = 1 andfvx = 1 can also be done
in constant time. We can say that these decompositions are
also easily detectable.

We have shown two types of simple disjunctive de-
compositions that are easily detectable. We can expect that
many of the other types of simple disjunctive decomposi-
tions are also detectable by applying the above two recur-
sively.

4. Constructing new logic representations

In this section, we propose an algorithm that restruc-
tures a logic representation (for example, a sum-of-products
form or a multi-level form) after a simple disjunctive de-
composition is found. This algorithm is applicable to all
types of simple disjunctive decompositions, that is, it is not
limited to ones described in Section 3.

Suppose that a functionf has a simple disjunctive
decomposition formf(X,Y ) = h(g(X), Y ) = g(X)′ ·
df0(Y ) + g(X) · df1(Y ). Let the logic representation off
beF . The algorithm makes new logic representationsG and
H of g andh by assigning constant values to some variables
in F instead of making them from scratch.

4.1. Constructing a representation G of g(X)

At first, we show an algorithm that constructs a rep-
resentationG by assigning constant valuesδ that satisfy
df0(δ) 6= df1(δ) to variables inY of F .

1. CalculatedP (Y ) = df0(Y )′ · df1(Y ) anddN (Y ) =
df0(Y ) · df1(Y )′.

2. Select mintermsδP , δN ∈ {0, 1}|Y | which satisfy
dP (δP ) = 1 or dN (δN) = 1, respectively. At least
eitherδP or δN exists becausedf0(Y ) anddf1(Y ) are
distinct functions. There may be a case when bothδP
andδN exist.

3. If δP exists, make a new representationGP by assign-
ing the mintermδP to the representationF .

4. If δN exists, make a new representationGN by assign-
ing the mintermδN to the representationF and invert-
ing the output.

5. Eliminate useless sub-representations ofGP and/or
GN whose output represent constant functions. Select
a better representation which costs less, and let it beG.

The representationG made by the above procedure repre-
sents a functiong(X). The proof is as follows. Notice
that f(X,Y ) = g(X)′ · df0(Y ) + g(X) · df1(Y ). Be-
causeδP satisfiesdf0(δP ) = 0 anddf1(δP ) = 1, GP rep-
resentsg(X)′ · 0 + g(X) · 1 = g(X). BecauseδN satisfies
df0(δN) = 1 anddf1(δN ) = 0, GN represents the comple-
ment ofg(X)′ · 1 + g(X) · 0 = g(X)′.

Example 1 Figure 2 shows an example. Suppose that a
functionf is given by a representationF = a′bc′+(a+b′)c.
There exists a simple disjunctive decomposition for a bound
set{a, b} becauseSDF (f, {a, b}) = {c, c′}. Let df0 = c
anddf1 = c′. Here we make a representationG of g from
the representationF . At first, calculatedP = df ′0 · df1 = c′

and select a mintermδP = 0(= c′) that satisfiesdP (δP ) =
1. Then, makeGP = a′b by assigningδP to F . In the
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Figure 2. Constructing new representations

same manner, calculatedN = df0 · df ′1 = c and select a
mintermδN = 1(= c) that satisfiesdN (δN) = 1. Then,
makeGN = (a + b′)′ by assigningδN to F and inverting
the output. The costs ofGP andGN are the same. Here we
selectGP asG.

4.2. Constructing a representation H of h(g, Y )

Then we show an algorithm that constructs a represen-
tationH by selecting a variablex from the bound setX and
assigning a constant valueδ that satisfiesgx′(δ) 6= gx(δ) to
variables inX − {x} of F .

1. Select a variablex in X.

2. Calculated(X−{x}) = gx′(X−{x})⊕gx(X−{x}).

3. Select a mintermδ ∈ {0, 1}|X|−1 which satisfies
d(δ) = 1. For any variablex in X, there exists a
minterm δ that satisfiesgx′(δ) ⊕ gx(δ) = 1, unless
x is a redundant variable.

4. Make a representationHI by assigning the mintermδ
to the representationF .

5. Becaused(δ) = 1, eitherg(δ) = x or g(δ) = x′ holds.
If g(δ) = x, make a representationH by replacing the
variablex in HI with g. If g(δ) = x′, make a rep-
resentationH by replacing the variablex in HI with
g′.

The representationH made by the above procedure rep-
resents a functionh(g, Y ). The proof is as follows. No-
tice thatf = h(g(X), Y ). Wheng(δ) = x, HI repre-
sentsh(x, Y ), andH representsh(g, Y ). Wheng(δ) = x′,
HI representsh(x′, Y ), andH representsh((g′)′, Y ) =
h(g, Y ).

for each nodev {
if ( v has a multiple fanout or

v is connected to a primary output ){
C = maximumfanout free cone(v);
newC = simpledisjunctivedecomposition(C);
if ( cost(newC) < cost(C) ) {

replace(C, newC);
}

}
}

Figure 3. Restructuring procedure

Example 2 (Continued from Example 1) As shown in
Figure 2, the subfunction isg = a′b. Then we make
a representationH of h from the representationF . At
first, select a variablea from the bound set{a, b}. Cal-
culated = ga′ ⊕ ga = b ⊕ 0 = b and select a minterm
δ = 1 (= b) that satisfiesd(δ) = 1. Assignδ to F and
makeHI = a′c′ + ac. Becauseg(δ) = a′, replacea in HI
with g′ and obtainH = gc′ + g′c.

We can select an arbitrary variablex from X. When
the given representationF is of a sum-of-products form, se-
lecting the variable that appears the least is a good heuristic
to obtain a smaller sum-of-products form. When the given
representationF is a multi-level circuit, selecting the vari-
able that appears the least or is nearest to the output is a
good heuristic to obtain a circuit of smaller area or fewer
levels.

5. Experiments

We performed experiments to restructure multi-level
logic circuits using simple disjunctive decompositions.
The procedure is shown in Figure 3, wheremaxi-
mumfanout free cone(v) returns the maximum fanout free
cone [12] of a nodev, simpledisjunctivedecomposition(C)
makes a new logic representation for a coneC using the
techniques described so far, andreplace(C, newC) replaces
a coneC with newC. Only our procedure does not arrow
sharing common logic blocks among maximum fanout free
cones, nor simplification of nodes using don' t cares. To per-
form these optimizations, we used SIS [13] after our proce-
dure.

Table 5 shows the experimental results for several
multi-level logic circuits [14] shown in the column “Cir-
cuit”. The column “SIS only” shows the results of the
“script.rugged” script of SIS. The column “SDD + SIS”
shows the results when our procedure was applied followed
by “script.rugged”. The subcolumns “literal” show the to-
tal numbers of literals in factored forms. The subcolumn
“ratio” shows the ratio of the number of literals of “SDD +
SIS” to that of “SIS only”. The subcolumns “time” give the



Table 1. Experimental results

Circuit SDD + SIS SIS only
name literal ratio time literal time
alu2 356 0.99 3.0+ 52.1 361 49.0
apex6 736 0.99 1.7+ 10.0 743 7.5
apex7 248 1.01 0.6+ 2.2 245 2.1
b9 126 1.03 0.7+ 1.3 122 1.1
c8 127 0.91 0.6+ 0.8 139 1.0
cordic 62 0.97 0.9+ 3.4 64 0.5
dalu 938 0.96 4.9+ 69.1 979 128.5
des 3454 0.99 4.2+226.7 3472 218.7
f51m 71 0.78 0.4+ 0.4 91 1.2
frg1 136 1.00 0.9+ 22.1 136 5.2
frg2 731 0.83 3.8+ 20.0 886 35.0
i8 987 0.97 5.6+ 26.7 1015 36.4
k2 1120 0.99 3.1+ 93.5 1135 95.4
lal 104 0.99 0.7+ 1.1 105 1.3
pm1 48 0.96 0.4+ 0.3 50 0.4
rot 672 1.00 1.6+ 12.8 672 12.6
sct 80 1.01 0.6+ 0.9 79 1.3
t481 36 0.04 14.9+ 0.2 881 137.4
term1 137 0.81 2.4+ 4.7 170 8.2
ttt2 189 0.86 0.8+ 1.8 219 2.7
x1 297 1.00 2.5+ 3.8 298 3.3
x3 759 0.97 2.7+ 9.7 785 10.0
x4 389 1.01 1.4+ 4.2 385 4.4
z4ml 36 0.88 0.4+ 0.2 41 0.5
Total 11839 0.91 58.9+568.0 13073 763.7

CPU time in seconds on a Sun Ultra 2 Model 2200. In the
column “SDD + SIS”, the left hand number of “+” shows
that of our procedure and the right hand number shows that
of “script.rugged”.

We achieved an overall improvement of 9% in the num-
ber of literals by using simple disjunctive decompositions.
The computation costs for simple disjunctive decomposi-
tions were generally small. In the circuits “f51m” and
“z4ml”, we found many simple disjunctive decomposition
forms whose output was a 2-input XOR gate. It seems to be
difficult for SIS to find such decomposition forms. There
was a drastic improvement for the circuit “t481”, where the
maximum fanout free cone of the primary output covered
the whole circuit and was represented in a tree structure of
2-input XOR/AND gates.

6. Conclusion

We have shown an efficient method to detect simple
disjunctive decompositions by detecting symmetric vari-
ables or checking variable cofactors. We also have proposed
an algorithm to construct a new logic representation from
the original representation, which enables us to apply a sim-

ple disjunctive decomposition with keeping good structures
of the original representation. In experiments, we restruc-
tured multi-level logic circuits using these techniques. Al-
though we achieved some improvements, they were limited
within each fanout free cone. Thus the result heavily de-
pends on the initial circuit structure. In future work, we
want to develop more powerful techniques that restructures
logic representations across each fanout free cone.
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