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ABSTRACT

This paper presents a new type of nonlinear function for in-
dependent component analysis to process complex-valued
signals, which is used in frequency-domain blind source
separation. The new function is based on the polar coor-
dinates of a complex number, whereas the conventional one
is based on the Cartesian coordinates. The new function is
derived from the probability density function of frequency-
domain signals that are assumed to be independent of the
phase. We show that the difference between the two types
of functions is in the assumed densities of independent com-
ponents. Experimental results for separating speech signals
show that the new nonlinear function behaves better than the
conventional one.

1. INTRODUCTION

Blind source separation (BSS) is a technique to estimate
original source signals using only sensor observations that
are mixtures of the original signals. Independent component
analysis (ICA) [1–3] works well for BSS, if the mixture is
instantaneous (non-convolutive). In a real room environ-
ment, however, sounds are mixed in a convolutive manner
with reverberations, and long reverberations make the prob-
lem difficult. One of the major methods to cope with rever-
berations is frequency-domain BSS [4–7]. In this approach,
a convolutive mixture in the time domain is converted into
multiple instantaneous mixtures in the frequency domain,
and ICA is applied to the instantaneous mixture in every
frequency bin.

In frequency-domain BSS based on ICA, we have to
deal with complex-valued signals. An extension of an ICA
algorithm to process complex numbers was proposed [4],
where the nonlinear function was based on the Cartesian co-
ordinates of a complex number: nonlinearities are applied to
the real and imaginary parts separately. This nonlinear func-
tion actually works and widely used by other researchers
[5–7]. However, there has been presented no appropriate
interpretation of this function. Moreover, it imposes an ad-
ditional constraint that prevents a learning algorithm from
converging unless a non-holonomic algorithm [8] is em-
ployed.

In this paper, we propose a new type of nonlinear func-
tion for an ICA algorithm to process complex numbers.1 It
is derived from the probability density function of frequency-
domain signals that are assumed to be independent of the
phase. As a result, the new function turns out to be based
on the polar coordinates of a complex number. We also give
an interpretation of the Cartesian coordinate based function.
With experimental results for separating speech signals in a
reverberant environment, we compare the behaviors of these
two types of nonlinear functions, and discuss the differences
between them.

2. FREQUENCY-DOMAIN BSS BASED ON ICA

Suppose that there areN source signalssi(t) that are mu-
tually independent, and these signals are observed atM mi-
crophonesxk(t) =

PN

i=1 hki(t) � si(t), wherehki(t) rep-
resents the impulse response from sourcei to microphone
k, and� denotes the convolution operator. The goal of BSS
is to separate observed signalsxk(t) into N unmixed sig-
nals yi(t) that are mutually independent. The separation
has to be done without knowing impulse responseshki(t)
nor original source signalssi(t).

To cope with convolutive mixtures, time-domain sig-
nalsxk(t) are converted into frequency-domain time-series
signalsXk(!;m) by a T -point windowed DFT (discrete
Fourier transform):

Xk(!;m) =

T�1X
�=0

xk(� +mS) w(�) e�j!� (1)

wherew(�) denotes a window function,S is a shifting in-
terval of the window, and! = 0; 1

T
2�; : : : ; T�1

T
2�. Now,

we haveX(!;m) = [X1(!;m); : : : ; XM (!;m)]T for each
frequency!. Then, an unmixingN �M matrixW(!) and
unmixed signalsY(!;m) = [Y1(!;m); : : : ; YN (!;m)]T

are obtained by solving an ICA problem:

Y(!;m) =W(!)X(!;m)

in each frequency bin.

1Our preliminary work on this topic is presented in [9].



Before explaining a complex-valued ICA, let us review
an ordinary real-valued ICA algorithm. Based on the in-
formation maximization approach [1, 2] combined with the
natural gradient [3], an unmixing matrixW is gradually im-
proved by the learning rule:

�W = � [I� h'(Y)YT i]W:

In this formula,� is a step size parameter that has an ef-
fect on the speed of convergence,h�i denotes the averaging
operator, and'(�) is a nonlinear function defined as:

'(Y) = ['(Y1); : : : ; '(YN )]
T

'(Yi) = �
@

@Yi
log p(Yi) (2)

wherep(Yi) is the probability density function (pdf) ofYi.
If we assumep(Yi) = �= cosh2(Yi), then the function is
hyperbolic tangent'(Yi) = 2 tanh(Yi), which is widely
used for super-gaussian distributions [1, 2].

In frequency-domain BSS, signals obtained by DFT are
complex. To deal with complex signals in ICA at each fre-
quency, the calculation of�W and the nonlinear function
were extended [4]:

�W = � [I� h�(Y)YH i]W

�(Yi) = tanh[re(Yi)] + j � tanh[im(Yi)] (3)

whereYH represents the conjugate transpose ofY, and
re(Yi) and im(Yi) are the real and imaginary parts ofYi,
respectively. In nonlinear function�(Yi), tanh(�) is ap-
plied separately in the real and imaginary parts. We call this
type of function a Cartesian coordinate based function.

Although function (3) actually works, no appropriate in-
terpretation of this function has been presented yet. More-
over, it has a convergence problem. Looking into the diag-
onal elements of[I � h�(Y)YH i], we see that�W con-
verges to a point that satisfies

h�(Yi)Y
�

i i = 1 (4)

whereY �

i is the complex conjugate ofYi. This makes the
average amplitude ofYi converge to some value. Extracting
the imaginary part of this equation, we have

htanh[im(Yi)]re(Yi)� tanh[re(Yi)]im(Yi)i = 0: (5)

Equation (5) imposes the additional constraint thatre(Yi)
andim(Yi) should be mutually independent. This constraint
is too strong, and there are cases where�W does not con-
verge well because of this. We show such a case in Sec. 5.

If we use non-holonomic algorithm [8]:

�W = � [diag(h�(Y)YH i)� h�(Y)YH i]W;

we can avoid constraint (5). Researchers [5, 6] used this al-
gorithm combined with a Cartesian coordinate based func-
tion. However, there is still another convergence problem,
which is also shown in Sec. 5.

3. NEW NONLINEAR FUNCTION

In this section, we propose a new type of nonlinear function
derived from the complex counterpart of equation (2):

�(Yi) = �
@

@Yi
log p(Yi): (6)

At first, we make an assumption on the densityp(Yi) of
a complex-valued signalYi in the frequency domain.

Assumption 1 Let Yi = jYij e
j��(Yi) be a complex-valued

signal. The pdfp(Yi) of Yi is independent of the phase:
p(Yi) = � � p(jYij), wherep(jYij) is the pdf ofjYij and�
is a constant.

This assumption is natural for a frequency-domain signal,
since the phase ofYi depends on the position of windows
w(�) of a windowed DFT (1) and the windows can be shifted
arbitrarily.

Then, let us consider the derivative of a real-valued func-
tion log p(Yi). Generally speaking, a real-valued function
whose argument is a complex is not analytic: the derivative
is not well-defined. Throughout this paper, we use the fol-
lowing definition of the derivative of a real-valued function.

Definition 1 Let Y = YR+ jYI be a complex andf(Y ) be
a real-valued function:C ! R. We define the derivative as:

@f(Y )

@Y

def
=

@f(Y )

@YR
+ j

@f(Y )

@YI
:

The relevance of this definition is in the fact that the result
points to a direction in whichf(Y ) increases. Using this
definition, we derive

@jY j

@Y
= (

@

@YR
+ j

@

@YI
)
q
Y 2
R + Y 2

I = ej��(Y ) (7)

which is used in the following theorem.

Theorem 1 Taking Assumption 1,�(Yi) in (6) is

�(Yi) = '(jYij) e
j��(Yi)

where'(jYij) = �
@

@jYij
log p(jYij)

Proof: By transforming equation (6) into

�(Yi) = �
@

@Yi
log� � p(jYij) = �

1

p(jYij)

@p(jYij)

@Yi

= �
1

p(jYij)

@p(jYij)

@jYij

@jYij

@Yi

and taking equation (7) into account, we prove the theorem.

Here, we have a nonlinear function based on the polar
coordinates of a complex number. By using this type of
function, constraint (5) does not appear. SinceY �

i is a com-
plex conjugate ofYi,

�(Yi)Y
�

i = '(jYij) e
j��(Yi) jYij e

�j��(Yi) = '(jYij) jYij:

Hence, the imaginary part of (4) becomes 0.
If we assume a super-gaussian distributionp(jYij) =

�= cosh(jYij), �(Yi) = tanh(jYij) e
j��(Yi).



Table 1. Experimental conditions

direction of sources �30Æ and40Æ (two sources)
distance of two microphones 4 cm
length of source signal 3 seconds
reverberation time TR = 300 ms
sampling rate 8kHz
window function w(�): Hanning
window length T = 2048 points (256 ms)
shifting interval S = 512 points (64 ms)
step size � = 0.2
gain parameter � = 100
number of iterations 100

4. INTERPRETATION OF THE CARTESIAN
COORDINATE BASED FUNCTION

In this section, we give an interpretation of the conventional
Cartesian coordinate based function (3). We assume the def-
initions in Sec. 3 in the following theorem.

Theorem 2 If p(Y ) = p(YR) � p(YI), then

�(Y ) = '(YR) + j � '(YI )

where'(YR)=� @
@YR

log p(YR), '(YI )=� @
@YI

log p(YI).

Proof: �(Y ) = � @
@YR

log p(Y )� j � @
@YI

log p(Y )

= � @
@YR

log p(YR)� j � @
@YI

log p(YI ).

This shows that a Cartesian coordinate based function as-
sumes that the pdfp(Y ) can be factorized into the product
of p(YR) andp(YI), and thereforeYR andYI are mutually
independent. We can notice that the additional constraint
(5) is satisfied if this assumption is met. By this theorem,
the assumed density in the nonlinearity (3) turns out to be
p(Y ) = �R= cosh(YR) � �I= cosh(YI).

5. EXPERIMENTS AND DISCUSSIONS

To compare the two types of nonlinear functions, we con-
ducted experiments to separate speech signals. Actually, we
used the following two nonlinear functions:

Polar �(Y ) = tanh(�jY j) ej��(Y )

Cartesian �(Y ) = tanh(�YR) + j � tanh(�YI )

and the following two gradients ofW

I �W = � [I� h�(Y)YH i]W
Diag �W = � [diag(h�(Y)YH i) � h�(Y)YH i]W:

The other conditions are summarized in Table 1.
The experiments were performed for 48 combinations (2

nonlinear functions, 2 gradients, and 12 pairs of speech sig-
nals). Figure 1 shows the overall results. The measurement
is the average of two output SNRs (signal-to-noise ratios) in
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Fig. 1. SNRs compared betweenPolar andCartesian

dB. Each point represents the results ofPolar andCartesian
with the same gradient and with the same combination of
speech signals.

In order to compare the results as correctly as possible,
we avoided the influence of the permutation problem [5–7]
of frequency-domain BSS. We selected the best permuta-
tion by actually calculating the SNR in each frequency bin.
Therefore, the results in Fig. 1 are ideal ones under the con-
dition that the permutation problem is perfectly solved. Be-
fore applying ICA, we whitened observed signalsX to be
uncorrelated and to have unit variances. This pre-process
was very important to make the ICA algorithm stable es-
pecially for theDiag cases, where equation (4) is not con-
cerned. Without this process, theDiag cases could have
exhibited irregular convergence speeds among the different
frequency bins.

We can see that the result ofPolar is better than that of
Cartesian in most cases. At first, we discuss the additional
constraint (5) imposed in theCartesian–I case. Figure 2
shows the values of[I � h�(Y)YH i] at some frequency
bin. The horizontal axis corresponds to the number of it-
erations. The first graph shows the absolute values of each
element for theCartesian–I case. We see oscillations that
hinder convergence. They come from the imaginary parts
of the diagonals as shown in the second graph. If we use a
polar coordinate based function, we can eliminate such os-
cillations as discussed in Sec. 3. The third graph shows the
Polar–I case. We can see a smooth convergence. Clearly,
the mutual information amongY is well minimized in this
case unlike in theCartesian–I case.

If we useDiag as the calculation of�W, we can elimi-
nate the additional constraint (5) even in theCartesian case.
Accordingly, by investigating the results ofDiag, we can
see the differences that purely come from the difference
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Fig. 2. Values of[I� h�(Y)YH i]

of the nonlinearities betweenPolar andCartesian. In fact,
we found another convergence problem in aCartesian–Diag
case. Figure 3 shows the trajectory of elementW11 ofW at
some frequency bin. We see that the direction of the move-
ment changes gradually inPolar–Diag, whereas it changes
sharply and frequently inCartesian–Diag. The difference
comes from the assumed densities, as discussed in Sec. 3
and Sec. 4. Figure 4 shows the contour and gradient of
� log p(Y ), being p(Y ) = �= cosh(� jY j) in Polar, and
p(Y ) = �=[cosh(� YR) � cosh(� YI)] in Cartesian. The gra-
dient corresponds to�(Y ). We see that the direction of
the gradient smoothly changes around the neighborhood in
thePolar case, whereas it changes steeply near the vertical
and horizontal axes in theCartesian case. By increasing the
number of samples, this steepness may be smoothed out by
the averaging operatorh�(Y )Y �i. However, we conjecture
that the jag in Fig. 3 comes form this steepness.

6. CONCLUSIONS

We proposed a polar coordinate based nonlinear function to
process complex-valued signals in ICA. Compared to the
Cartesian coordinate based function, the main difference is
in the assumed densities of independent signals. In frequency-
domain BSS, the assumption that the density is phase inde-
pendent is more natural than the assumption that the real and
imaginary parts are mutually independent, since signals are
produced by a windowed DFT. This consideration is sup-
ported by the experimental results: thePolar results were
better than theCartesian ones in most cases, and there were
some convergence problems in theCartesian case.
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