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ABSTRACT

This paper proposes new algorithms for multichannel extensions
of nonnegative matrix factorization (NMF) with the Itakura-Saito
(IS) divergence. We employ Hermitian positive definite matrices
for modeling the covariance matrix of a multivariate complex Gaus-
sian distribution. Such matrices are basically estimated for NMF
bases, but a source separation task can be performed by introducing
variables that relate NMF bases and sources. The new algorithms
are derived by using a majorization scheme with properly designed
auxiliary functions. The algorithms are in the form of multiplicative
updates, and exhibit good convergence behavior. We have suc-
ceeded in separating a professionally produced music recording into
its vocal and guitar components.

Index Terms— Nonnegative matrix factorization, Itakura-Saito
divergence, Auxiliary function, Multichannel, Source separation

1. INTRODUCTION

Identifying frequent spectral patterns in sounds is an important tech-
nique for various kinds of audio signal applications, including audio
scene analysis and music transcription. Nonnegative matrix factor-
ization (NMF) [1] is widely used for such purposes (e.g., [2]). There
are many choices for the distance/divergence measure used in the
NMF cost function, such as the Euclidean distance [3], the gener-
alized Kullback-Leibler (KL) divergence [3], and the Itakura-Saito
(IS) divergence [4]. It is recognized that the IS divergence is often
preferable for modeling audio signals.

On the other hand, multichannel extensions of NMF have been
receiving attention with a view to realizing sound source separation
with multiple microphones. In [5, 6], the covariance matrices of mul-
tivariate complex Gaussian distributions are modeled with the NMF
scheme. This can be seen as a multichannel extension of IS-NMF
(NMF with the IS divergence). Although expectation-maximization
(EM) algorithms have been derived for source separation tasks, it
was reported that the algorithms were sensitive to the initialization
of parameters. In [7], we proposed a multichannel extension of Eu-
clidean NMF, and derived multiplicative update rules [3] based on
majorization [8] with a properly designed auxiliary function. The
algorithm converges favorably.

In this paper, we propose new algorithms for multichannel ex-
tensions of IS-NMF. The algorithms are derived from the same ma-
jorization scheme that we employed for the multichannel extensions
of Euclidean NMF [7]. We study two formulations in which a spa-
tial property is considered for each NMF basis (the first one) and for
each source (the second one). In the second formulation, a source
separation task is performed by automatically clustering the NMF
bases for each source. The derived algorithms are in the form of
multiplicative updates [3], and they exhibited efficient convergence
behaviors in the experiments.

2. NMF WITH IS DIVERGENCE

This section reviews the formulation and algorithm of IS-NMF [4,
9]. Let us assume that we have a single channel observation, and
we apply a short-time Fourier transform (STFT) to the observation.
Let xij ∈ C be the STFT coefficient at frequency i and time j. The
generative model of all the STFT coefficients X, [X]ij = xij , of
size I × J can be written as

p(X|T,V) =
QI

i=1

QJ
j=1N (xij |0,

PK
k=1 tikvkj) (1)

where N represents a complex Gaussian distribution, and K is the
number of rank-1 basis matrices. Nonnegative matrices T and V,
whose elements are tik ≥ 0 and vkj ≥ 0, have sizes of I ×K and
K × J , respectively.

The negative log likelihood − log p(X|T,V) is given by

L(T,V) =
X
i,j

 
|xij |2P
k tikvkj

+ log
X

k

tikvkj

!
(2)

where constant terms are omitted. Minimizing L(T,V) is equiva-
lent to minimizing the IS divergence

dIS(|xij |2,PK
k=1 tikvkj) =

|xij |2P
k tikvkj

− log
|xij |2P
k tikvkj

− 1 (3)

for all the STFT coefficients X.
The negative log likelihood L(T,V) can be minimized in an

iterative manner by majorization [8] with an auxiliary function

L+(T,V,R,U) =

X
i,j

 
|xij |2

X
k

r2
ijk

tikvkj
+ log uij +

P
k tikvkj − uij

uij

!
(4)

where rijk and uij are auxiliary variables that satisfy
P

k rijk = 1,
rijk > 0 and uij > 0. It can be verified [10, 9] that the auxiliary
functionL+ cannot be smaller than the original functionL(T,V) ≤
L+(T,V,R,U) and the equality L = L+ is satisfied when

rijk =
tikvkjP
k tikvkj

, uij =
X

k

tikvkj . (5)

Therefore, the negative log likelihood L is indirectly minimized by
repeating the following two steps:

1. Minimizing L+ with respect to R and U by (5), which makes
L(T,V) = L+(T,V,R, U).

2. Minimizing L+ with respect to T or V, which also mini-
mizes L. The update rules are derived from the partial deriva-
tive of L+ with respect to the corresponding variables as

tik ←

vuuutPj

r2
ijk

|xij |2
vkjP

j

vkj

uij

, vkj ←

vuuutPi

r2
ijk

|xij|2
tikP

i
tik
uij

. (6)
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By substituting (5) into (6), we obtain the update rules for IS-NMF:

tik ← tik

vuuut
P

j

vkj

x̂ij

|xij |2
x̂ijP

j

vkj

x̂ij

, vkj ← vkj

vuuut
P

i
tik
x̂ij

|xij |2
x̂ijP

i
tik
x̂ij

(7)

with x̂ij =
P

k tikvkj .

3. PROPOSED MULTICHANNEL EXTENSIONS

This section presents our proposed extensions of IS-NMF for
a multichannel case, where we have a complex-valued vector
x = [x1, . . . , xM ]T ∈ C

M for a time-frequency slot, with xm

being the m-th microphone observation. Let xij be such a vector at
frequency i and time j. Then, the generative model of all the STFT
coefficients X, [X]ij = xij ∈ C

M , can be written as

p(X|θ) =
QI

i=1

QJ
j=1N (xij |0, X̂ij) (8)

where N represents a multivariate complex Gaussian distribution,
and X̂ij is an M ×M Hermitian positive definite covariance matrix
that models the multichannel observation at frequency i and time j.
We will detail the parameter set θ and the covariance matrix X̂ij in
the next two subsections.

3.1. NMF basis-wise spatial property Hik

We start with a simple case where each NMF basis has its own spa-
tial property in this multichannel scenario. Let Hik be an M ×M
Hermitian positive definite matrix that models the spatial property of
the k-th NMF basis at frequency i. Then, we detail the covariance
matrix as

X̂ij =
PK

k=1 Hiktikvkj , (9)

where tik and vkj are nonnegative scalars that constitute NMF bases
T and V. To fix the scaling ambiguity between Hik and tik, a con-
straint ||Hik||F = 1 is introduced.

The negative log likelihood − log p(X|θ) with θ = {T,V, H}
is given by (omitting constant terms)

L(T,V,H) =
P

i,j

h
tr(XijX̂

−1
ij ) + log det X̂ij

i
(10)

with Xij = xijx
H
ij and tr(·) being the trace of a matrix. This neg-

ative log-likelihood can be seen as a multichannel extension of (2).
Therefore, we consider the minimization of L(T,V,H) as a multi-
channel extension of IS-NMF.

Following the optimization framework explained in Sect. 2, we
introduce an auxiliary function

L+(T,V,H,R, U) =
X
i,j

(11)

"X
k

tr(XijRijkH−1
ik Rijk)

tikvkj
+ log detUij +

det X̂ij − detUij

det Uij

#

where Rijk and Uij are auxiliary variables that satisfy Hermitian
positive definiteness and

P
k Rijk = I, with I being the identity

matrix of size M . As shown in Appendix 6.1, the auxiliary func-
tion L+ cannot be smaller than the original function L(T,V,H) ≤
L+(T,V,H,R,U) and the equality L = L+ is satisfied when

Rijk = tikvkjHikX̂−1
ij , Uij = X̂ij . (12)

The minimization updates with respect to the main variables T
and V are derived from the partial derivatives of L+ (see Appendix
6.2), and given by

tik ← tik

vuutPj vkjtr(X̂
−1
ij XijX̂

−1
ij Hik)P

j vkjtr(X̂
−1
ij Hik)

(13)

vkj ← vkj

vuutPi tiktr(X̂−1
ij XijX̂

−1
ij Hik)P

i tiktr(X̂−1
ij Hik)

(14)

We observe that these update rules reduce to (7) if M = 1, Xij =
|xij |2 and Hik = 1. Thus, we understand that the set of these up-
dates constitutes a multichannel extension of IS-NMF.

The minimization update with respect to Hik is performed by
solving an algebraic Riccati equation as shown in Appendix 6.2. The
procedure is as follows. First, two matrices

A =
P

j vkjX̂
−1
ij , (15)

B = Hik

“P
j vkjX̂

−1
ij XijX̂

−1
ij

”
Hik (16)

are calculated. Then, we perform an eigenvalue decomposition of a
2M × 2M matrix »

0 −A
−B 0

–
(17)

and let e1, . . . , eM be eigenvectors with negative eigenvalues. It is
guaranteed that there are exactly M negative eigenvalues. Then, let
us decompose the 2M -dimensional eigenvectors as

em =

»
fm
gm

–
for m = 1, . . . , M (18)

with fm and gm being M -dimensional vectors. Finally the new Hik

is calculated by
Hik ← GF−1 (19)

with F = [f1, . . . , fM ] and G = [g1, . . . ,gM ].
In summary, the negative log-likelihood (10) with (9) is itera-

tively minimized by the updates (13), (14) and (19).

3.2. Source-wise spatial property Hio

When multichannel NMF is applied to a source separation task,
NMF bases originating from the same source should be clustered
together. To realize such functionality, this subsection proposes
another model for the covariance matrix

X̂ij =
PK

k=1

PN
o=1 zkoHiotikvkj (20)

by extending (9). In this model, spatial property matrices Hio de-
pend on frequency i and source o, where o = 1, . . . , N with N
being the number of sources. To relate NMF bases and sources, we
introduce variables zko that satisfy

PN
o=1 zko = 1 and zko ≥ 0. It

is interpreted that the k-th NMF basis belongs to the o-th source if
zko is close to 1.

The negative log-likelihood L(T,V,H,Z), − log p(X|θ) with
θ = {T,V,H, Z}, in this model is literally the same as (10) but the
definition of X̂ij is different and should follow (20). L(T,V,H,Z)
can be minimized in a similar manner to that shown in the previous
subsection.
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We introduce an auxiliary function

L+(T,V,H,Z,R, U) =
X
i,j

(21)

2
4X

k,o

tr(XijRijkoH
−1
io Rijko)

zkotikvkj
+ log det Uij +

det X̂ij − detUij

detUij

3
5

where Rijko and Uij are auxiliary variables that satisfy Hermi-
tian positive definiteness and

P
k,o Rijko = I. It is verified that

L(T,V,H,Z) ≤ L+(T,V,H,Z,R,U) and the equality is satis-
fied when

Rijko = zkotikvkjHioX̂
−1
ij , Uij = X̂ij . (22)

The minimization updates with respect to the main variables T,
V and Z are given by

tik ← tik

vuutPj vkj

P
o zkotr(X̂

−1
ij XijX̂

−1
ij Hio)P

j vkj

P
o zkotr(X̂
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vkj ← vkj

vuutPi tik

P
o zkotr(X̂

−1
ij XijX̂
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ij Hio)P

i tik

P
o zkotr(X̂

−1
ij Hio)
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zko ← zko

vuutPi,j tikvkjtr(X̂
−1
ij XijX̂

−1
ij Hio)P

i,j tikvkjtr(X̂
−1
ij Hio)

. (25)

Regarding zko, a normalization zko ← zko / (
P

o zko) should be
conducted after the updates to satisfy the constraint

PN
o=1 zko = 1.

Again, we observe that these updates reduce to (7) if N = 1, M =
1, Xij = |xij |2 and Hik = 1. Thus, we understand that the set of
these updates constitutes another multichannel extension of IS-NMF.

The minimization procedure for Hio is basically the same as that
shown in the previous subsection, except that the calculation of the
A, B matrices should be performed as follows

A =
P

j,k zkotikvkjX̂
−1
ij , (26)

B = Hio

“P
j,k zkotikvkjX̂

−1
ij XijX̂

−1
ij

”
Hio . (27)

4. EXPERIMENTS

We used a sound mixture available at the Signal Separation Eval-
uation Campaign (SiSEC 2010) [11]. More specifically, we used
dev1 tamy-que pena tanto faz snip 6 19 mix.wav
found in the development data of the Professionally produced music
recording dataset. The sound file has 2 channels (microphones) and
is a mixture of 2 sources (vocal and guitar). We down-sampled the
mixture from 44.1 to 16 kHz, and applied STFT (with a 64 ms frame
size and a 16 ms frame shift) to the mixture.

Figure 1 shows the convergence behavior when we applied NMF
algorithms to the mixture. For comparison, we ran four different al-
gorithms: 1) single-channel NMF described in Sect. 2 applied to the
first microphone observation, 2) multichannel NMF with a basis-
wise spatial property proposed in Sect. 3.1 (Basis-wise H), 3) the
same multichannel NMF with a basis-wise spatial property but op-
timized by the EM algorithm proposed in [6] (EM algorithm), and
4) multichannel NMF with a source-wise spatial property proposed
in Sect. 3.2 (Source-wise H). The number K of rank-1 basis ma-
trices was set at 10 in all cases. For each algorithm, we performed
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five runs starting from different random initial matrices T, V, and
Z. The diagonal elements of H were initially all set to 1/

√
M , with

M being the number of microphones, and the off-diagonal elements
were initially all set to zero.

From the result shown in Fig. 1, we observe the followings. The
convergence behavior of Basis-wise H multichannel NMF was fa-
vorable, and appears similar to that of the single-channel IS-NMF.
With Source-wise H, the convergence was slowed slightly by the
constraints caused by sharing the spatial property Hio among some
NMF bases, but its behavior was still satisfactory. If we compare the
convergence of Basis-wise H and EM algorithm, the effectiveness
of the proposed algorithms over the conventional EM algorithms be-
comes clear. The algorithms were coded with Matlab and run on
an Intel Core i7 965 (3.2 GHz) processor. The average computa-
tion time for 100 iterations by Basis-wise H, EM algorithm and
Source-wise H were about 138, 267 and 89 seconds, respectively.

Figure 2 shows the source separation performance in terms of
the average signal-to-distortion ratio (SDR) [11]. The separation was
performed by the multichannel NMF (source-wise Hio) proposed in
Sect. 3.2. We obtained the separated signals by Wiener filtering

yijo =
“PK

k=1 zkotikvkj

”
HioX̂

−1
ij xij (28)

for each source o and every time-frequency j, i slot. A fairly high
SDR of around 11 dB was attained with the proposed multichannel
NMF, starting from randomly initialized parameters.

Figure 3 shows the behavior of variables zko in the source sep-
aration task. It can be seen that randomly initialized variables zko

approached 1 or 0 as the algorithm converged. From the final status
of zko, we understood that six NMF bases constituted the first out-
put (vocal) and the remaining four NMF bases mainly constituted
the second output (guitar).
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5. CONCLUSION

To extend IS-NMF to a multichannel case, we have designed an aux-
iliary function (11) and derived efficient multiplicative update rules
(13), (14) and (19). We then proposed a second covariance model
(20) by introducing variables zko that relate NMF bases tikvkj and
a source specific spatial property Hio. The model forces the learned
NMF bases to cluster into the sources, and contributes to solving a
source separation task. Experimental results show that the proposed
algorithms converged favorably, and source separation was accom-
plished with a high SDR value. Future work will include intensive
experiments with a variety of sound sources.

6. APPENDIX

6.1. Proof for the auxiliary function condition of (11)

Let us consider the minimization of L+ defined in (11) with respect
to R subject to the constraint

P
k Rijk = I, and also with respect

to U. By introducing Lagrange multipliers Λij of size M ×M , we
have

F = L+ +
P

ij tr
ˆ
(
P

k Rijk − I)HΛij

˜
. (29)

The partial derivative of F with respect to R∗
ijk is given as

∂F
∂R∗

ijk
= 2(Hiktikvkj)

−1RijkXij + Λij . (30)

Setting this to zero gives 2Rijk = −tikvkjHikΛijX
−1
ij and adding

these for k = 1, . . . , K gives Λij = −2X̂−1
ij Xij . By eliminating

Λij , we have Rijk = tikvkjHikX̂−1
ij .

The partial derivative of L+ with respect to U∗
ij is given as

∂L+

∂U∗
ij

= U−1
ij − det X̂ij

det Uij
U−1

ij . (31)

Setting this to zero gives Uij = X̂ij .
In summary, the minimum L+ is obtained by (12) and the mini-

mum value is equal to L defined in (10).

6.2. Derivation of update rules

The partial derivatives of L+ defined in (11) with respect to tik and
vkj are

∂L+

∂tik
=
P

j

»
det X̂ij

det Uij
tr(X̂−1

ij Hik)vkj − tr(RijkH−1
ik

RijkXij )

t2
ik

vkj

–
, (32)

∂L+

∂vkj
=
P

i

»
det X̂ij

det Uij
tr(X̂−1

ij Hik)tik − tr(RijkH−1
ik

RijkXij )

tikv2
kj

–
. (33)

Setting these derivatives to zero and solving them with respect to the
corresponding variables yields update rules that are similar to (6).
Then, by substituting Rijk and Uij with (12), we have the updates
(13) and (14).

The partial derivative with respect to Hik is

∂L+

∂Hik
=
P

j

»
det X̂ij

det Uij
X̂−1

ij tikvkj − H−1
ik

RijkXijRijkH−1
ik

tikvkj

–
. (34)

Setting the derivative to zero, solving it with respect to Hik , and
substituting Rijk and Uij with (12) yields

HikAHik = B (35)

where matrices A and B are defined in (15) and (16). Equation (35)
is a special case of an algebraic Riccati equation, and it can be solved
by using the procedure described in the main text.
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