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SUMMARY This paper discusses a nonlinear function for
independent component analysis to process complex-valued sig-
nals in frequency-domain blind source separation. Convention-
ally, nonlinear functions based on the Cartesian coordinates are
widely used. However, such functions have a convergence prob-
lem. In this paper, we propose a more appropriate nonlinear
function that is based on the polar coordinates of a complex
number. In addition, we show that the difference between the
two types of functions arises from the assumed densities of in-
dependent components. Our discussion is supported by several
experimental results for separating speech signals, which show
that the polar type nonlinear functions behave better than the
Cartesian type.
key words: independent component analysis, blind source sep-
aration, frequency domain, complex-valued signal, polar coordi-
nate, Cartesian coordinate, probability density function

1. Introduction

Blind source separation (BSS) is a technique for es-
timating original source signals using only sensor ob-
servations that are mixtures of the original signals.
If source signals are mutually independent and non-
Gaussian (or non-stationary), we can employ tech-
niques of independent component analysis (ICA) [1]–
[6]. If the mixture is instantaneous, the situation is
rather simple. In a real-world situation, however, sig-
nals are mixed in a convolutive manner with delay and
reverberations, and longer reverberations make the BSS
problem more difficult. In the convolutive case, a sep-
arating system typically consists of a matrix of filters,
not just a matrix of scalars.

Methods for constructing such separating filters
can be classified into two approaches. The first one is
a time-domain approach, where the coefficients of the
separating filters are calculated directly in the convolu-
tive mixture model. The other is a frequency-domain
approach [7]–[12], where the frequency responses of the
separating filters are first calculated, and then the time-
domain representation of the separating filters is ob-
tained by applying an inverse DFT (discrete Fourier
transform) to them.

This paper discusses the frequency-domain ap-
proach. It has an advantage in that ICA is applied to

Manuscript received June 28, 2002.
Manuscript revised October 8, 2002.

†The authors are with the NTT Communication Science
Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho,
Soraku-gun, Kyoto 619-0237, Japan

instantaneous mixtures, which are easier to solve than
convolutive ones in the time domain. In frequency-
domain BSS, instead, we have to deal with complex-
valued signals. For this purpose, Smaragdis [8] pro-
posed a complex-valued ICA algorithm, which was an
extension of the information maximization approach
[2]. The nonlinear function used in the extension was
based on the Cartesian coordinates of a complex num-
ber: nonlinearities are applied to the real and imaginary
parts separately. This type of nonlinearity has been
widely used for complex-valued neural networks [13]–
[15]. The BSS method proposed by Smaragdis actu-
ally works and is widely used by other researchers [7],
[9], [11], [12]. However, no appropriate interpretation
of the Cartesian type nonlinear function has been de-
scribed. Moreover, it imposes an additional constraint
that prevents a learning algorithm from converging un-
less a non-holonomic algorithm [16] is employed.

In this paper, we propose that a more appropriate
nonlinear function for frequency-domain BSS is based
on the polar coordinates of a complex number: nonlin-
earities are applied only to the amplitude. This type
of nonlinearity has also been used for complex-valued
neural networks [17], [18]. We derive the nonlinear func-
tion from the probability density function of frequency-
domain signals that are assumed to be independent of
the phase. When using the polar coordinate based func-
tion, there is no additional constraint mentioned above.
We also provide an interpretation of the Cartesian co-
ordinate based function. With experimental results for
separating speech signals in a reverberant environment,
we compare the behaviors of these two types of nonlin-
ear function, and discuss the differences between them.

2. Blind Source Separation for Convolutive
Mixtures

2.1 Problem Formulation

Suppose that P source signals sp(t) are mixed in an
environment and observed at Q sensors

xq(t) =
P∑

p=1

∑
k

hqp(k)sp(t− k),

where hqp(k) represents the impulse response from
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Fig. 1 BSS model

source p to sensor q. The set of impulse responses
hqp(k) represents the mixing process. The goal of BSS
is to obtain a separating system and also separated sig-
nals y1(t), . . . , yP (t) that are estimates of the source sig-
nals s1(t), . . . , sP (t). The separating system typically
consists of a set of FIR filters wrq(k) that produces
separated signals

yr(t) =
Q∑

q=1

∑
k

wrq(k)xq(t− k).

The separation has to be accomplished without know-
ing the impulse responses hqp(k) or the information of
the original source signals sp(t). If the source signals
sp(t) are mutually independent, we can apply indepen-
dent component analysis (ICA) to construct the sep-
arating system. Figure 1 shows a BSS model where
P = Q = 2.

2.2 Frequency-Domain Approach

In the frequency-domain approach to constructing sep-
arating filters, the frequency responses Wrq(ω) of the
separating filters are first calculated, and then the time-
domain representation wrq(k) of the separating filters
is obtained by applying an inverse DFT to them. The
time and frequency representations of an FIR filter can
be mutually converted by DFT and inverse DFT. The
length L of an FIR filter wrq(k) corresponds to the res-
olution of the frequency response Wrq(ω).

By L-point windowed short time DFTs, time-
domain signals xq(t) are converted into frequency-
domain time-series signals

Xq(ω,m) =
L−1∑
τ=0

xq(τ +mS) w(τ) e−jωτ , (1)

where w(τ) denotes a window function, S is a shifting
interval of the window, and ω = 0, 1

L2π, . . . ,
L−1

L 2π.
Now, we have X(ω,m) = [X1(ω,m), . . . , XQ(ω,m)]T

for each frequency ω. To obtain the frequency responses
Wrq(ω), we solve an ICA problem

Y(ω,m) =W(ω)X(ω,m),

where Y(ω,m) = [Y1(ω,m), . . . , YP (ω,m)]T , and
W(ω) is a P × Q matrix whose elements are Wrq(ω).
Yr(ω,m) is a frequency-domain representation of yr(t).

2.3 ICA Algorithm

Before explaining a complex-valued ICA, we review
an ordinary real-valued ICA algorithm. Based on the
information maximization approach [2], [3] combined
with the natural gradient [4], a separating matrix W is
gradually improved by the learning rule:

∆W = µ [I − 〈ϕ(Y)YT 〉]W.

In this formula, µ is a step size parameter that has an
effect on the speed of convergence, 〈·〉 denotes the aver-
aging operator, and ϕ(·) is a nonlinear function defined
as:

ϕ(Y) = [ϕ(Y1), . . . , ϕ(YN )]
T

ϕ(Yi) = − ∂

∂Yi
log p(Yi) (2)

where p(Yi) is the probability density function (pdf) of
Yi. If we assume p(Yi) = α/ cosh2(Yi), then the func-
tion is hyperbolic tangent ϕ(Yi) = 2 tanh(Yi), which is
widely used for super-gaussian distributions [2], [3].

In frequency-domain BSS, signals obtained by
DFT are complex. To deal with complex signals in
ICA at each frequency, the calculation of ∆W and the
nonlinear function were extended [8]:

∆W = µ [I − 〈Φ(Y)YH 〉]W
Φ(Yi) = tanh[re(Yi)] + j · tanh[im(Yi)] (3)

where YH represents the conjugate transpose of Y,
and re(Yi) and im(Yi) are the real and imaginary parts
of Yi, respectively. In the nonlinear function Φ(Yi),
tanh(·) is applied separately in the real and imaginary
parts. We call this type of function a Cartesian coordi-
nate based function.

Although function (3) actually works, no appropri-
ate interpretation of this function has been presented.
Moreover, it sometimes has a convergence problem.
Looking into the diagonal elements of [I−〈Φ(Y)YH〉],
we see that W converges to a point that satisfies

〈Φ(Yi)Y ∗
i 〉 = 1 (4)

where Y ∗
i is the complex conjugate of Yi. Extracting

the real and imaginary parts of this equation, we have

〈tanh[re(Yi)]re(Yi)〉+ 〈tanh[im(Yi)]im(Yi)〉 = 1, (5)
〈tanh[im(Yi)]re(Yi)〉 − 〈tanh[re(Yi)]im(Yi)〉 = 0, (6)

respectively. Equation (5) makes the average amplitude
of Yi converge to some value. By contrast, Eq. (6)
imposes an additional constraint that is satisfied when
the two nonlinear correlations become zero or exactly
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the same. We cannot find any implication useful for
ICA of this constraint, and there are some cases where
W does not converge well because of it. We show such
a case in Sec. 5.

If we use the non-holonomic algorithm [16]:

∆W = µ [diag(〈Φ(Y)YH 〉)− 〈Φ(Y)YH 〉]W,

we can avoid constraint (6). Some researchers [9], [11]
used this algorithm combined with a Cartesian coordi-
nate based function (3). However, there is still another
convergence problem, which is also shown in Sec. 5.

3. Polar Coordinate based Nonlinear Function

In this section, we derive an appropriate nonlinear func-
tion for frequency-domain BSS from the complex coun-
terpart of Eq. (2):

Φ(Yi) = − ∂

∂Yi
log p(Yi). (7)

First, we make an assumption as regards the den-
sity p(Y ) of a complex-valued signal Y in the frequency
domain.

Assumption 1: Let Y = |Y | ej·θ(Y ) be a complex-
valued signal. The pdf p(Y ) of Y is independent of the
phase: p(Y ) = α · p(|Y |), where p(|Y |) is the pdf of |Y |
and α is a constant.

This assumption is natural for a frequency-domain sig-
nal, since the phase of Y depends on the positions of the
windows w(τ) of a windowed DFT (1) and the windows
can be shifted arbitrarily.

Then, let us consider the derivative of a real-valued
function log p(Y ). Generally speaking, a real-valued
function whose argument is a complex is not analytic:
the derivative is not well-defined. Throughout this pa-
per, we use the following definition of the derivative of
a real-valued function.

Definition 1: Let Y = YR + jYI be a complex and
f(Y ) be a real-valued function: C → R. We define the
derivative as:

∂f(Y )
∂Y

def=
∂f(Y )
∂YR

+ j
∂f(Y )
∂YI

.

The relevance of this definition lies in the fact that the
result points to a direction in which f(Y ) increases.

Now, we are ready to derive an appropriate non-
linear function for frequency-domain BSS.

Theorem 1: Taking Assumption 1, Φ(Y ) in (7) is

Φ(Y ) = ϕ(|Y |) ej·θ(Y ),

where ϕ(|Y |) = − ∂

∂|Y | log p(|Y |)

Proof: From (7) and Assumption 1, we have

Φ(Y ) = − ∂

∂Y
logα · p(|Y |)

= − ∂

∂|Y | log p(|Y |)∂|Y |
∂Y

= ϕ(|Y |)∂|Y |
∂Y

.

And from Definition 1, we have

∂|Y |
∂Y

= (
∂

∂YR
+ j

∂

∂YI
)
√

Y 2
R + Y 2

I

=
1
2

2YR√
Y 2

R + Y 2
I

+ j
1
2

2YI√
Y 2

R + Y 2
I

= ej·θ(Y ).

This proves the theorem.

Here, we have a nonlinear function based on the
polar coordinates of a complex number. In this type of
nonlinear function, nonlinearity is applied only to the
amplitude and the phase is preserved. By using this
type, constraint (6) does not appear. Since Y ∗

i is a
complex conjugate of Yi,

Φ(Yi)Y ∗
i = ϕ(|Yi|) ej·θ(Yi) |Yi| e−j·θ(Yi) = ϕ(|Yi|) |Yi|.

Hence, the imaginary part of (4) becomes 0.
If we assume a super-gaussian distribution

p(|Yi|) = α/ cosh(|Yi|), the corresponding nonlinear
function becomes

Φ(Yi) = tanh(|Yi|) ej·θ(Yi). (8)

Based on the discussion so far, the nonlinear function
(8) is more appropriate than (3) for separating super-
gaussian signals in the frequency domain.

4. Interpretation of the Cartesian Coordinate
based Function

Then, what kind of distribution leads to the Cartesian
coordinate based function (3)? The next theorem pro-
vides an interpretation of the Cartesian type nonlinear
function.

Theorem 2: If the density of a complex-valued signal
Y is assumed to be p(Y ) = p(YR) · p(YI), then Eq. (7)
becomes

Φ(Y ) = ϕ(YR) + j · ϕ(YI),

where ϕ(YR) = − ∂

∂YR
log p(YR),

ϕ(YI) = − ∂

∂YI
log p(YI).

Proof:

Φ(Y ) = − ∂

∂YR
log p(Y )− j · ∂

∂YI
log p(Y )

= − ∂

∂YR
log p(YR)− j · ∂

∂YI
log p(YI).
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Table 1 Experimental conditions

Direction of sources −30◦ and 40◦ (two sources)
Distance of two microphones 4 cm
Length of source signal 3 seconds, 6 seconds
Reverberation time TR = 300 ms
Sampling rate 8kHz
Window function w(τ): Hanning
Window length L = 2048 points (256 ms)
Shifting interval S = 1024 ∼ 32 points
Step size µ = 0.2
Gain parameter η = 100
Number of iterations 100

This theorem states that a Cartesian coordinate based
function is appropriate if YR and YI are mutually in-
dependent. We notice that if the real and imaginary
parts of the same complex signal are mutually inde-
pendent, the additional constraint (6) is satisfied since
both nonlinear correlations become zero. By this the-
orem, one of the assumed densities of the nonlinearity
(3) is p(Y ) = αR/ cosh(YR) · αI/ cosh(YI), which con-
tradicts the Assumption 1.

5. Experiments and Discussions

We have discussed the theoretical aspects of the two
types of nonlinear function in Secs. 3 and 4. Now,
in this section, we discuss their practical aspects with
some experimental results.

5.1 Experimental Conditions

To compare the two types of nonlinear function, we
conducted experiments to separate speech signals. We
used the following two nonlinear functions:

Polar Φ(Y ) = tanh(η|Y |) ej·θ(Y )

Cartesian Φ(Y ) = tanh(ηYR) + j · tanh(ηYI),

where η is a gain parameter to control the nonlinear-
ity. And we used the following two gradients of W to
examine the effect of the additional constraint (6):

I ∆W = µ [I − 〈Φ(Y)YH 〉]W
Diag ∆W = µ [diag(〈Φ(Y)YH 〉)−〈Φ(Y)YH 〉]W.

The other conditions are summarized in Table 1.
Before applying ICA, frequency-domain observed

signals X are sphered so that they become uncorre-
lated and have unit variances. This pre-process was
very important in terms of making the ICA algorithm
stable especially for the Diag cases, where Eq. (4) is not
concerned. Without this process, the Diag cases could
have exhibited irregular convergence speeds among the
different frequency bins.

We measured the BSS performance from the av-
erage of SNRs (signal-to-noise ratios) at two outputs.
Since we generated mixed signals by convolving source
signals with impulse responses, we were able to decom-
pose a mixed signal by xq(t) =

∑P
p=1 xqp(t), where
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xqp(t) =
∑

k hqp(k)sp(t− k).

Using this decomposition, we could also decompose a
separated signal by yr(t) =

∑P
p=1 yrp(t), where

yrp(t) =
∑Q

q=1

∑
k wrq(k)xqp(t− k).

In the SNR calculation at output r, we treated yrr(t)
as a signal and yr(t)− yrr(t) as a noise. Therefore, the
SNR was calculated by

10 log[
∑

t yrr(t)2]− 10 log[
∑

t{yr(t)− yrr(t)}2].

To compare the results as accurately as possible,
we avoided the influence of the permutation problem
[9], [11], [12] of frequency-domain BSS. We selected the
best permutation by calculating the SNR in each fre-
quency bin. Therefore, the results are ideal under the
condition that the permutation problem is solved per-
fectly. The SNR calculation was performed in the same
manner as that described above except that it was in
the frequency domain. Let Xqp(ω,m) be the result of
a windowed short time DFT for xqp(t). Then, we were
able to decompose a separated signal by Yr(ω,m) =∑P

p=1 Yrp(ω,m), where

Yrp(ω,m) =
∑Q

q=1 Wrq(ω)Xqp(ω,m).

5.2 Comparison of Separation Performance

We have performed experiments under various condi-
tions, and discovered that the difference between Polar
and Cartesian performance depends on the shifting in-
terval of the window in the short time DFT (1). Figure
2 shows the situation. Each plot represents the aver-
age SNR for 24 combinations (12 pairs of speech signals
and 2 gradients). Generally, a shorter shifting interval
improves the separation performance because the num-
ber of data samples used in ICA increases. However,
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the improvements are saturated at some point since
too short a shifting interval simply results in redundant
data samples. We see that improvements are saturated
rapidly (at 256 points) in the Polar case, but slowly (at
around 64 points) in the Cartesian case. We also observe
that the advantage of Polar becomes less significant as
the shifting interval decreases.

Figure 3 shows the results when the source sig-
nals were 3 seconds long and the shifting interval was
512 points. This was a case where the difference be-
tween the Polar and Cartesian performance was fairly
large. Each plot represents the Polar and Cartesian re-
sults with the same gradient and with the same combi-
nation of speech signals. We see that the Polar result is
better than the Cartesian result in most cases, and the
selection of gradients (I or Diag) does not greatly affect
the separation performance.

5.3 Comparison of Convergence

This subsection discusses the convergence when the
source signals were 3 seconds long and the shifting in-
terval was 512 points. First, we discuss the additional
constraint (6) imposed in the Cartesian–I case. Figure 4
shows the values of [I− 〈Φ(Y)YH 〉] at some frequency
bin. The horizontal axis corresponds to the number of
iterations. The first graph shows the absolute values
of each element for the Cartesian–I case. We see oscil-
lations that hinder convergence. They come from the
imaginary parts of the diagonals as shown in the second
graph. If we use a polar coordinate based function, we
can eliminate such oscillations as discussed in Sec. 3.
The third graph shows the Polar–I case. We can see a
smooth convergence. Clearly, the mutual information
among Y is well minimized in this case unlike in the
Cartesian–I case.
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If we use Diag as the calculation of ∆W, we
can eliminate the additional constraint (6) even in the
Cartesian case. Accordingly, by investigating the Diag
results, we can see the differences that arise purely from
the difference between the Polar and Cartesian nonlin-
earities. In fact, we found another convergence prob-
lem in a Cartesian–Diag case. Figure 5 shows the tra-
jectory of element W11 of W at some frequency bin.
We see that the direction of the movement changes
gradually in Polar–Diag, whereas it changes sharply
and frequently in Cartesian–Diag. The difference comes
from the assumed densities, as discussed in Secs. 3
and 4. Figure 6 shows the contour and gradient of
− log p(Y ), being p(Y ) = α/ cosh(η |Y |) in Polar, and
p(Y ) = α/[cosh(η YR) · cosh(η YI)] in Cartesian. The
gradient corresponds to Φ(Y ). We see that the direc-
tion of the gradient changes smoothly in the Polar case,
whereas it changes steeply near the vertical and hori-
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zontal axes in the Cartesian case. We consider that the
jag in Fig. 5 comes from this steepness. However, it may
be smoothed out by the averaging operator 〈Φ(Y )Y ∗〉
if we increase the number of samples. This is partly
why the advantage of Polar becomes less significant as
the shifting interval decreases as shown in Fig. 2.

6. Conclusions

We proposed a polar coordinate based nonlinear func-
tion to process complex-valued signals in ICA. Com-
pared with the Cartesian coordinate based function,
the main difference arises from the assumed densities
of the independent signals. The assumption for the po-
lar coordinate based function is that the densities are
phase independent. It is more natural than the as-
sumption for the Cartesian coordinate based function
since signals are produced by a windowed DFT. With
several experiments, we examined the advantages of the
Polar type in a practical situation. If data samples were
not so redundant, the difference between the Polar and
Cartesian performance was fairly large and there were
some convergence problems in the Cartesian case.
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