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ABSTRACT

This paper presents a new method for estimating the direc-
tions of source signals. We assume a situation in which
multiple source signals are mixed in a reverberant condi-
tion and observed at several sensors. The new method is
based on independent component analysis, which separates
mixed signals into original source signals. It can be ap-
plied where the number of sources is equal to the number
of sensors, whereas the conventional methods based on sub-
space analysis, such as the MUSIC algorithm, are applica-
ble where there are fewer sources than sensors. Even in
cases where the MUSIC algorithm can be applied, the new
method is better at estimating the directions of sources if
they are closely placed.

1. INTRODUCTION

Direction of arrival (DOA) estimation is a basic and impor-
tant technique in array signal processing not only for wire-
less communication systems, but also for audio/speech pro-
cessing systems [1, 2]. MUSIC (MUltiple SIgnal Classifi-
cation) [3] and its variants are popular methods for DOA
estimation. They are based on subspace analysis, and can
be applied even for mixed signals as long as there are fewer
source signals than sensors.

This paper presents a new method for DOA estimation
based on independent component analysis (ICA) [4], which
identifies original source signals from their mixtures. The
main advantage of the ICA-based method over the MUSIC
algorithm is that it can be applied even when the number of
sources is equal to the number of sensors.

The method for DOA estimation based on ICA is a by-
product of research on blind source separation (BSS) for
convolutive mixtures in a reverberant environment. If the
mixture is instantaneous, the direct application of a simple
ICA solves the BSS problem. However, ICA becomes dif-
ficult for convolutive mixtures because we need a matrix of
filters, not just a matrix of scalars, to separate convolutively
mixed signals. One major approach is frequency-domain
BSS, where convolutive mixtures are reduced to instanta-
neous mixtures in every frequency bin so that a simple ICA
can be applied. The problem occurred instead is a permuta-
tion problem [5]. We need to align the source signal order
in each frequency bin since ICA is ambiguous with regard

to the permutation of sources. One approach to the permu-
tation problem is to estimate the DOA of each source, and
sort the sources based on the directions.

A method has been proposed [6, 7] for estimating DOAs
by plotting the directivity patterns of the separating system
obtained by ICA. By analyzing the directivity patterns, we
can estimate the directions of sources suppressed at each
output, and therefore the direction of each source. However,
it is difficult to perform such an analysis for more than two
sources, as discussed in Sec. 3.2. In practice, this method
can only be applied when there are two sources.

Instead of plotting directivity patterns, the new method
described in this paper is based on estimating the mixing
system from the separating system obtained by ICA. It can,
in principle, be applied when there are more than two sources.
Experimental results show that the new method succeeded
in estimating the DOAs for a situation where three sources
were mixed and observed at three sensors. Neither the MU-
SIC algorithm nor the method in [6, 7] is applicable for such
a situation. Experimental results also revealed another ad-
vantage even when there are fewer sources than sensors.
When sources were closely placed, the MUSIC algorithm
failed to estimate their DOAs, whereas the proposed method
succeeded.

2. PROBLEM FORMULATION

Suppose that P source signals sp(t) are mixed and observed
at Q sensors xq(t) =

∑P
p=1

∑
k hqp(k)sp(t − k), where

hqp(k) represents the impulse response from source p to
sensor q. Let dq be the position of sensor q (we assume
a linearly arranged array of sensors), and θp be the direction
of source sp (the direction orthogonal to the array is 90◦).
The task is estimating the directions θ1, . . . , θP of source
signals from the sensor observations x1(t), . . . , xQ(t).

Most DOA estimation techniques are performed in the
frequency domain. By L-point short time DFT, time-domain
signals xq(t) are converted into frequency-domain time-series
signals Xq(f, m), where f = 0, fs/L, . . . , fs(L − 1)/L
(fs: sampling frequency), and m is the frame index. The
mixing model above is represented as Xq(f, m) =

∑P
p=1

Hqp(f)Sp(f, m) in the frequency domain. Although the
signals are mixed in a reverberant condition, we can ap-
proximate the frequency response Hqp(f) of an impulse re-



sponse hqp(k) as

Hqp(f) = ej2πfc−1dq cos θp , (1)

where c is the propagation velocity. If we regard θp as a
variable θ, we have a steering vector

a(f, θ) = [ej2πfc−1d1 cos θ, . . . , ej2πfc−1dQ cos θ]T .

Then, the sensor observations can be modeled as X(f, m) =
∑P

p=1 a(f, θp)Sp(f, m), where X(f, m) is a Q-dimensional
vector X(f, m) = [X1(f, m), . . . , XQ(f, m)]T.

3. PREVIOUS WORK

3.1. The MUSIC algorithm

Let us review the procedure of the MUSIC algorithm [3].
The correlation matrix R = 〈X(f, m) · X(f, m)H 〉m of
sensor observations X(f, m) is calculated, where ·H repre-
sents a conjugate transpose and 〈 · 〉m denotes the averaging
operator. Then, obtain the eigenvalue decomposition R =
VΛVH , V = [v1, . . . ,vQ], Λ = diag[λ1, . . . , λQ], where
vk is an eigenvector (Q-dimensional column vector) and λk

is the eigenvalue of vk sorted as λ1 ≥ · · · ≥ λQ. The P

points where the function U(θ) =
∑Q

k=P+1 |vH
k a(f, θ)|2

approaches zero correspond to the directions θ1, . . . , θP of
the source signals.

Here we explain the mechanism of the MUSIC algo-
rithm. If the number P of sources is smaller than the num-
ber Q of sensors, all the signal components are represented
in the signal subspace spanned by the first P eigenvectors
v1, . . . ,vP , and the remaining Q − P eigenvectors vP+1,
. . . , vQ represents the noise subspace. The signal subspace
and the noise subspace are orthogonal to each other since
they are spanned by different eigenvectors. The subspace
spanned by the P steering vectors a(f, θ1), . . . ,a(f, θP ) is
also the signal subspace because the sensor observation are
represented as X(f, m) =

∑P
p=1 a(f, θp)Sp(f, m). When

θ coincides with one of the source directions θ1, . . . , θP , the
steering vector a(f, θ) and the noise subspace vP+1, . . . ,vQ

are orthogonal, and therefore U(θ) approaches zero. This is
why source directions can be estimated using U(θ). For the
noise subspace to exist, the number Q of sensors should be
larger than the number P of sources. Thus, the MUSIC al-
gorithm is applicable for mixtures of up to Q − 1 signals.

3.2. Directivity Patterns formed by an ICA Solution

Next, we review the method [6, 7] for estimating DOAs by
plotting the directivity patterns of the separating system in
the context of frequency-domain BSS. The frequency re-
sponses W(f) of the separating system are obtained by
solving the ICA problem Y(f, m) = W(f)X(f, m), where
Y(f, m) = [Y1(f, m), . . . , YP (f, m)]T is the vector of sep-
arated signals and W(f) is a P×Q separating matrix whose
elements are Wrq(f). Let the r-th row of W(f) be wr(f) =
[Wr1(f), . . . , WrQ(f)]. Each wr(f) produces Yr(f, m),
which corresponds to one of the source signals S1(f, m), . . . ,
SP (f, m). Therefore, each wr(f) extracts a source signal
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Figure 1: Directivity patterns for two sources (above) and
three sources (below)

arriving from a specific direction and forms spatial nulls in
the direction of the other sources to suppress them. If we
plot the directivity pattern formed by wr(f), we can see the
directions of sources suppressed by wr(f).

The directivity pattern formed by wr(f) is calculated
using the steering vector a(f, θ) as Br(f, θ) = wr(f)a(f, θ).
Figure 1 shows the gain of directivity patterns at some fre-
quency. The upper part shows the patterns for two sources.
We see that w1(f) extracts a source signal originating from
around 37◦ and suppresses the other signal from around
135◦. With a similar consideration regarding w2(f), we
estimate source signal directions of 37◦ and 135◦.

Although this method works for two-source cases, it
is difficult to use when there are more than two sources.
The lower half of Fig. 1 shows directivity patterns for three
sources. Here, each signal should be suppressed by two
rows. However, the null directions of different rows may
not coincide for a specific source signal, and it is difficult
to decide the direction of a source signal in such cases. For
example, the signal extracted by the first row w1(f) is sup-
pressed by the second w2(f) and third w3(f) rows at 30◦
and 38◦, respectively. Moreover, if the difference between
the null directions is large, we cannot decide which null di-
rection corresponds to which source signal.

4. NEW METHOD

4.1. DOA estimation with W−1(f) obtained by ICA

Instead of plotting directivity patterns and analyzing null
directions, we propose a new DOA estimation method by
estimating the frequency response H(f) of the mixing sys-
tem, whose elements are Hqp(f). If a separating matrix
W(f) calculated by ICA successfully extracts source sig-
nals, W(f)H(f) = I holds. Thus, we can estimate the fre-
quency response of the mixing system by H(f) = W−1(f).



Here, we should take account of the scaling and permutation
ambiguities of ICA. Therefore, the H(f) columns can have
arbitrary scales and be permuted arbitrarily compared with
the real frequency response of the mixing system.

An element Hqp(f) of the matrix H(f) may have an ar-
bitrary amplitude. Since the approximation (1) of the mix-
ing system does not suit this situation, we remodel the mix-
ing system with attenuation Aqp (real-valued) and phase
modulation ejϕp at the origin:

Hqp(f) = Aqp ejϕpej2πfc−1dq cos θp .

The scaling ambiguity can be canceled out by calculating
the ratio between two elements Hqp(f) and Hq′p(f) corre-
sponding to the same source p:

Hqp/Hq′p = Aqp/Aq′p ej2πfc−1(dq−dq′ ) cos θp .

Then, taking the angle yields a formula for estimating θp:

θp = cos−1 angle(Hqp/Hq′p)
2πfc−1(dq − dq′)

. (2)

If the absolute value of the argument of cos−1 is larger than
1, θp becomes complex and no direction is obtained. In this
case, formula (2) can be tested with another pair q and q ′.
In principle, this method can be applied for any number of
source signals.

Because of the permutation ambiguity, θp may not cor-
respond to sp but to another source signal. However, by
calculating θp for all p = 1, . . . , P , we can obtain the direc-
tions of all source signals.

The new method offers an advantage in terms of compu-
tation cost. Estimated directions are provided by the closed
form formula (2), whereas the minima of U(θ) and |B r(f, θ)|
should be searched for in the MUSIC algorithm and the pre-
vious method based on ICA, respectively.

4.2. Equivalence between θp and a null direction

For a two-source case, we prove that θp calculated by (2) is
the same as a null direction that is the minimum of a direc-
tivity pattern. When |Br(f, θ)| is minimized, θ corresponds
to a null direction. Let αq = 2πfc−1dq and f be omitted.
The value to be minimized is

J(θ) = Br(θ) · Br(θ)∗

= (Wr1 ejα1 cos θ + Wr2 ejα2 cos θ) ·
(W ∗

r1 e−jα1 cos θ + W ∗
r2 e−jα2 cos θ).

Let α = α2−α1. The first and second derivatives are
dJ
dθ = −α sin θ ·2 im(Wr1W

∗
r2e

−jα cos θ),
d2J
dθ2 = −α cos θ ·2 im(Wr1W

∗
r2e

−jα cos θ)

−α2 sin2 θ ·2 re(Wr1W
∗
r2e

−jα cos θ)
where re and im extract the real and imaginary parts of a
complex, respectively. If angle(Wr1W

∗
r2e

−jα cos θ) = π,
dJ
dθ is zero and d2J

dθ2 is positive, and J(θ) is minimized. Thus,
the null direction formed by the r-th row of W is given by

angle(−Wr1W
∗
r2) = α cos θnull

r ⇔
θnull

r = cos−1 angle(−Wr1/Wr2)
2πfc−1(d2 − d1)

.

Table 1: Experimental conditions
Length of mixed signals 6 s
Positions of 3 sensors 0, 56.6, 113.2 mm
Sampling rate fs = 8 kHz
Maximum frequency for no-aliasing 3 kHz
Reverberation time TR = 190 ms
DFT frame size L = 1024

Considering H21 =−W21/det(W) and H11 =W22/det(W),
we see that θ1 and θnull

2 are the same:

θ1 =cos−1angle(H21/H11)
2πfc−1(d2−d1)

=cos−1angle(−W21/W22)
2πfc−1(d2−d1)

=θnull
2 .

5. EXPERIMENTAL RESULTS

We performed experiments to estimate the DOAs of speech
signals mixed in a reverberant environment. We used sets
of impulse responses in the “RWCP Sound Scene Database
in Real Acoustic Environments” [8] to generate mixed sig-
nals. The experimental conditions are summarized in Table
1. We used three sensors with an equal spacing of 56.6 mm.
Thus, the maximum frequency at which a spatial aliasing
did not occur was 340/(0.0566 × 2) ≈ 3 kHz. The ICA
algorithm we used was the complex version of FastICA [4],
although we can use any ICA algorithm, such as the infor-
mation maximization approach [9].

Table 2 is a summary of the results shown in Figs. 2, 3
and 4. We used four sets of impulse responses correspond-
ing to the positions of sources “�”, “+”, “�” and “×”. Al-
though the RWCP database provides information about the
directions of the positions, it is difficult to know the true di-
rections. Thus, we estimated the DOA of each source with
the MUSIC algorithm when there was only one source sig-
nal. They appear in the “MUSIC each” row of Table 2. We
consider these directions to be the true directions.

Figure 2 shows the results when three source signals are
mixed and observed at three sensors. Here, only the pro-
posed method based on ICA is applicable. Each plot shows
the direction of each source estimated in each frequency bin.
The correspondence between a direction and a source sig-
nal is solved simply by sorting the three directions in each
frequency. There are some frequency bins where the DOAs
were not estimated because formula (2) produced complex
numbers. The dotted lines as well as the numbers in Ta-
ble 2 represent the average directions. Since spatial aliasing
might occur at frequency bins over 3 kHz, we did not use
these results for obtaining the average. We see that the aver-
age results were close to the results of “MUSIC each”, and
the DOAs were correctly estimated in most of the frequency
bins.

To show the effectiveness of our proposed method even
for a situation where the MUSIC algorithm can be applied,
we performed experiments for two-source three-sensor cases
with both methods. Figure 3 shows the results for two sources
placed far apart. We see that both methods estimated the di-
rections well enough. In contrast, Fig. 4 shows the results



Table 2: Result summary
Figure 2 Figure 3 Figure 4

Source signal � + � � � × �

MUSIC each 48◦ 73◦ 119◦ 48◦ 119◦ 105◦ 119◦

ICA mixed 45◦ 74◦ 123◦ 45◦ 123◦ 105◦ 124◦

MUSIC mixed — — — 45◦ 122◦ 94◦ 128◦
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Figure 2: DOA estimations for three sources using ICA

for two closely placed sources. In this case, the MUSIC al-
gorithm failed to estimate the directions in most frequency
bins, whereas the proposed method based on ICA succeeded
in estimating the directions in most cases. The average di-
rections obtained with the ICA method were closer to the
results of “MUSIC each” than those of the MUSIC algo-
rithm. Therefore, we consider that the ICA method has an
additional advantage over the MUSIC algorithm as regards
its robustness for closely placed sources.

6. CONCLUSION

We proposed a new method for DOA estimation based on
ICA. The advantages over the MUSIC algorithm are that
it can be applied even if the number of sources is equal to
the number of sensors, and also that it is robust for closely
placed signals mixed in a reverberant condition. The pro-
posed method solves the difficulty posed by the previous
method based on ICA [6, 7] as regards its application when
more than two sources are mixed. In terms of computational
cost, estimated directions are provided by closed form for-
mulas with the new method, whereas minima of a function
must be searched for with the MUSIC algorithm or the pre-
vious method.
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Figure 3: DOA estimations for two sources placed far apart
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Figure 4: DOA estimations for two closely placed sources
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