An Efficient Method for Generating Kernels
on Implicit Cube Set Representations

Hiroshi Sawada, Shigeru Yamashita and Akira Nagoya
NTT Communication Science Laboratories
2-4 Hikaridali, Seika-cho, Soraku-gun, Kyoto 619-0237, JAPAN

1. Introduction void genKernglSop K, int index) {
for (inti=indezx;i>0;i——){
if (literalCount(K, ;) > 2) {

In the process of logic synthesis and optimization, itis an SopchildF = K/l;;
important operation to extract common logic parts among Sop comCube = commonCubhildF);
several logic functions. Most methods currently used are if (topLiteral(comCube) < i) {
based on SOP (sum-of-products) expressions of logic func- genKerne{childF' / comCube,i — 1);
tions. In such methods, special sub-expressions named ker- }
nels [1, 2] are generated, and attempts are made to find good }

intersections of kernels for common logic expressions. _

A SOP expression can be represented by a set of cubes, ~egisterkemne(k);
Although it is a straight-forward way to enumerate cubes
explicitly, there is a case where the number of cubes be-
comes so large that we can hardly manipulate them explic-
itly. The typical case is the SOP expression of an adder,
which contains many XOR operations. To handle larger
cube sets, methods have been proposed [3], [4] that repre
sent cube sets implicitly on BDDs [5] or similar data struc-
tures. There are few methods [6], however, for extracting
common logic expressions using implicit cube set represen-
tations.

In this paper, we propose a new method that efficiently
generates all kernels for implicitly represented cube sets,2.2 Kerne
and show how to apply it to the extraction of common logic
expressions. The main feature is the memorization of the
kernel generation process using a graph structure, which i%st
called a kernel graph in this paper. Nodes of the graph are
identified by the pair of a cube set and an integer value, and
are easily accessible by a hash table. With this mechanism
we can skip the process of kernel generation that was pro
cessed before.

Figure 1. An algorithm for kernel generation

node to the constant 1 node. There is a case where a very
large cube set can be represented in a small number of
nodes. The equivalence of two cube sets can be checked
by comparing the identifiers of the root nodes because the
same cube sets are represented by the same node.

A SOP expression is callerlibe-free[1, 2] if there ex-

s no literal that appears in all cubes in the expression.
For instanceab + o'c is cube-free, andb + bc and abc

are not. For a SOP expressidn and a cube, F/c is
talled akernel of F' if it is cube-free. For an expression
Fy = abcg’ + abd + ae + bc' fg + ¢ fh, Fi/ab = cg' + d

is a kernel, and", /¢’ = bfg + fhis not. A cube used to
make a kernel is called @o-kernel. In the previous exam-

2. Preliminaries ple, co-kernehb is used to make kernely’ + d.

A well-known algorithm [2] to generate all kernels of a
2.1 Implicit cube set representation given expressiot is as follows:

1. Divide F' with literals that appear in all cubes and let

A literal is a variable ,b,c,---) or its nega- the quotient bex..

tion (a/,v',¢,---). A cube is a product of literals 2. Order all literals inK asly, ln—1, ..., 1.
(ab'de, cde, - --). A SOP (sum-of-products)expression is 3. Call the recursive procedure shown in Fig. 1 as
a sum of cubesi’ de + cde + f), and can be seen asabe genKernelK, n).
set({ab'de, cde, f}). In Fig. 1, literalCount K, ;) counts the number of literals

Meta-products [3] and Zero-suppressed BDDs [4] have [; in K, commonCub@") returns the product of literals that
been proposed to represent cube sets implicitly. In theseappear in all cubes i, andtopLiteral(') returns the max-
structures, each cube corresponds to a path from the rooimal index of all literals inF".

Literal order: Literal order: Iy I, Uy I3, 1, I, =a, b, ¢, d, e, f
L hplyly Ly ly 1,1, L, 1,1, =G,a,b,c,c’,d e, f, 8,8, h

‘ F, = acd+ace+af+bcd+bce+bf , 6 ‘

‘ F, = abcg’+abd+ae+bc’fg+c’fh , 10 ‘

d+e

Figure 3. Example 2 of a kernel graph

Figure 2. Example 1 of a kernel graph Literal order: I, Iy, Ly Ly L, 1, =a, ¢, b, d, e, f

‘ F, = acd+ace+af+bcd+bce+bf , 6 ‘

3 Kernel graph

a c b f
In this section, we propose a graph structure that merr
rizes the kernel generation process. ‘cd+ce+f)5 ‘ ‘ad+ae+bd+be , 4‘ ‘cd+ce+f ,0 ‘ \
3.1 Définition ¢ b d+e |

A kernel graph consists of nodes and directed edges
defined below:
nodes having a cube sek” and an integer valu&pndez,
directed edgeshaving a cube seb.
K is the kernel associated with the node, angindex is

Figure 4. Example 3 of a kernel graph

the maximal index of the literals appearing in thes of all valuei decreases one by one from the initial valudez.
outgoing edges. If a node has no edge/ifsindex is 0. Therefore topIndez is defined as the firstsuch that, sat-
Letnodg K, topIndex) be a node havingd andtoplndez. jsfies the two conditions 2 and 3. If no literal satisfies the
In node K, topIndez), there are edges associated wit two conditions topIndex remains as 0, as an initial value.
literal [; which satisfies the following three conditions: After topInder is determined, we examine whether
1.4 < topIndex, nodg K, topIndex) already exists or not. Every time we
2. literalCount(K, ;) > 2 and make a new node, we register it in a hash table. The
3. topLiteral(comCube) < i, where comCube = key used in the hash table is generated from the identi-
commonCub’/l;). . fier of cube setk (implicitly represented) andopIndez.
An edge associated with literalhas a cubé - conCubein - Therefore, we can efficiently examine the existence of an
its D. An edge havingD and going out from a node having equivalent node. If an equivalent node exists, the algo-
K points to a node having'/D. rithm returns the node and omits the further processing.
We define that two nodes having the safieand the |f it does not exist, the required node is made and the
sametopIndez are equivalent. The definition @bp/ndex process continues with further recursive calls. In Fig. 5,

leads that two equivalent nodes have the same set of edgegiddChild resultNode, childNode, I; - comCube) makes the
each edge has the saeand points to the equivalentnode. girected edge fromesultNode to childNode if it does not
Two equivalent nodes are shared and only one can exist in &xist, and updates its SOP expression frbno D + I; -

kernel graph. comCube.
)] Here, we show some examples. In Fig. 2, the situation
3.2 Generating algorithm is that after the kernel graph &f, was constructed, the ex-

pressionG = bg + h is selected as a common logic ex-
An algorithm for generating a kernel graph is shown in pression, and; is revised toF; i by usingG. The node
Fig. 5. This algorithm is a modification of the ordinary ker- nodgbcg’ + bd + €,9) is shared by the graphs & and
nel generation algorithm shown in Fig. 1. The main differ- F}r. This means that a portion of the process Faf, can
ences are 1) the pointer of a node is returned as a result, antle trimmed. Figure 3 shows a case where a portion of the
2) whether a required node already exists or not is examinedorocess can be skipped for only one expression. A node
after topIndez is determined. In the algorithm, the integer nod€cd + ce + f,4) is pointed to by an edge havirgt- b.

/* KGnode*: a pointer to a kernel graph node, Sop: a SOP expression */
KGnode*genKernelGraptSop K, int indez) {
KGnode* resultNode = 0; [* the pointer to a result node */
int topIndex = 0;
for (inti=indez;i > 0;i——){
if (literalCoun{(K, I;) > 2) { /* condition 2 */
SopchildF = K/1;;
Sop comCube = commonCubg:hildF');
if (topLiteral(comCube) < i) { /* condition 3 */
if (topIndez ==0){ /*true only at the first time */
topIndex =1; /* the maximum becausedecreases */
resultNode = l00kup(K, topIndez); I* examine whether the equivalent node exists */
if (resultNode) returnresultNode; [* if it exists, return it and quit */
resultNode = makeNod€K, topIndex); I* make a new node */

}
KGnode* childNode = genKernelGrapbchildF' / comCube, i — 1);
addChild resultNode, childNode, l; - comCube);
}
}

}

if (topIndex ==0){ /*no edge */
resultNode = lookug(K, 0); /* examine whether the equivalent node exists */
if (resultNode) returnresultNode; [* if it exists, return it and quit */
resultNode = makeNod€K, 0); /* make a new node */

returnresultNode;
Figure 5. An algorithm for generating a kernel graph

This means that the required nodes are the same for botldouble-cube divisors and double-literal cubes. The origi-
kernelsF;/a and F» /b. Figure 4 shows the reason why the nal method [7] has two advantages: 1) complement divisors
integer valuetopIndez is needed. For the expressidn (e.g.a + bversusa'b’) can be recognized and 2) all double-
shown in Fig. 3, we have another kernel graph shown in Fig. cube divisors are calculated at the first time by taking all
4 if we change the order of literabsandc. In this graph, two pairs of cubes and making them cube-free, and they can be
different nodesnodd cd+-ce+ f, 5) andnodd cd+ce+ f, 0), partially updated.

are needed for kernetl + ce + f. We, however, could not take the second advantage be-
_ cause it was hard to identify each cube in an implicit cube
3.3 Calculation of setsof co-kernels set representation. Instead, we generated a subset of all

double-cube divisors from implicitly represented kernels as
In a kernel graph, the set of co-kernels for a kernel can follows:

be calculated recursively. For a nodé let £, ..., E, 1. Generate all kernels for given SOP expressions using
be incoming edges and leVy, ..., N, each be a node the method proposed in Section 3.
from which the corresponding edge goes out. Then, the 2. For a kernel without multiple literals (a level-0 kernel),
set of co-kernel€okernelSétV) of a nodeN is given by make all pairs of cubes in the kernel.
CokernelSetV) = 37, D(E;)-CokernelSetN;), where 3. For a kernel with multiple literals, deduct cubes hav-
D(E;) is the cube seD of an edgeE;. If there are more ing multiple literals, and make all pairs of cubes in the
than one nodévy, .. ., N, for a kernel, the set of co-kernels resultant expression.

H H q
for the kernel is given by _;_, CokernelSetV;). For instance, for a kernel+b+c, we generated+b, a+c¢

For example, in Fig. 3, the set of co-kernels for kernel 5,4, 1 . For a kernebc + ad + be + bd + e + f+ g, we

d + e is calculated as - (a + b) = ac + be. In Fig. 4, the enerated - 4+ gandf + g, and did not make some
calculation for the co-kernel is different but the result is the gairs likeac +J;;'d_e g f+9,

same. Itis givenby -a +b-c = ac+ be. Table 1 shows the experimental results for several logic

. circuits [8] shown in the column “Circuit”. From a circuit
4 Experiments description, we constructed BDDs representing the func-
tions of primary outputs, and generated SOP expressions
We performed experiments to extract common SOP ex-from the functions using the method proposed in [9]. The
pressions, using the scheme of concurrent extraction ofcolumn “Initial” corresponds to the initial expressions be-

Table 1. Experimental results

Circuit Initial Final || Time Hash

name in out|| literal co-kernel node| literal || (sec) hit look-up ratio

alu4 14 8 4961 16096/ 14646|| 1256 | 10.40|| 33625/ 83168 = 0.404
apexl1 45 45 7017 6178/ 5558| 1759| 6.18| 25595/ 46326 = 0.552
apex2 39 3| 14728 14410/ 5042 358| 4.91| 10157/ 22651 = 0.448
apex3 54 50| 4621 4888/ 4822| 1718| 4.05| 13421/ 30405= 0.441
apex4 9 19 7887 22235/ 21568| 2598 | 11.25| 50441/ 121497 = 0.41%
apex5 117 88| 7202 1321/ 946| 968 | 2.42 4443/ 10103 = 0.44(
cordic 23 2|l 18213 105654/ 8727 88| 1.28 7976/ 17725 = 0.45(
cps 24 109 6747 1458/ 1276| 1415 3.36 8081/ 15088 = 0.536
dalu 75 16| 24902 24976/ 9941 696 | 5.46| 17325/ 36094 = 0.48(
ex1010 10 10| 4048 5891/ 5838| 1892 | 4.88| 24121/ 44922= 0.537
frg2 143 139| 27803 9212/ 1603| 893 2.76 9494/ 14915 = 0.636
misex3 14 14| 12101 17195/ 13185/ 1113| 8.92| 30346/ 79301 = 0.383
pair 173 137| 130724 29796/ 7909|| 3126 37.67| 85739/ 155161 = 0.553
parity 16 1| 524288 | 42456897 / 131037 60 || 75.93 || 294292/ 523375 = 0.562
seq 41 35 17876 11615/ 8299| 1972 | 12.14| 41976/ 88383 = 0.475%
spla 16 46 4608 2242/ 1436| 634 1.75 3366/ 8509 = 0.396
t481 16 1 4752 4746/ 698 40 | 0.75 2522/ 4056 = 0.622
table3 14 14 5805 14988/ 14637 1265| 9.82| 22475/ 76906 = 0.292
tableb 17 15 6319 14090/ 13195/ 1045(9.88| 18820/ 63691 = 0.29%

fore the extraction. Each sub-column “literal” shows the sharing nodes. In future work, we want to integrate Boolean
number of literals in SOP form. The sub-column “co- divisions into our method.

kernel” shows the number of all co-kernels, and “node”

shows the number of nodes used in the kernel graph at thaheferences

time.

The result of logic extraction is shown in the column “Fi-
nal”. The column “Time” gives the CPU time in seconds on
a 450MHz Pentium II“systerP running t_he_ Linux operating cuits and Systempages 49-54, May 1982.
system. The column “Hash” gives statistics of hash tables 2] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and

used in the algorithm for generating kernel graphs. The sub-" * A R, wang. MIS: A Multiple-Level Logic Optimization Sys-

[1] R.K.Brayton and C.McMullen. The Decomposition and Fac-
torization of Boolean Expressions. Rroc. Int'l Symp. Cir-

column “look-up” shows the number of look-ups, and “hit” tem. IEEE Trans. CAD CAD-6(6):1062-1081, November
shows the number of times that a required node had already 1987.
existed. [3] O.CoudertandJ. C. Madre. Implicit and Incremental Compu-

We successfully extracted common logic expressions tation of Primes and Essential Primes of Boolean Functions.

from very large cube sets using implicit representations and _ In Proc. Design Automation Conpages 36-39, June 1992.

a kernel graph. There are some cases where many col4l S. Minato. _Zero-Suppressed BDDs _for Set Man_lpulatlon in

kernels can be represented with considerably less nodes. In ggéneks"g%org; rgl?:]tzrrlséglslf?roc. Design Automation Couf.

partlcu_lar, our mequ Ca“n re_pr?sent ?‘” of the co-kernels Of[5] R. E. Bryant. Graph-Based Algorithms for Boolean Func-

a 16-bit parity functl_on (‘parity”), which seem very hard tion Manipulation. IEEE Trans. ComputersC-35(8):667—

to be represented with other methods. The hit ratios of the g91 August 1986.

hash tables were sufficiently high for most circuits, and this [] S. Minato. Fast Factorization Method for Implicit Cube Set

indicated the usefulness of memorizing the kernel genera- = Representationl|EEE Trans. on Computer-Aided Design of

tion process. Integrated Circuits and Systentkb(4):377-384, April 1996.

[7] J. Rajski and J. Vasudevamurthy. The Testability-Preserving
Concurrent Decomposition and Factorization of Boolean Ex-
pressionslEEE Trans. CAD11(6):778—793, June 1992.

[8] S. Yang.Logic Synthesis and Optimization Benchmarks User

We have proposed a kernel graph, where the kernel gen- Guide Version 3.0MCNC, January 1991.

eration process is memorized. The main advantages are thdf] S. Minato. Fast Generation of Prime-Irredundant Covers from

1) the execution time can be reduced by skipping the pro- Binary D§C|S|on DiagramslEICE Trans. on Fundamentals

cess that was processed before and 2) the memory usage for E78-A(6):967-973, June 1993.

representing kernel/co-kernel relations can be reduced by

5 Conclusions

