
An Efficient Method for Generating Kernels
on Implicit Cube Set Representations

Hiroshi Sawada, Shigeru Yamashita and Akira Nagoya
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, JAPAN

1. Introduction

In the process of logic synthesis and optimization, it is an
important operation to extract common logic parts among
several logic functions. Most methods currently used are
based on SOP (sum-of-products) expressions of logic func-
tions. In such methods, special sub-expressions named ker-
nels [1, 2] are generated, and attempts are made to find good
intersections of kernels for common logic expressions.

A SOP expression can be represented by a set of cubes.
Although it is a straight-forward way to enumerate cubes
explicitly, there is a case where the number of cubes be-
comes so large that we can hardly manipulate them explic-
itly. The typical case is the SOP expression of an adder,
which contains many XOR operations. To handle larger
cube sets, methods have been proposed [3], [4] that repre-
sent cube sets implicitly on BDDs [5] or similar data struc-
tures. There are few methods [6], however, for extracting
common logic expressions using implicit cube set represen-
tations.

In this paper, we propose a new method that efficiently
generates all kernels for implicitly represented cube sets,
and show how to apply it to the extraction of common logic
expressions. The main feature is the memorization of the
kernel generation process using a graph structure, which is
called a kernel graph in this paper. Nodes of the graph are
identified by the pair of a cube set and an integer value, and
are easily accessible by a hash table. With this mechanism,
we can skip the process of kernel generation that was pro-
cessed before.

2. Preliminaries

2.1 Implicit cube set representation

A literal is a variable (a, b, c, · · ·) or its nega-
tion (a′, b′, c′, · · ·). A cube is a product of literals
(ab′de, cde, · · ·). A SOP (sum-of-products)expression is
a sum of cubes (ab′de+cde+f), and can be seen as acube
set({ab′de, cde, f}).

Meta-products [3] and Zero-suppressed BDDs [4] have
been proposed to represent cube sets implicitly. In these
structures, each cube corresponds to a path from the root

void genKernel(SopK, int index) {
for (int i = index ; i > 0; i−−) {

if (literalCount(K, li) ≥ 2) {
SopchildF =K/li;
SopcomCube = commonCube(childF);
if (topLiteral(comCube) < i) {

genKernel(childF/comCube, i− 1);
}

}
}
registerKernel(K);

}

Figure 1. An algorithm for kernel generation

node to the constant 1 node. There is a case where a very
large cube set can be represented in a small number of
nodes. The equivalence of two cube sets can be checked
by comparing the identifiers of the root nodes because the
same cube sets are represented by the same node.

2.2 Kernel

A SOP expression is calledcube-free[1, 2] if there ex-
ists no literal that appears in all cubes in the expression.
For instance,ab + a′c is cube-free, andab + bc andabc
are not. For a SOP expressionF and a cubec, F/c is
called akernel of F if it is cube-free. For an expression
F1 = abcg′ + abd+ ae+ bc′fg + c′fh, F1/ab = cg′ + d
is a kernel, andF1/c

′ = bfg + fh is not. A cube used to
make a kernel is called aco-kernel. In the previous exam-
ple, co-kernelab is used to make kernelcg′ + d.

A well-known algorithm [2] to generate all kernels of a
given expressionF is as follows:

1. DivideF with literals that appear in all cubes and let
the quotient beK.

2. Order all literals inK asln, ln−1, . . . , l1.
3. Call the recursive procedure shown in Fig. 1 as

genKernel(K,n).
In Fig. 1, literalCount(K, li) counts the number of literals
li inK, commonCube(F) returns the product of literals that
appear in all cubes inF , andtopLiteral(F) returns the max-
imal index of all literals inF .

)�� �DEFJ©�DEG�DH�EF©IJ�F©IK�����

EFJ©�EG�H����

FJ©�G����

DFJ©�DG�F©IJ���� EJ�K����

D E F©�I

E

/LWHUDO�RUGHU�

O����O����O���O���O���O���O���O���O���O���O�� �*���D��E��F��F©��G��H��I��J��J©��K

)�5� �DEFJ©�DEG�DH�F©I*�����

D

Figure 2. Example 1 of a kernel graph

3 Kernel graph

In this section, we propose a graph structure that memo-
rizes the kernel generation process.

3.1 Definition

A kernel graph consists of nodes and directed edges as
defined below:
nodes having a cube setK and an integer valuetopIndex ,
directed edgeshaving a cube setD.
K is the kernel associated with the node, andtopIndex is
the maximal index of the literals appearing in theD's of all
outgoing edges. If a node has no edge, itstopIndex is 0.
Let node(K, topIndex) be a node havingK andtopIndex .

In node(K, topIndex), there are edges associated with
literal li which satisfies the following three conditions:

1. i ≤ topIndex ,
2. literalCount(K, li) ≥ 2 and
3. topLiteral(comCube) < i, where comCube =

commonCube(K/li).
An edge associated with literalli has a cubeli ·comCube in
itsD. An edge havingD and going out from a node having
K points to a node havingK/D.

We define that two nodes having the sameK and the
sametopIndex are equivalent. The definition oftopIndex
leads that two equivalent nodes have the same set of edges:
each edge has the sameD and points to the equivalent node.
Two equivalent nodes are shared and only one can exist in a
kernel graph.

3.2 Generating algorithm

An algorithm for generating a kernel graph is shown in
Fig. 5. This algorithm is a modification of the ordinary ker-
nel generation algorithm shown in Fig. 1. The main differ-
ences are 1) the pointer of a node is returned as a result, and
2) whether a required node already exists or not is examined
after topIndex is determined. In the algorithm, the integer

)�� �DFG�DFH�DI�EFG�EFH�EI����

FG�FH�I����

G�H����

DG�DH�EG�EH����

D�E����

D���E

I

F

/LWHUDO�RUGHU� O���O���O���O���O���O�� �D��E��F��G��H��I

F

G���H

Figure 3. Example 2 of a kernel graph

)�� �DFG�DFH�DI�EFG�EFH�EI����

FG�FH�I����

G�H����

DG�DH�EG�EH����

D�E����

D I

F

/LWHUDO�RUGHU� O���O���O���O���O���O�� �D��F��E��G��H��I

F

G���H

FG�FH�I����

E

E

Figure 4. Example 3 of a kernel graph

valuei decreases one by one from the initial valueindex .
Therefore,topIndex is defined as the firsti such thatli sat-
isfies the two conditions 2 and 3. If no literal satisfies the
two conditions,topIndex remains as 0, as an initial value.

After topIndex is determined, we examine whether
node(K, topIndex) already exists or not. Every time we
make a new node, we register it in a hash table. The
key used in the hash table is generated from the identi-
fier of cube setK (implicitly represented) andtopIndex .
Therefore, we can efficiently examine the existence of an
equivalent node. If an equivalent node exists, the algo-
rithm returns the node and omits the further processing.
If it does not exist, the required node is made and the
process continues with further recursive calls. In Fig. 5,
addChild(resultNode, childNode, li · comCube) makes the
directed edge fromresultNode to childNode if it does not
exist, and updates its SOP expression fromD to D + li ·
comCube.

Here, we show some examples. In Fig. 2, the situation
is that after the kernel graph ofF1 was constructed, the ex-
pressionG = bg + h is selected as a common logic ex-
pression, andF1 is revised toF1R by usingG. The node
node(bcg′ + bd + e, 9) is shared by the graphs ofF1 and
F1R. This means that a portion of the process forF1R can
be trimmed. Figure 3 shows a case where a portion of the
process can be skipped for only one expression. A node
node(cd+ ce+ f, 4) is pointed to by an edge havinga+ b.

/* KGnode*: a pointer to a kernel graph node, Sop: a SOP expression */
KGnode*genKernelGraph(SopK, int index) {

KGnode*resultNode = 0; /* the pointer to a result node */
int topIndex = 0;
for (int i = index ; i > 0; i−−) {

if (literalCount(K, li) ≥ 2) { /* condition 2 */
SopchildF =K/li;
SopcomCube = commonCube(childF);
if (topLiteral(comCube) < i) { /* condition 3 */

if (topIndex == 0){ /* true only at the first time */
topIndex = i; /* the maximum becausei decreases */
resultNode = lookup(K, topIndex); /* examine whether the equivalent node exists */
if (resultNode) returnresultNode; /* if it exists, return it and quit */
resultNode = makeNode(K, topIndex); /* make a new node */

}
KGnode*childNode = genKernelGraph(childF/comCube, i− 1);
addChild(resultNode, childNode, li · comCube);

}
}

}
if (topIndex == 0){ /* no edge */

resultNode = lookup(K, 0); /* examine whether the equivalent node exists */
if (resultNode) returnresultNode; /* if it exists, return it and quit */
resultNode = makeNode(K, 0); /* make a new node */

}
returnresultNode;

}

Figure 5. An algorithm for generating a kernel graph

This means that the required nodes are the same for both
kernelsF2/a andF2/b. Figure 4 shows the reason why the
integer valuetopIndex is needed. For the expressionF2

shown in Fig. 3, we have another kernel graph shown in Fig.
4 if we change the order of literalsb andc. In this graph, two
different nodes,node(cd+ce+f, 5) andnode(cd+ce+f, 0),
are needed for kernelcd+ ce+ f .

3.3 Calculation of sets of co-kernels

In a kernel graph, the set of co-kernels for a kernel can
be calculated recursively. For a nodeN , let E1, . . . , Ep
be incoming edges and letN ′1, . . . ,N

′
p each be a node

from which the corresponding edge goes out. Then, the
set of co-kernelsCokernelSet(N) of a nodeN is given by
CokernelSet(N) =

∑p
i=1D(Ei)·CokernelSet(N ′i), where

D(Ei) is the cube setD of an edgeEi. If there are more
than one nodeN1, . . . ,Nq for a kernel, the set of co-kernels
for the kernel is given by

∑q
i=1CokernelSet(Ni).

For example, in Fig. 3, the set of co-kernels for kernel
d + e is calculated asc · (a + b) = ac + bc. In Fig. 4, the
calculation for the co-kernel is different but the result is the
same. It is given byc · a+ b · c = ac+ bc.

4 Experiments

We performed experiments to extract common SOP ex-
pressions, using the scheme of concurrent extraction of

double-cube divisors and double-literal cubes. The origi-
nal method [7] has two advantages: 1) complement divisors
(e.g.a+ b versusa′b′) can be recognized and 2) all double-
cube divisors are calculated at the first time by taking all
pairs of cubes and making them cube-free, and they can be
partially updated.

We, however, could not take the second advantage be-
cause it was hard to identify each cube in an implicit cube
set representation. Instead, we generated a subset of all
double-cube divisors from implicitly represented kernels as
follows:

1. Generate all kernels for given SOP expressions using
the method proposed in Section 3.

2. For a kernel without multiple literals (a level-0 kernel),
make all pairs of cubes in the kernel.

3. For a kernel with multiple literals, deduct cubes hav-
ing multiple literals, and make all pairs of cubes in the
resultant expression.

For instance, for a kernela+b+c, we generateda+b, a+c
andb+ c. For a kernelac+ ad+ bc+ bd+ e+ f + g, we
generatede + f , e + g andf + g, and did not make some
pairs likeac+ bd.

Table 1 shows the experimental results for several logic
circuits [8] shown in the column “Circuit”. From a circuit
description, we constructed BDDs representing the func-
tions of primary outputs, and generated SOP expressions
from the functions using the method proposed in [9]. The
column “Initial” corresponds to the initial expressions be-

Table 1. Experimental results

Circuit Initial Final Time Hash
name in out literal co-kernel node literal (sec) hit look-up ratio
alu4 14 8 4961 16096 / 14646 1256 10.40 33625 / 83168 = 0.404
apex1 45 45 7017 6178 / 5558 1759 6.18 25595 / 46326 = 0.552
apex2 39 3 14728 14410 / 5042 358 4.91 10157 / 22651 = 0.448
apex3 54 50 4621 4888 / 4822 1718 4.05 13421 / 30405 = 0.441
apex4 9 19 7887 22235 / 21568 2598 11.25 50441 / 121497 = 0.415
apex5 117 88 7202 1321 / 946 968 2.42 4443 / 10103 = 0.440
cordic 23 2 18213 105654 / 8727 88 1.28 7976 / 17725 = 0.450
cps 24 109 6747 1458 / 1276 1415 3.36 8081 / 15088 = 0.536
dalu 75 16 24902 24976 / 9941 696 5.46 17325 / 36094 = 0.480
ex1010 10 10 4048 5891 / 5838 1892 4.88 24121 / 44922 = 0.537
frg2 143 139 27803 9212 / 1603 893 2.76 9494 / 14915 = 0.636
misex3 14 14 12101 17195 / 13185 1113 8.92 30346 / 79301 = 0.383
pair 173 137 130724 29796 / 7909 3126 37.67 85739 / 155161 = 0.553
parity 16 1 524288 42456897 / 131037 60 75.93 294292 / 523375 = 0.562
seq 41 35 17876 11615 / 8299 1972 12.14 41976 / 88383 = 0.475
spla 16 46 4608 2242 / 1436 634 1.75 3366 / 8509 = 0.396
t481 16 1 4752 4746 / 698 40 0.75 2522 / 4056 = 0.622
table3 14 14 5805 14988 / 14637 1265 9.82 22475 / 76906 = 0.292
table5 17 15 6319 14090 / 13195 1045 9.88 18820 / 63691 = 0.295

fore the extraction. Each sub-column “literal” shows the
number of literals in SOP form. The sub-column “co-
kernel” shows the number of all co-kernels, and “node”
shows the number of nodes used in the kernel graph at that
time.

The result of logic extraction is shown in the column “Fi-
nal”. The column “Time” gives the CPU time in seconds on
a 450MHz Pentium II system running the Linux operating
system. The column “Hash” gives statistics of hash tables
used in the algorithm for generating kernel graphs. The sub-
column “look-up” shows the number of look-ups, and “hit”
shows the number of times that a required node had already
existed.

We successfully extracted common logic expressions
from very large cube sets using implicit representations and
a kernel graph. There are some cases where many co-
kernels can be represented with considerably less nodes. In
particular, our method can represent all of the co-kernels of
a 16-bit parity function (“parity”), which seem very hard
to be represented with other methods. The hit ratios of the
hash tables were sufficiently high for most circuits, and this
indicated the usefulness of memorizing the kernel genera-
tion process.

5 Conclusions

We have proposed a kernel graph, where the kernel gen-
eration process is memorized. The main advantages are that
1) the execution time can be reduced by skipping the pro-
cess that was processed before and 2) the memory usage for
representing kernel/co-kernel relations can be reduced by

sharing nodes. In future work, we want to integrate Boolean
divisions into our method.

References

[1] R. K. Brayton and C.McMullen. The Decomposition and Fac-
torization of Boolean Expressions. InProc. Int' l Symp. Cir-
cuits and Systems, pages 49–54, May 1982.

[2] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang. MIS: A Multiple-Level Logic Optimization Sys-
tem. IEEE Trans. CAD, CAD-6(6):1062–1081, November
1987.

[3] O. Coudert and J. C. Madre. Implicit and Incremental Compu-
tation of Primes and Essential Primes of Boolean Functions.
In Proc. Design Automation Conf., pages 36–39, June 1992.

[4] S. Minato. Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems. InProc. Design Automation Conf.,
pages 272–277, June 1993.

[5] R. E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Trans. Computers, C-35(8):667–
691, August 1986.

[6] S. Minato. Fast Factorization Method for Implicit Cube Set
Representation.IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 15(4):377–384, April 1996.

[7] J. Rajski and J. Vasudevamurthy. The Testability-Preserving
Concurrent Decomposition and Factorization of Boolean Ex-
pressions.IEEE Trans. CAD, 11(6):778–793, June 1992.

[8] S. Yang.Logic Synthesis and Optimization Benchmarks User
Guide Version 3.0. MCNC, January 1991.

[9] S. Minato. Fast Generation of Prime-Irredundant Covers from
Binary Decision Diagrams.IEICE Trans. on Fundamentals,
E76-A(6):967–973, June 1993.

