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ABSTRACT

This paper describes the frequency-domain approach to the blind
source separation of speech/audio signals that are convolutively
mixed in a real room environment. With the application of short-
time Fourier transforms, convolutive mixtures in the time domain
can be approximated as multiple instantaneous mixtures in the fre-
quency domain. We employ complex-valued independent com-
ponent analysis (ICA) to separate the mixtures in each frequency
bin. Then, the permutation ambiguity of the ICA solutions should
be aligned so that the separated signals are constructed properly
in the time domain. We propose a permutation alignment method
based on clustering the activity sequences of the frequency bin-
wise separated signals. We achieved the overall winner status of
MLSP 2007 Data Analysis Competition based on the presented
method.

1. INTRODUCTION

MLSP 2007 Data Analysis Competition [1] was organized by the
2007 IEEE International Workshop on Machine Learning for Sig-
nal Processing (MLSP). The data analysis task was the blind sep-
aration of audio sources that had been mixed and then captured by
multiple microphones in a real-room environment (e.g., solving a
cocktail party problem). Such a task has been well recognized as
a major application of blind source separation (BSS) or indepen-
dent component analysis (ICA) techniques [2–5]. The difficulty
of this problem lies in the fact that the mixing system is not sim-
ply instantaneous but convolutive, with delay and reflections. Let
s1, . . . , sN be source signals and x1, . . . , xM be sensor observa-
tions. The convolutive mixture model is formulated as

xj(t) =

N�
k=1

P�
l=0

hjk(l·ts) sk(t− l·ts), j =1, . . . , M, (1)

where t represents time (a multiple of ts = 1/fs with fs being
the sampling rate) and hjk is the impulse response from source k
to sensor j with P +1 samples. In a practical room situation, P
would be some thousands even with fs = 8 kHz sampling rate, and
this makes the convolutive problem difficult to solve.

Many approaches have been proposed to the convolutive BSS
problem. Among them, we consider the frequency-domain ap-
proach [6–14] where we apply a short-time Fourier transform
(STFT) to the sensor observations xj(t). If we use a sufficiently
long frame for STFT to cover the main part of the impulse re-
sponses hjk, the convolutive mixture (1) can be approximated well

with an instantaneous mixture at each frequency f :

xj(n, f) =
N�

k=1

hjk(f)sk(n, f), j =1, . . . , M, (2)

where n represents the time frame index, hjk is the frequency
response from source k to sensor j, and sk(n, f) is the time-
frequency representation of a source signal sk. Consequently,
we can employ any complex-valued instantaneous ICA algorithm
to separate the frequency bin-wise mixtures. Section 3 of this
paper presents an efficient ICA procedure for frequency-domain
speech/audio signals.

The drawback of frequency-domain BSS is that the permu-
tation ambiguity of an ICA solution becomes a serious problem.
The ambiguities should be aligned properly so that the separated
signals that originate from the same source are grouped together.
This problem is known as the permutation problem of frequency-
domain BSS, and various methods [6–14] have been proposed
for its solution. Section 4 discusses a strategy that exploits the
mutual dependence of bin-wise separated signals across frequen-
cies [8–10, 14]. The advantage of this strategy is that it is less
affected by bad mixing conditions, such as severe reverberations
or closely located sources, than another popular strategy based on
time-difference-of-arrival estimations [10, 11].

Section 5 reports experimental results. We have our own ex-
perimental condition (3 sources and 3 observations) to validate the
effectiveness of the proposed method. As regards the MLSP data
analysis competition [1], our submitted results obtained the over-
all winner status, and we were then invited to submit this paper to
present our approach.

2. FREQUENCY-DOMAIN BSS

Let us start with an overview of frequency-domain BSS. Figure
1 shows the system structure. First, sensor observations (1) are
converted into frequency-domain time-series signals (2) by a short-
time Fourier transform (STFT) with an L-sample frame and its S-
sample shift:

xj(n, f)←�
t xj(t)wina(t−nSts) e−ı2πft, (3)

for all discrete frequencies f ∈ {0, 1
L

fs, . . . , L−1
L

fs} and for
frame indexes n. The analysis window wina is defined as non-zero
only in the L-sample interval [−L

2
ts, (L

2
−1) ts] and preferably

tapers smoothly to zero at each end of the interval.
Next, separation is performed in each frequency bin f :

y(n, f) = W(f)x(n, f), (4)
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Fig. 1. System structure for frequency-domain BSS

where x = [x1, . . . , xM ]T is the vector of observations, y =
[y1, . . . , yN ]T is the vector of separated signals, and W is an
N ×M separation matrix. We apply the complex-valued instan-
taneous ICA algorithm described in Sect. 3 for the calculation of
W. If ICA works well, we expect y1, . . . , yN to be close to the
original source frequency components s1, . . . , sN . However, the
correspondence is up to the scaling and permutation ambiguities
that an ICA solution inherently has. Even if we permute the ele-
ments of y = [y1, . . . , yN ]T or multiply an element by a constant,
it is still an ICA solution. In other words,

W(f)← Λ(f)P(f)W(f) (5)

is also an ICA solution for any permutation P(f) and diagonal
Λ(f) matrices.

To align such ambiguities, it is advantageous to calculate basis
vectors ai = [a1i, . . . , aMi]

T , i = 1, . . . , N , and to represent the
vector x by a linear combination of the basis vectors:

x(n, f) =

N�
i=1

ai(f)yi(n, f) = A(f)y(n, f) , (6)

where A = [a1, · · · ,aN ]. If W has the inverse, the matrix is
given simply by A = W−1. Otherwise it is calculated as a least-
mean-square estimator [15]

A = E{xyH}(E{yyH})−1 ,

which minimizes E{||x −Ay||2}.
In the next step, the permutation matrix P(f) is determined

for each frequency f so that separated frequency components
yi(n, f) are grouped together for the same source. Section 4
presents a method for permutation alignment. After P is deter-
mined, the vector of separated components y and the matrixA of
basis vectors is updated as

y(n, f) ← P(f)y(n, f) , ∀n (7)
A(f) ← A(f) [P(f)]T , (8)

for each frequency f . Equation (6) is not changed by the update
because a permutation matrix is an orthogonal matrixPT P = I.

Then, the scaling ambiguity is aligned [9] by adjusting a sep-
arated frequency component yi(n, f) to the observation xJ(n, f)
of an arbitrary selected reference sensor J ∈ {1, . . . , M}:

yi(n, f)← aJi(f)yi(n, f), ∀ i, n, f.

In a vector notation,

y(n, f) ← Λ(f)y(n, f) , ∀n (9)

with a diagonal matrix

Λ(f) = diag[aJ1(f), . . . , aJN(f)] (10)

aligns the scaling ambiguity for each frequency f .
At the end of the flow, time-domain output signals yi(t) are

obtained by the inverse operation of the STFT:

yi(t) =
�

n

wins(t−nSts)
�

f∈{0, 1
L

fs, ..., L−1
L

fs}
yi(n, f) eı2πft

where wins is a synthesis window defined as non-zero only in the
L-sample interval [−L

2
ts, (L

2
−1) ts]. The summation over the

frame index n is with those that satisfy −L
2
ts ≤ t−nSts ≤

(L
2
−1) ts. To realize a perfect reconstruction, the analysis and

synthesis windows should satisfy the condition�
n wins(t−nSts)wina(t−nSts) = 1

for any time t. A synthesis window that tapers smoothly to zero at
each end is preferred in terms of mitigating the edge effect.

The procedure described above and depicted in Fig. 1 sepa-
rates the mixtures in the frequency domain. However, in the MLSP
2007 Data Analysis Competition [1], time-domain filters were to
be submitted for linear systems. The modification made for this
purpose will be described in Sect. 5.2.

3. COMPLEX-VALUED ICA

This section presents a criterion and procedure for complex-valued
ICA to separate the mixtures x(n, f) in the frequency domain. For
a simpler notation, let us omit the frequency dependency f of the
separation formula (4):

y(n) = Wx(n) . (11)

For the calculation of the separation matrixW, we maximize the
log-likelihood function

J = E{log p(x|W)} = log | detW|+
N�

i=1

E{log p(yi)} (12)

where
W =

�
Re(W) −Im(W)
Im(W) Re(W)

�
is a real-valued 2N×2M matrix introduced to transform the prob-
ability density function of a complex-valued vector [16].

An ICA algorithm generally assumes the source signal model
with a probability density function. For a speech or audio signal yi

in the frequency domain, we employ the following density func-
tion

p(yi) ∝ exp

�
−
�|yi|2 + α

b

�
(13)

where b > 0 specifies the variance, and a small nonnegative pa-
rameter α ≥ 0 controls the smoothness around the origin yi = 0.
Figure 2 shows the assumed density functions (13) together with
a complex-valued Gaussian distribution. The variance is normal-
ized to 1 for all the cases. We see that (13) provides a sharper
peaked distribution than the Gaussian distribution. Such a distri-
bution models a speech/audio signal in the frequency domain very
well [17]. As regards the parameter α, a smaller value gives a
more sharply peaked distribution. However, α should be non-zero
if the second order derivative of log p(yi) is used in the ICA algo-
rithm. Otherwise, α can be set to zero to make the density function
simpler: p(yi) ∝ exp(− |yi|

b
).
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Fig. 2. Probability density functions of complex variables. (a) and
(b) are assumed by (13), and (c) is a Gaussian distribution.

For computational efficiency and better separation perfor-
mance, we adopt a 3-step procedure to maximize (12). The first
step performs a whitening operation V which serves as a prepro-
cessing for the FastICA algorithm [4] in the next step. The second
step (FastICA) is constrained to learn only a unitary matrix U.
This makes the algorithm fast to converge by employing Newton’s
method. The third step has no constraint for the separation matrix
W. In this sense, it might improve the initial solutionW = UV
obtained by the first and second steps.

The first step performs the whitening operation with an M ×
M matrixV by

z(n) = Vx(n)

such that the correlation matrix of the output vector z =
[z1, . . . , zM ]T becomes an identity matrix E{zzH} = I. The
whitening matrix V is simply given by V = D−1/2EH if we
have an eigenvalue decomposition E{xxH} = EDEH .

The second step separates the whitened mixture z with a uni-
tary matrixU = [u1, . . . , uN ]H :

y(n) = Uz(n) . (14)

If we consider a log-likelihood function similar to one in (12), the
log |detU| term disappears sinceU is a unitary matrix. Thus, the
criterion here is to maximize

�N
i=1 E{log p(yi)}. The FastICA

algorithm [4] efficiently maximizes this criterion. The core part of
the algorithm is designed to extract a separated signal yi one by
one with a unit-norm vector ui:

yi(n) = uH
i z(n) .

The vector ui is updated by

ui ← E{g′(yi)}ui − E{g(yi) z}, (15)

where g(yi) and g′(yi) are the first and second derivatives of
log p(yi). With b = 1 for the assumed density function (13), we
have

g(yi) =
∂ log p(yi)

∂yi
= − y∗

i

2
�|yi|2 + α

,

g′(yi) =
∂g(y)

∂y∗
i

= − 1

2
�|yi|2 + α

�
1− 1

2

|yi|2
|yi|2 + α

�
,

where y∗
i is the complex conjugate of yi. After every update, the

vector ui is normalized to unit-norm and made orthogonal to al-
ready found other unit-norm vectors by the Gram-Schmidt orthog-
onalization method.

The third step maximizes the log-likelihood functionJ in (12)
with a general matrixW [18, 19]. We can start with a good initial

solutionW = UV obtained by the first and the second steps, and
then iteratively optimizeW with a small step-size η

W←W + η ·ΔW . (16)

Therein the natural gradient [5, 20]

ΔW =
∂J

∂W∗ WHW =
�
I− E{Φ(y)yH}

	
W

is commonly used for its nice properties. The nonlinear functions
Φ are defined as

Φ(y) = [Φ(y1), . . . , Φ(yN )]T ,

Φ(yi) = −∂ log p(yi)

∂y∗
i

=
yi

2b
�|yi|2 + α

,

in which we assume the density function (13). By setting α = 0
and b = 1/2, the nonlinear function becomes simpler as

Φ(yi) =
yi

|yi| .

4. PERMUTATION ALIGNMENT

In this section, we discuss a permutation alignment strategy based
on the signal activity sequence vf

i (n) of a bin-wise separated sig-
nal yi(n, f). The signal activity sequence can be calculated in
various ways as discussed in Sect. 4.1. We expect the correlation
coefficient ρ(vf

i , vg
j ) of two activity sequences vf

i (n), vg
j (n) to be

high if they originate from the same source. The rationale behind
this is that the active time frames of bin-wise separated signals are
likely to coincide among frequencies for the same source.

The correlation coefficient ρ between two real-valued se-
quences vi(n) and vj(n) is defined as

ρ(vi, vj) =
rij − μiμj

σiσj
(17)

where

rij = E{vivj}, μi = E{vi}, σi =



E{v2
i } − μ2

i

are the correlation, the mean, and the standard deviation, respec-
tively. For any two sequences vi and vj , the correlation coefficient
is bounded by −1 ≤ ρ(vi, vj) ≤ 1 , and becomes 1 if the two
sequences are identical.

4.1. Activity Sequence

The activity sequence of a separated signal yi has commonly been
represented by its envelope [8–10]

vf
i (n)← |yi(n, f)| . (18)

Envelopes usually result in high correlation coefficients for the
same source among adjacent frequencies or harmonic frequen-
cies [10]. However, they may end up with almost zero correlation
coefficients for the same source among frequencies that have no
specific relation. Figure 3 shows the envelopes of two separated
signals at two such frequencies. The correlation coefficients are�

ρ(vf
1 , vg

1) ρ(vf
1 , vg

2)

ρ(vf
2 , vg

1) ρ(vf
2 , vg

2)

�
=

�
0.10 −0.14
−0.19 0.06

�
,
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Fig. 3. Envelopes of two separated signals at two frequencies that
have no specific relation
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Fig. 4. Dominance measures of two separated signals at the same
two frequencies as in Fig. 3

which are very low even for the same source.
Recently in [14], we proposed to use a dominance measure for

the activity sequence. It represents how dominant the i-th sepa-
rated signal is in the observations (6). An example of such a mea-
sure is the power ratio between the i-th separated signal and the
total power sum of all the separated signals:

vf
i (n)← powRatioi(n, f) =

||ai(f) yi(n, f)||2�N
k=1 ||ak(f) yk(n, f)||2 . (19)

It is in the range 0 ≤ powRatioi ≤ 1 by definition. It is close to
1 if the i-th signal term ai(f)yi(n, f) is dominant in the decom-
position (6) of the mixtures x(n, f). In contrast, it is close to 0 if
other signals ai′(f)yi′(n, f) are dominant. For speech/audio sig-
nals, there are many cases where only one signal is dominant due
to their sparseness property [21]. Figure 4 shows the dominance
measure of two separated signals at the same two frequencies as in
Fig. 3. The correlation coefficients are�

ρ(vf
1 , vg

1) ρ(vf
1 , vg

2)

ρ(vf
2 , vg

1) ρ(vf
2 , vg

2)

�
=

�
0.54 −0.54
−0.54 0.54

�
,

which are sufficiently high for the same source.
As summarized in [14], dominance measures (19) experimen-

tally resulted in higher correlation coefficients than envelopes (18)
for the same source among many frequencies. One reason for this

is that envelopes have wide dynamic range, and active time frames
are represented with various values. On the other hand, dominance
measures have the limited dynamic range (from 0 to 1), and active
time frames are uniformly represented with values close to 1 as
long as the sources roughly satisfy the sparseness property.

4.2. Permutation Optimization

In the optimization procedure described here, we determine a per-
mutation Πf : {1, . . . , N} → {1, . . . , N} for each frequency f
such that the output yi,

i = Πf (k) , (20)

is grouped together for the k-th source. Although the notation Πf

used here is different from the matrix notation P(f) in (7), they
represent the same permutation if we describe the matrix as

P(f) =

�
�


eΠf (1)

...
eΠf (N)

�
�� (21)

where ei is a row vector in which the i-th element is 1 and all the
other elements are 0.

The permutations Πf in (20) of all frequency bins f can be
determined if the activity measures are clustered for each source by
maximizing the correlation coefficients ρ. However, calculating all
the possible pair-wise correlation coefficients is computationally
heavy. Thus, we practically perform rough global optimization,
where the centroid ck of each cluster is explicitly identified and
accordingly the cost function

J ({ck}, {Πf}) =
�
f∈F

N�
k=1

ρ(vf
i , ck)

��
i=Πf (k)

(22)

is maximized. The set F consists of all frequency bins. The cen-
troid ck is calculated for each source as the average value of the
activity measures with the current permutation Πf :

ck(n)← 1

|F|
�
f∈F

vf
i (n)

��
i=Πf (k)

, ∀ k, n , (23)

where |F| is the number of elements in the set F . The permu-
tation Πf is optimized to maximize the correlation coefficients ρ

between the activity sequences vf
i and the current centroid:

Πf ← argmaxΠ

N�
k=1

ρ(vf
i , ck)

��
i=Π(k)

. (24)

These two operations (23) and (24) are iterated until convergence.
According to the cost function (22), one centroid ck is iden-

tified for each source k. This means that we expect similar activ-
ity sequences for all the frequencies. However, if we increase the
sampling rate, for example up to 16 kHz, the activity sequences
are significantly different between low and high frequency ranges.
In order to precisely model such source signals, we introduce mul-
tiple centroids for a source, and extend the cost function as

J ({ck,m}, {Πf}) =
�
f∈F

N�
k=1

maxmρ(vf
i , ck,m)

��
i=Πf (k)

,

(25)
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Fig. 5. Experimental condition

where ck,m is them-th centroid for source k. Practically, we have
two or three centroids (m = 1, 2 orm = 1, 2, 3) for each source.

In this multiple centroid version, the centroids ck,m are ob-
tained as another level of clustering centroids. The clustering is
performed for the activity sequences of all frequencies that belong
to the k-th source

vf
i (n)

��
i=Πf (k)

,∀f ∈ F . (26)

Typically, k-means algorithm [22] or EM algorithm can be em-
ployed for this level of clustering. As regards the permutation of
each frequency, it is optimized by

Πf ← argmaxΠ

N�
k=1

maxmρ(vf
i , ck,m)

��
i=Π(k)

, (27)

which is also extended from (24). We interleave the multiple cen-
troid calculation for (26) and the permutation optimization by (27)
until convergence.

After the rough global optimization just described, we can per-
form fine local optimization [14] for better permutation alignment.

5. EXPERIMENTS

5.1. Private Experimental Condition

We performed experiments to separate three sources (male speech,
female speech and music) with three microphones. We measured
impulse responses hjk under the condition shown in Fig. 5. Mix-
tures at the microphones were made by convolving the impulse re-
sponses and 3-second source signals. The separation performance
was evaluated in terms of signal-to-interference ratio (SIR) im-
provement. The improvement was calculated by OutputSIRi −
InputSIRi for each output i, and we took the average over all out-
puts. These two types of SIRs are defined by

InputSIRi = 10 log10

�
t |
�

l hJi(l·ts)si(t− l·ts)|2�
t |
�

k �=i

�
l hJk(l·ts)sk(t− l·ts)|2 (dB),

OutputSIRi = 10 log10

�
t |yii(t)|2�

t |
�

k �=i yik(t)|2 (dB),

where J ∈ {1, . . . , M} is the index of one selected reference sen-
sor, and yik(t) is the component of sk that appears at output yi(t),
i.e. yi(t) =

�N
k=1 yik(t).
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Fig. 6. Signal-to-interference ratio (SIR) improvements with sev-
eral permutation alignment methods

Table 1. SIR improvement and computational time with several
ICA procedures (1st step: whitening, 2nd step: FastICA, 3rd step:
maximum likelihood). The number of iterations for (16) in the 3rd
step was 30 unless otherwise specified.

1st+2nd+3rd 1st+2nd 1st+3rd 1st+3rd (250 ite.)
SIR impr. 14.50 dB 14.29 dB 10.28 dB 14.51 dB
Comp. time 4.3 s 1.8 s 2.7 s 20.2 s

Experiments were conducted with 12 combinations of 3
sources. Figure 6 shows the SIR improvements obtained with sev-
eral permutation alignment methods. The abbreviations “Env” and
“PoR” indicate the methods using envelopes |yi| in (18) and dom-
inance measures powRatioi in (19), respectively. The abbrevia-
tions “Gl1” and “Gl3” correspond to the rough global optimiza-
tion, where the number of centroids for each source in (25) is
described by the number 1 or 3. “Lo” corresponds to the local
optimization presented in [14]. The entry “Optimal” represents
the results with the optimal permutations calculated with a knowl-
edge of the original source signals. By comparing the results of
“Env(Gl1)” and “PoR(Gl1)”, the advantage of using dominance
measures powRatioi instead of envelopes |yi| is clearly observed.
If we increased the number of centroids to precisely model the ac-
tivity of a source “PoR(Gl3)”, the results were then improved in
most cases. Together with the local optimization “PoR(Gl3+Lo)”,
the proposed method achieved good results which were very close
to the “Optimal” results.

Table 1 compares several ICA procedures to see the effective-
ness of the 3-step procedure described in Sect. 3. For permuta-
tion alignment, the method “PoR(Gl3+Lo)” was employed. The
combination of all the three steps “1st+2nd+3rd” attained a good
separation with an efficient computational cost. The total compu-
tational time (including STFT, permutation and so on) was around
8 seconds with this ICA procedure. The program was coded in
Matlab and run on Athlon 64 FX-53. Without the 3rd step, the
computational time was smaller but there was slightly less SIR
improvement. When we combined the 1st and 3rd steps, 30 itera-
tions of the update (16), starting from the whitening matrix as an
initial solution, were insufficient for us to obtain a good result. We
needed many iterations (250 in this case) to obtain a good separa-
tion, which results in a large computational time.



Table 2. Settings for MLSP 2007 Competition
Numbers of sources and sensors N = 2,M = 2
Source signals Male speech and Music
Sampling rate fs = 11.025 kHz
Duration of observations 30000 points (2.72 s)
STFT frame size L 2048 points (185.76 ms)
STFT frame shift S 256 points (23.22 ms)
Time-domain filter length L 2048 points
Permutation alignment method PoR(Gl3+Lo)
Computational time 6.14 s

5.2. MLSP 2007 Data Analysis Competition

Table 2 summarizes the settings for the MLSP 2007 Data Analysis
Competition [1]. Time-domain filterswij were to be submitted for
linear systems to separate the mixtures by

yi(t) =
M�

j=1

L−1�
l=0

wij(l·ts) xj(t− l·ts), i=1, . . . , N. (28)

For this purpose, we needed to slightly modify the system flow
described in Sect. 2. After the permutation and scaling ambiguities
have been aligned by (5), (21), (10), separation filters wij were
obtained by applying inverse DFT to wij(f) = [W(f)]ij :

wij(l·ts) =
�

f∈{0, 1
L

fs, ..., L−1
L

fs}
wij(f) ej2πf(l− L

2 )ts ,

for l = 0, . . . , L − 1. Then, a synthesis window that tapers
smoothly to zero at each end was multiplied to mitigate the edge
effect: wij(l·ts)← wins(l·ts − L

2
ts) · wij(l·ts) .

6. CONCLUSION

This paper presented the basic scheme of frequency-domain BSS,
and then explained a complex-valued ICA procedure and a per-
mutation alignment method in detail. As regards the permuta-
tion alignment method, we newly introduced multiple centroids
for modeling the activity of separated signals more precisely. The
experimental results showed the effectiveness of the new method
for separating speech/music mixtures.
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