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ABSTRACT

This paper proposes new formulations and algorithms for a multi-
channel extension of nonnegative matrix factorization (NMF), in-
tending convolutive sound source separation with multiple micro-
phones. The proposed formulation employs Hermitian positive
semidefinite matrices to represent a multichannel version of non-
negative elements. Such matrices are basically estimated for NMF
bases, but a source separation task can be performed by introducing
variables that relate NMF bases and sources. Efficient optimiza-
tion algorithms in the form of multiplicative updates are derived by
using properly designed auxiliary functions. Experimental results
show that two instrumental sounds coming from different directions
were successfully separated by the proposed algorithm.

Index Terms— nonnegative matrix factorization, multichan-
nel, positive semidefinite, auxiliary function, source separation

1. INTRODUCTION

Identifying frequent patterns in recorded sounds is an important task
in various kinds of audio signal applications, including sound sep-
aration and music transcription. Nonnegative matrix factorization
(NMF) [1], which was originally applied to learning parts-based
representations of images, is also a widely-used technique for such
audio applications (e.g., [2]). When we analyze a recorded audio
signal with NMF, the signal is typically transformed into the repre-
sentation xij in the time-frequency domain by a short-time Fourier
transform (STFT), where i and j represent frequency and time, re-
spectively. Then the amplitudes |xij | are used to construct a non-
negative matrix for the analysis.

Recently, multichannel extensions of NMF have been receiv-
ing attention with a view of realizing sound source localization and
separation with multiple microphones, and have been studied for
instantaneous mixtures [3, 4] and for convolutive mixtures [5, 6].
In a convolutive case, the phase difference information on time-
frequency observations between different microphones is crucial for
distinguishing/identifying source directions. Therefore, complex-
valued raw STFT observations should be taken into account. In
[5, 6], the covariance matrices of multivariate complex Gaussian
distributions are modeled with the NMF scheme, and EM algo-
rithms are derived for a source separation task. However, the algo-
rithms are sensitive to initialization, and thus they used the original
source information for perturbed oracle initializations.

In this paper, we study new types of multichannel NMF for-
mulations for a convolutive mixing case. The new formulations are
based on modeling the means of complex Gaussian distributions,
and can be seen as natural extensions of standard Euclidean NMF.
We study two formulations in which Hermitian positive semidef-
inite matrices H representing spatial properties are considered for
each NMF basis (the first one) and for each source (the second
one). In the second formulation, a source separation task can be per-

formed by automatically clustering the NMF bases to each source.
This constitutes a considerable advance on our previous study [7].
The derived algorithms are in the form of multiplicative updates [1].
Experimental results show that the algorithms converge favorably.

2. OPTIMIZATION FRAMEWORK FOR NMF

This section reviews the formulation and optimization framework
of standard NMF [1]. This framework can handle complex values
[8] and is important for understanding our multichannel extensions
of NMF explained in Sect. 3. The generative model of STFT am-
plitudes A, [A]ij = aij = |xij |, in standard NMF can be written
as

p(A|T,V) =
QI

i=1

QJ
j=1N (aij |

PK
k=1 tikvkj ,

1
2
) (1)

where N represents a Gaussian distribution, and K is the number
of rank-1 basis matrices. Nonnegative matrices T and V, whose
elements are tik ≥ 0 and vkj ≥ 0, have sizes of I ×K and K × J ,
respectively.

The negative log likelihood of (1)

L(T,V) = − log p(A|T,V) =
P

i,j |aij −
P

k tikvkj |2 , (2)

where constant terms are omitted, can be minimized in an iterative
manner by majorization [9] with an auxiliary function

L+(T,V,S) =
P

i,j

PK
k=1

1
rijk
|sijk − tikvkj |2 (3)

where sijk are auxiliary variables that satisfy
P

k sijk = aij , and
rijk are parameters that satisfy

P
k rijk = 1 and rijk > 0. It can

be verified that the auxiliary function L+ has two properties:

L(T,V) ≤ L+(T,V,S) , (4)

L(T,V) = minSL+(T,V,S) . (5)

Therefore, the negative log likelihood L is indirectly minimized by
repeating the following updates, each of which corresponds to the
minimization of the auxiliary function L+

1. with respect to S: sijk ← tikvkj + rijk(aij −
P

k tikvkj)

2. with respect to T: tik ←
P

j âijsijkP
j âijvkj

3. with respect to S: sijk ← tikvkj + rijk(aij −
P

k tikvkj)

4. with respect to V: vkj ←
P

i âijsijkP
i âijtik

.

These updates are derived from the partial derivative of L+ with
respect to the corresponding variables. If we specify the parameters
rijk as

rijk =
tikvkj

âij
, âij =

P
k tikvkj , (6)

then the update for the auxiliary variables is simplified as sijk ←
aijtikvkj/âij . By substituting this in the T and V updates, we
obtain the well-known multiplicative updates for NMF [1]:

tik ← tik

P
j aijvkjP
j âijvkj

, vkj ← vkj

P
i aijtikP
i âijtik

. (7)
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3. FORMULATIONS AND ALGORITHMS

3.1. Nonnegativity in Multichannel NMF

In a multichannel case, we have a complex-valued vector x =
[x1, . . . , xM ]T ∈ CM for a time and frequency slot, where xm

is the m-th microphone observation. Given that, here we consider
how we guarantee the nonnegativity utilized in the NMF scheme.

A trivial way of guaranteeing nonnegativity is to take the ab-
solute value of each element as [|x1|, . . . , |xM |]T . However, this
ignores the phase information that reflects the directivity of sources
from the microphone array. Another way is to select a reference
channel (e.g., the 1st channel) and to force the corresponding ele-
ment to be nonnegative as x ← x · sign(x∗1), where sign(x) =
x/|x| and ·∗ is the complex conjugate. Although this worked well
in our previous study [7], all channels are not treated evenly and the
results may be affected by the reference channel selection.

This paper proposes using the outer product

X =

2
664

|x1| . . . |x1xM |
1
2 sign(x1x

∗
M )

...
. . .

...
|xMx1|

1
2 sign(xMx∗1) . . . |xM |

3
775 (8)

= x̄x̄H of the amplitude square-rooted observation vector x̄ =

[|x1|
1
2 sign(x1), . . . , |xM |

1
2 sign(xM )]T . Note that [X]mn contains

information regarding the phase difference between the m-th and
n-th microphones. We then introduce an M ×M Hermitian posi-
tive semidefinite matrix Hk to model the spatial property of the k-th
NMF basis, and describe the outer product as

p(X|θ) =
MY

m=1

MY

n=1

Nc([X]mn|
KX

k=1

[Hk]mntkvk, 1) (9)

∝ exp(−||X−
X

k

Hktkvk||2F ) (10)

with θ = {t1, . . . , tK , v1, . . . , vK , H1, . . . , HK}, where Nc rep-
resents a complex Gaussian distribution, m and n are microphone
indexes, and ||B||2F =

PM
m=1

PM
n=1 |bmn|2 is the squared Frobe-

nius norm of a matrix B. Formulation (10) allows us to naturally
extend the Euclidean cost function of the standard NMF to multi-
channel cases, and to derive effective multiplicative updates with
favorable convergence behaviors, as shown below.

The next two subsections present multichannel NMF formula-
tions and their corresponding algorithms. We start with a simple
case where Hermitian positive semidefinite matrices are assigned
to each NMF basis. We then consider a practical case for source
separation by sharing such Hermitian matrices within a source.

3.2. NMF basis-wise spatial property Hik

This subsection studies a multichannel NMF formulation in which
spatial property Hik depends on frequency i and NMF basis k, and
does not depend on time j.

Let xij be M -channel observations at frequency i and time j,
and let Xij be the corresponding outer product defined by (8). Fol-
lowing (10) and the NMF scheme, the likelihood of the total obser-
vations X = {X11, . . . , X1J , . . . , XIJ} is given as

p(X|T,V,H) ∝Qi,j exp(−||Xij −
P

k Hiktikvkj ||2F ) , (11)

and the negative log-likelihood is given by

L(T,V,H) =
P

i,j ||Xij −
P

k Hiktikvkj ||2F . (12)

Here we introduce a constraint ||Hik ||F = 1 to fix the scaling am-
biguity between Hik and tik, and also to simplify the update rules
to minimize L as shown below.

Following the optimization framework explained in Sect. 2, we
introduce an auxiliary function

L+(T,V,H,S) =
P

i,j,k
1

rijk
||Sijk − Hiktikvkj ||2F (13)

where Sijk are auxiliary variables that satisfy
P

k Sijk = Xij , and
rijk are parameters that satisfy

P
k rijk =1 and rijk >0. As shown

in Appendix 6.1, the auxiliary function L+ satisfies two conditions
likewise (4) and (5), and the equality L+ =L is satisfied when

Sijk = Hiktikvkj + rijkEij , Eij = Xij −
P

k Hiktikvkj . (14)

The minimization updates with respect to the main variables
T, V and H are derived from the partial derivatives of L+ (see
Appendix 6.2), and given with the definition (6) of âij by

tik ←
P

j âijtr(SijkHik)P
j âijvkj

, (15)

vkj ←
P

i âijtr(SijkHik)P
i âijtik

, (16)

Hik ←
P

j âijSijk , Hik ← Hik/||Hik || , (17)

where tr(B) =
PM

m=1 bmm is the matrix trace. It is not ensured
that the update for Hik keeps it positive semidefinite, and it some-
times has nonnegative eigenvalues after the update. If so, we apply
eigenvalue decomposition as Hik = UDUH , set all the negative
elements of D to zero, and update Hik ← UDUH with the new D.

The above T and V updates (15) and (16) are not in the form of
multiplicative updates [1] and are not very efficient. If we utilize a
relation âijtr(SijkHik) = tikvkj [âij + tr(EijHik)], these updates
become multiplicative as shown below. In summary, the negative
log-likelihood (12) is iteratively minimized by repeating (18) and
one of the three updates (19)-(21).

Eij = Xij −
P

k Hiktikvkj , âij =
P

k tikvkj (18)

tik ← tik ·
"
1 +

P
j vkjtr(EijHik)P

j vkj âij

#
(19)

vkj ← vkj ·
»
1 +

P
i tiktr(EijHik)P

i tikâij

–
(20)

Hik ← Hik

P
j âijvkj +

P
j Eijvkj , Hik ← Hik/||Hik || (21)

3.3. Source-wise spatial property Hio

When multichannel NMF is applied to a source separation task, it is
desired that NMF bases originating from the same source are clus-
tered together. To realize such functionality, this subsection stud-
ies another formulation in which spatial property Hio depends on
frequency i and source o, where o = 1, . . . , N with N being the
number of sources.

The generative model is a modification of (11) by introducing
variables zko, which relates NMF basis k and source o:

p(X|T,V,H, Z) ∝Qi,j exp(−||Xij −
P

k,o zkoHiotikvkj ||2F )
(22)

with zko ≥ 0 and
PN

o=1 zko = 1. It is interpreted that the k-th
NMF basis belongs to the o-th source if zko is close to 1.
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Along with discussions similar to those in the previous subsec-
tion, we obtain the following results.

The negative log likelihood to be minimized is given by

L(T,V,H,Z) =
P

i,j ||Xij −
P

k,o zkoHiotikvkj ||2F (23)

and its auxiliary function can be defined by

L+(T,V,H,Z, S) =
P

i,j,k,o
1

rijko
||Sijko − zkoHiotikvkj ||2F

(24)
where Sijko are auxiliary variables that satisfy

P
k,o Sijko = Xij ,

and rijko are parameters that satisfy
P

k,o rijko = 1 and rijko > 0.
The equality L+ = L is satisfied when

Sijko = zkoHiotikvkj + rijkoEij , (25)

Eij = Xij −
P

k,o zkoHiotikvkj . (26)

If we specify the parameters rijko as

rijko =
zkotikvkj

âij
, âij =

P
k,o zkotikvkj =

P
k tikvkj , (27)

multiplicative updates for T, V and Z are obtained as

tik ← tik ·
"
1 +

P
j vkj

P
o zkotr(EijHio)P
j vkj âij

#
, (28)

vkj ← vkj ·
»
1 +

P
i tik

P
o zkotr(EijHio)P
i tikâij

–
, (29)

zko ← zko

P
i,j tikvkj [âij + tr(EijHio)] . (30)

Regarding zko, a normalization procedure zko ← zko/
P

o zko

should be conducted to satisfy the constraint
PN

o=1 zko = 1. The
update rule for H is obtained as

Hio ← Hio

P
k zkotik

P
j âijvkj +

P
k zkotik

P
j Eijvkj . (31)

After this update, the procedure for ensuring positive semidefinite-
ness, described just after (17), and Hio ← Hio/||Hio|| must be per-
formed. In summary, the negative log-likelihood (23) is iteratively
minimized by repeating (26) with âij =

P
k tikvkj and one of the

four updates (28)-(31).

4. EXPERIMENTS

We considered a situation where two 6-second sounds of instru-
ments coming from different directions (70◦ and 150◦) were mixed
and observed at two omnidirectional microphones 4 cm apart. The
mixtures were made by convolving measured impulse responses,
whose reverberation time was 130 ms, and the sound sources. The
sampling rate was 16 kHz. Then, we applied STFT (with a 64 ms
frame size and a 16 ms frame shift) to the mixtures and obtained
I × J = 513× 372 outer products (8).

Figure 1 shows the convergence behavior when minimizing the
negative log-likelihoods of NMF basis-wise (12) and source-wise
(23). In both cases, the number K of rank-1 basis matrices was set
at 10, T, V, and Z matrices were initialized randomly (but with the
same random numbers for both runs), and H elements were all set
to 1/M , with M being the number of microphones. We see that the
negative log-likelihoods were minimized efficiently. The program
was coded in Matlab and run on an Intel Core i7 965 (3.2-GHz)
processor. The computation times for 500 iterations were 83 and 49
seconds, respectively.
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Figure 1: Convergence behavior

In the case (23) of modeling source-wise spatial properties Hio,
a source separation task was performed. Figure 2 shows spectro-
grams of two separated signals. They were constructed with learned
matrices T, V, and Z as

yijo = xij

P
k zkotikvkjP

k tikvkj
(32)

for each source o and every time-frequency j, i slot. Figure 3 shows
the relationship zko between NMF bases k and sources o. From the
figure, it is interpreted that the 2nd basis contributes to the blue out-
put and the remaining bases contribute mainly to the red output. It is
an advantage of the proposed method that the source-wise number
of NMF bases does not need to be specified but only the total num-
ber needs to be specified. As a result of the source separation, the
signal-to-distortion ratios [10] were improved from (−7.37, 7.37)
dB at the mixture to (4.83, 12.21) dB.

Figure 4 shows the learned spatial properties, or more specif-
ically the arguments of [Hio]12, which represent the phase differ-
ence between two microphones of each source component o at each
frequency i. We observe that the blue and red dots correspond to
the sources coming from 70◦ and 150◦, respectively (the anechoic
model lines of these two directions are drawn for reference). This
way, the multichannel NMF also contributes to source localization.

5. CONCLUSION

We proposed new formulations and algorithms for multichannel
NMF. We start with a simple case where each NMF basis k has
its own spatial properties Hik . We then introduced a constraint that
such properties Hio should belong to each source o. The constraint
forces the learned NMF bases to be clustered into the sources, and
contributes to solving a source separation task with the multichan-
nel NMF framework. Experimental results show the effectiveness
of the proposed algorithms. Future work will include intensive ver-
ification of the algorithms with a variety of sound sources.

6. APPENDIX

6.1. Proof for the auxiliary function condition of (13)

Let us consider the minimization of L+ defined in (13) with respect
to S subject to the constraint

P
k Sijk = Xij . Introducing Lagrange

multipliers λij , we have

F = L+ +
P

ij λij(
P

k S∗ijk − X∗
ij) . (33)

The partial derivatives of F with respect to S are given as

∂F
∂S∗ijk

=
1

rijk
(Sijk − Hiktikvkj) + λij . (34)
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Figure 2: Two separated signals reconstructed by learned T, V ma-
trices weighted with Z (see Eq. 32 for details).
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Figure 3: Learned values of zko.

Setting this to zero gives Sijk − Hiktikvkj + λijrijk = 0 and
adding these for k = 1, . . . , K gives−λij = Xij−

P
k Hiktikvkj .

Therefore the minimum L+ is obtained when

Sijk = Hiktikvkj + rijk(Xij −
P

k Hiktikvkj) , (35)

and the minimum value is equal to L defined in (12).

6.2. Derivation of the update rules

Utilizing ||B||2F = tr(BHB), the auxiliary function L+ defined in
(13) can be simplified as

L+ =
P

i,j,k
1

rijk

ˆ
||Sijk||2F + t2ikv2

kj − 2tikvkjtr(SijkHik)
˜

where the constraint ||Hik||F = 1 and Hermitian identities Hik =
HH

ik and Sijk = SH
ijk are utilized. Then, the partial derivatives with

respect to T and V are

∂L+

∂tik
=
P

j
2

rijk

ˆ
tikv2

kj − vkjtr(SijkHik)
˜

, (36)

∂L+

∂vkj
=
P

i
2

rijk

ˆ
t2ikvkj − tiktr(SijkHik)

˜
. (37)

Setting these derivatives to zero and substituting rijk with (6) yields
the updates (15) and (16). The partial derivatives w.r.t. H are

∂L+

∂H∗
ik

=
P

j
1

rijk
(Sijk − Hiktikvkj)(−tikvkj) . (38)
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Figure 4: Arguments of learned [Hio]12.

Setting the derivative to zero and substituting rijk with (6), together
with the constraint ||Hik ||F = 1, yields the update (17).
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