Shine: a Cyber-community Application Platform
— A Proposal —

Sen Yoshida, Takeshi Ohguro, Koji Kamei, Kaname Funakoshi, and
Kazuhiro Kuwabara

NTT Communication Science Laboratories
{yoshida,ohguro,kamei,kf ,kuwabara}@cslab.kecl.ntt.co.jp

Abstract. We are developing an environment in a cyber-society that
will support people in the cyber-society to communicate with members in
communities, and to form, maintain, and evolve communities. This paper
proposes a common platform that provides the foundation for the various
applications to be used in this environment. The platform, named Shine,
is designed as a multi-agent architecture. We will discuss requirements of
the design such as the organization of modules, communication protocols
for agents, and user modeling.

1 The necessity of socialware and its platform

As public communication networks such as the Internet continue to grow, soci-
eties outside of real society, i.e., cyber-societies, are going to continue to appear
on the networks. A cyber-society has the advantage of providing communication
capabilities to real society that are free from geographical or temporal con-
straints. Because people are unable to deal with too much information or too
many other humans, however, they will tend to lose proper perspective for acting
or will hesitate to act and end up isolated in such a society.

In real society, although we only meet others in a physically limited sense, all
of us are successful in creating communities of various people. In a community,
both people with common interests and goals, and similar knowledge, and people
with differing interests and goals, and different levels of knowledge, exist. We can
enjoy conversations with those sharing our interests and collaborate with those
sharing our goals. Moreover, we can deepen our knowledge in discussions with
those having different opinions. In this way, we can actively communicate within
relatively small but satisfactorily heterogeneous groups. Moreover, community
feelings develop from such continual communications, and these community feel-
ings help further smooth the communications that takes place.

Communities in a cyber-society must also develop in a similar way for im-
proved communications. Actually, some active communities already exist in
cyber-societies. At present, however, many people are worried about the over-
abundance or the lack of information and people, and so it is difficult to form
and maintain communities. To overcome this difficulty, a new communication
environment is needed that can provide an appropriate range of activities for

In Short Papers Proceedings PRIMA’99. *31*



communities

(%D

communication formation, maintenance
exploiting advantages and evolution
of communities of communities

socialware

B

Fig. 1. Socialware

each person, can understand the diversity of knowledge and situations among
community members, and can help achieve the potential of the community.

With this motivation, research on communication systems for communities
on networks has been growing recently [3]. We call such systems “socialware”
[2]. Socialware supports

— communications exploiting advantages of communities, and
— community formation, maintenance, and evolution

as shown in Fig. 1.
It is easy to think of many applications of socialware. Several applications
for communications exploiting advantages of communities are follows:

— Circulation of information via human networks, such as word-of-mouth com-
munications, recommendations, and collaborative filtering [12].

— Arrangement of informal, suggestive or creative conversations, such as brain-
storming sessions [1, 5].

— Establishment of efficient collaborations for developing resources such as
software and databases.

— Arrangement of localized and informal economic activities, such as bazaars
and flea markets.

On the other hand, several applications supporting community formation,
maintenance, and evolution are as follows:

— Arrangement of effective meetings and notification of community feelings
[8, 13].

— Coordination of collaborations and conversations in a group [6, 7].

— Planning for establishing user identities in communities.

—32—



While we can think of a variety of socialware applications, some of the func-
tions of these applications are commonly required. These functions include:

1. The dynamic adaptation of acquaintance relations or group formation,

2. An analysis of each person’s features, role, and situation within a community,

3. An interface that links a user’s community feeling and a system’s logical
information, and

4. Flexible and intuitive communication utilities.

At the present, however, there is no software environment able to integrate
these common functions. Consequently, there exists no cooperation among ap-
plication programs, or the sharing and reuse of program parts in application
development. For this reason, we propose a platform named Shine! as a com-
mon base for various socialware applications and discuss how the platform is
achieved. Specifically, Shine is designed as a multi-agent system.

2 The functions required by Shine

In this section, we examine the functions required by Shine because they are
common to various socialware applications.

2.1 Dynamic adaptation of acquaintance relations and group
formation

Most of the socialware application programs available today were designed as
client-server (CS) systems, and so their control mechanisms and data are cen-
tralized. Such conventional CS architectures, however, isolate the activities of
the clients of each server, and consequently, users are unable to expand their hu-
man relations with users of other servers. On the other hand, providing a huge
unique server to overcome this limitation is far from realistic from the viewpoint
of scalability.

In Shine, we adopt a decentralized, multi-agent architecture to tackle this
problem. In our approach, the control mechanisms and data for human relations
are distributed to each person. Namely, the Shine system provides each user an
agent that is dedicated to the person’s social interactions.

In a decentralized multi-agent system, no agent knows every other agent. It
is therefore necessary to consider how agents will encounter other agents. In real
society, people meet many unknown others but can flexibly reorganize groups
to match situations. Our goal is to bring the group dynamism of real society
to cyber-societies. In Shine, an agent exchanges personal information with other
agents and they all collaboratively perform the necessary actions to change group
formation dynamically (e.g., mediation or introduction).

! The name “Shine” is derived from the Japanese word Hikaridai (meaning the table-
land of shine), which is the name of the location where Shine is being developed.

—33—



2.2 Analysis of each person’s feature, role and situation within a
community

To analyze a person’s features, role, or situation in a community systematically,
a socialware application has to adopt a kind of user model. By following a specific
user model, the application can store data about the attributes and status of
others into a database and can use the data for analysis.

One of a number of user models can be used depending on how it regards a
human. For example, when a user model considers a human to be a knowledge
source, it can describe the person in a knowledge representation language [9]. To
roughly represent a person’s interests, feature vectors of the vector space model
are suitable [13]. In addition, there is a method that prescribes communication
processes as protocols and describes communication entities as state transition
systems [4] to model each person’s situation and conversation flow.

Each current socialware application uses a suitable user model. For Shine
to achieve cooperation among application programs and the sharing of parts
in application development, however, it requires fundamental data types and
operations to abstract all of the user models. Accordingly, Shine adopts object-
oriented programming with the notion of inheritance, and provides a library of
such fundamental data types.

2.3 An interface that links a user’s community feeling and a
system’s logical information

A socialware application program needs a user interface that allows users to
relate their feelings about acquaintances to the system and to understand in-
tuitively the meaning of the logical information owned by the system follow-
ing a user model. Therefore, Shine not only provides popular user models but
also interface libraries for those models. Such interface libraries of user models
may include visualization mechanisms and other mechanisms that use available
human-computer interaction media.

2.4 Flexible and intuitive communication utilities

Complex communications takes place in communities in that it is impossible
to describe when who is talking about what where. Besides, when we try to
determine whom to communicate with, especially when we want to broadcast
a message to community members, it is important that the communications
must adapt to all dynamic changes in the community formation and be linked
to the community feelings of users. Shine provides a function that can flexibly
determine the range of communications based on the data including the features
and status of others.

—34—



user < :':"

-.-knterface program interface

/ WW
user appllcatlorfommunlcatloa

analy51s of

~user data:

community features adaptation for other
feelings roles aﬁd all social agents
\\situaéions dynamism on the

network

\ 4

Fig. 2. Internal structure of a Shine agent

3 Design and implementation of Shine

In the previous section, we examined functions that are common to various
socialware applications and therefore required to be implemented by Shine. As
discussed, it is suitable for Shine to be designed as a multi-agent system.
Figure 2 shows the design of a Shine agent’s internal structure. The agent is
divided into two layers: one layer depends on the domain of applications (Appli-
cation Layer) and the other layer is common to Shine applications (Shine Layer).
The Shine Layer supports each module of the Application Layer as follows.

— For the user interface, Shine helps to link a user’s community feeling and a
system’s logical information.

— For the body of an application program, Shine enables a person to take
advantage of being in a community by analyzing the features, roles, and
situations of people.

— For the interface enabling communications with others, Shine provides the
ability to adapt to the dynamic changes in acquaintance relations and group
formation.

In addition, Shine Layers themselves communicate with each other to ex-
change user data for mediation and/or member-introduction purposes when
other functions require them. Accordingly, the network of Shine agents is also
layered as shown in Fig. 3.

Incidentally, the following conditions are required for a programming lan-
guage to implement Shine applications.

—35—



communication
depending on

each application
(e.g., chat message)

Ppuser

user<

user data exchange
(e.g., mediation,
member-introduction)

Fig. 3. Layered network of agents

— It should be suitable for distributed environments.

— It should be object-oriented for the purpose of abstracting user models.

— It should allow programmers to easily build user interfaces able to handle
community feelings.

Java is one of the languages that satisfies these conditions and that has been
widely popularized. We will therefore provide Shine as a Java class library.

4 Example: Community Organizer

This section describes an example of a Shine application. The Community Or-
ganizer [2, 13] is a socialware application that the authors are developing. This
system supports the formation of new cyber-society communities as well as the
communications among community members by visualizing potential communi-
ties in accordance with the degree of common interest of users. Figure 4 is a
sample image of the Community Organizer.

This system calculates the degree of common interest (i.e., a relevance value)
for each user pair, and then places user icons in a plane to reflect the relevance
values between the pairs. An icon that corresponds to a user is placed in the
center of his/her view. All of the users can see information about other users
who share common interests, and can broadcast messages to them. This system
is expected to encourage all users to meet and exchange ideas by providing such
information.

Although the present version of the Community Organizer is an indepen-
dent client/server system, it can be revised for porting to the Shine platform.

—36—



FoAE AL RLALATEER B2 ThEDIC0.

TH T2 IR AT,

BELOEESBYELES. SIATES L,

Fig. 4. Sample image of the Community Organizer (Japanese version)

—37—



<

user =«

\

™ broadcast 4

chatting

\. messages
*

: \‘
T input ‘\ Q

visualize J.1f gata e &
*

.
e R R \
o . R
. vector space < o R
model S o R
* .
introduce

relevant .
* people

Fig. 5. The Community Organizer based on Shine

The Community Organizer uses a vector space model of an information retrieval
technique as the user model. Because Shine provides a library for this model, the
program of the Community Organizer can make use of prepared methods such
as the cosine measure [11]. Furthermore, the user interface of the Community
Organizer can choose its visualization mechanism from Shine’s vector space vi-
sualization library, which includes not only the spring model [13] but also other
mechanisms such as the dual-scaling method [5].

With the Community Organizer as a client/server system, those users repre-
sented on the display as icons are only in groups whose members are registered
on the server. Unfortunately, this situation lacks flexibility and makes the society
of users closed. Using Shine, however, the Community Organizer can become a
distributed multi-agent system because the Shine layer of each Community Or-
ganizer agent is responsible for communications with other agents by mediation
and/or/the introduction of other members.

The architecture of the Community Organizer based on Shine is shown in
Fig. 5.

5 Conclusions

In this paper, we proposed a platform named Shine which can provide common
functions for various socialware applications and discussed how to achieve the

platform.

—38—



Much work remains to be done, however. At first, we are going to study
the architecture of Shine more precisely, and implement it. We plan to do this
work in parallel with the development of socialware applications such as the
Community Organizer [2, 13] and Gleams of people [10]. There are also various
other matters to deal with, for example, privacy issues.

References

[1] Kunihiko Fujita and Susumu Kunifuji. A realization of a reflection of personal
information on distributed brainstorming environment. In Takashi Masuda, Yoshi-
fumi Masunaga, and Michiharu Tsukamoto, editors, Proceedings of the Interna-
tional Conference on Worldwide Computing and Its Applications ‘97, volume 1274
of Lecture Notes in Computer Science, pages 166—181. Springer-Verlag, 1997.

[2] Fumio Hattori, Takeshi Ohguro, Makoto Yokoo, Shigeo Matsubara, and Sen
Yoshida. Socialware: Multiagent systems for supporting network communities.
Communications of the ACM, 42(3):55-61, 1999.

[3] Toru Ishida, editor. Community Computing — Collaboration over Global Infor-
mation Networks. John Wiley & Sons, 1998.

[4] Kazuhiro Kuwabara, Toru Ishida, and Nobuyasu Osato. Agentalk: Describing
multiagent coordination protocols with inheritance. In Proceedings of the 7th In-
ternational Conference on Tools with Artificial Intelligence, pages 460-465, 1995.

[5] Kenji Mase, Yasuyuki Sumi, and Kazushi Nishimoto. Informal conversation en-
vironment for collaborative concept formation. In Ishida [3], chapter 6, pages
165-205.

[6] Shigeo Matsubara, Takeshi Ohguro, and Fumio Hattori. CommunityBoard: Social
meeting system able to visualize the structure of discussions. In Proceedings of
the Second International Conference on Knowledge-based Intelligent Electronic
Systems (KES’98), pages 423-428. IEEE, 1998.

[7] Shigeo Matsubara, Takeshi Ohguro, and Fumio Hattori. CommunityBoard 2:
Mediating between speakers and an audience in computer network discussions. In
Oren Etzioni, Jorg P. Miiller, and Jeffrey M. Bradshaw, editors, Proceedings of
the Third Annual Conference on Autonomous Agents, pages 370-371. ACM Press,
1999.

[8] Yoshiyasu Nishibe, Ichiro Morihara, Fumio Hattori, Toshikazu Nishimura, Hiro-
fumi Yamaki, Toru Ishida, Harumi Maeda, and Toyoaki Nishida. Mobile digital
assistants for international conferences. In Ishida [3], pages 245—284.

[9] Toyoaki Nishida and Hideaki Takeda. Towards the knowledgeable community. In
Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge Building and Knowledge
Sharing, pages 155-164. Ohmsha and IOS Press, 1994.

[10] Takeshi Ohguro, Sen Yoshida, and Kazuhiro Kuwabara. Gleams of people: Moni-
toring the presence of people with multi-agent architecture. In Proceedings of the
Second Pacific Rim International Workshop on Multi-Agents. In this volume.

[11] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[12] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms
for automating “word of mouth”. In CHI ’95 Proceedings: Conference on Hu-
man Factors in Computing Systems: Mosaic of Creativity, pages 210-217. ACM
SIGCHI, 1995.

—39—



[13] Sen Yoshida, Koji Kamei, Makoto Yokoo, Takeshi Ohguro, Kaname Funakoshi,
and Fumio Hattori. Visualizing potential communities: A multiagent approach.
In Proceedings of the Third International Conference on Multi-Agent Systems
(ICMAS-98), pages 477-478. IEEE Computer Society, 1998.

—40—



