Computationally sound formal blind signature

Hideki Sakurada

NTT Communication Science Laboratories
Nippon Telephone and Telegraph Corporation
Joint work with Masami Hagiya

Motivation

- Bridging the gap between
 - Computational, probabilistic model
 - Symbolic, non-deterministic model
 - of protocol security [Micciancio-Warinschi][Cortier-Warinschi]
- Symbolic model with blind signature [Kremer-Ryan]
 - Voting protocols and digital cash protocols

Contributions

1. Construct symbolic model with blind signature

Computational model

Assumptions on blind signature

2. Prove soundness

Symbolic model

Adversary's ability

Blind Signature Scheme

- Enables user to obtain signature σ to message m keeping m secret to signer (blindness)
- In voting scheme, voter is enabled to obtain ballot σ keeping his vote m secret to administrator

Symbolic Blind Signature

 How can we define symbolic adversary's ability reflecting assumptions in computational model?

Computational Assumptions

- 1. Blindness: Information on message m is not revealed from blinded message $\beta \leftarrow Blind(vk, r, m)$
- Unforgeability: Number of sigs. obtained by adv
 ≤ Number of times signer signs

E.g. FDH-RSA blind signature

 Adversary may not follow the scheme to obtain valid signature

Adversary's blinded message

- Introduce adversary's blinded message Blind^{adv} to the symbolic model
- Also represents "irregular" blinded message

Symbolic Adversary's Ability

- From a set Γ , adv. can obtain message m
 - 1. Deducible by the rules below, where
 - 2. Num. of times he uses the unblind rules
 - ≤ Num. of Bsign(Blind^{adv}) received

 $\Gamma \vdash \{M_0, M_1\} \qquad \Gamma \vdash M_i$

 No rule for Blind(r, M) because we assume honest party never disclose random r

Examples

Symbolic adversary can not deduce

 $\begin{array}{c|c} & Blind(r,N) \not\vdash N \\ & Bsign(Blind(r,N)) \not\vdash N \end{array}$

Unforgeability

```
\mathsf{M} \not\vdash \mathsf{Sign}(\mathsf{M}) \mathsf{Bsign}(\mathsf{Blind}^{\mathsf{adv}}), \mathsf{N}, \mathsf{N}' \not\vdash \{\mathsf{Sign}^{\mathsf{adv}}(\mathsf{N}), \mathsf{Sign}^{\mathsf{adv}}(\mathsf{N}')\}
```

Soundness computational protocol runs (except with negligible prob.) secure runs imply

Mapping Lemma

computational protocol runs

secure runs

symbolic protocol runs negligible prob.)

Outline of Proof

Similar to [Cortier-Warinschi]

I. Construct mapping from computational runs into symbolic runs:

- II. Show the symbolic runs satisfy the conditions
 - 1. Message sent by adv. can be deduced by the rules
 - 2. Num. of sign^{adv}(-) \leq Num. of bsign(blind^{adv})

If the cond.1 is not satisfied

If the cond.1 is not satisfied

Adversary of blindness game

If the cond.2 is not satisfied

If the cond.2 is not satisfied

Wins the unforgeability game.

Case 2

Conclusion

- We have constructed a symbolic protocol model with blind signature
- Shown the soundness of the model with respect to the computational model where
 - Blindness
 - Unforgeability
 - of blind signature are assumed.