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Deep Neural Network (DNN) is a promising technology in a wide range of application. Unfortunately, it is hard to use
DNN on devices with limited resources such as mobile devices since the model size of DNN is large. Binarized DNN
is constrained to have only two values in weights (e.g. -1 or 1) by using a binarization function. Since a binarized
weight only consumes 1-bit of memory, Binarized DNN is one of the most powerful approaches of model
compression. However, it is difficult to effectively train Binarized DNN. This is because the binarization function
vanishes gradients that update weights. In this study, in order to effectively train Binarized DNN, we avoid the
vanishing gradient problem by using a continuous function, that approximates the binarization function and is scaled
according to a distribution of weights. In our experiments, our method achieved more efficient training and higher
accuracy than previous.
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Background Binary weights reduce memory size
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Problems Binarization leads to less accuracy 
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