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Abstract. We present a novel technique that can provide a high-quality vocal-
tract MRI movie during speech production. The method uses MRI vocal-tract
images at the central point of each phoneme and interpolation functions between
adjacent phonemes obtained from electromagnetic articulographic (EMA) data.
It is based on our finding that articulatory parameters are suitable for a sparse
representation. Preliminary results showed that the quality of the obtained
vocal-tract MRI movie is high compared to that for the previous technique.
The method will be useful for constructing a large database of vocal-tract MRI
movies and understanding speech production mechanisms.

1. Introduction

The measurement of articulatory motion during speech production is important for in-
vestigating human speech production mechanisms. In the past, X-ray cinematography
(Perkell, 1969), an X-ray microbeam system (Kiritani et al., 1975), and an ultrasound
technique (Stone et al., 1983) have been used to measure motions of human articulatory
organs. In the 1990’s, an electromagnetic articulographic (EMA) system was widely used
for speech production research (Perkell et al., 1992). This system can measure the tongue,
lips, incisors, and velum at fairly high rates, but can only track receiver coils in the mid-
sagittal plane attached to the speech articulators. The advantage of this technique is that
the calculation of velocity and acceleration is more direct with flesh points. Currently, a
measuring system that works in three dimensions is being developed and used (Kaburagi
et al., 2005).

Recently, it has become possible to measure complete two- or three-dimensional
vocal-tract motion during speech production by magnetic resonance imaging (MRI). One
of the imaging methods is synchronized sampling with an external trigger (Masaki et al.,
1999). This can generate a high-quality vocal-tract MRI movie, but the subject has to
repeat the same sentence more than 100 times with small trial-to-trial variability. Another
is a real-time MRI technique (Narayanan et al., 2004), but lower sampling rates are used
as for measuring articulatory motion during speech production. Therefore, a technique
that can provide a high-quality vocal-tract MRI movie and greatly reduce the number of
sentence repetitions in the MRI scanner is required.
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We have proposed a method for decomposing EMA-based mid-sagittal articu-
latory parameters into a set of temporally overlapped event functions and correspond-
ing event vectors using non-negative temporal decomposition (NTD) (Hiroya, 2010) and
found that articulatory motion during speech production can be represented by articula-
tory positions at the central point of each phoneme and adequate interpolation functions.

In this paper, we present a method for generating a vocal-tract MRI movie based
on sparse sampling: vocal-tract MRI image sequences during speech production can be
generated using MRI images at key frames and interpolation functions obtained by EMA
measurements. To verify this validity, we investigate the articulatory properties obtained
with EMA and MRI, and compare the proposed method with the previous technique.

2. Non-negative temporal decomposition

The original temporal decomposition (Atal, 1983) approximates theith parameteryi(t)
of time t to

ŷi(t) =
m∑
k=1

ai,kφk(t), 1 ≤ t ≤ T, 1 ≤ i ≤ p, (1)

whereai,k is thekth event vector,φk(t) is thekth event function,p is the dimension of
the parameter,T is the length of the parameter sequence, andm is the number of event
functions. Later, Shiraki (2004) and Kim and Oh (1999) assumed thatφk(t) is zero for
t < tk−1 andt > tk+1 and that the sum of all event functions is one at any timet:

ŷi(t) = ai,kφk(t) + ai,k−1φk−1(t), tk−1 ≤ t ≤ tk, where φk(t) + φk−1(t) = 1. (2)

They claimed that the event functionsφk(t) should be restricted to the range[0, 1], because
this restriction facilitates parameter modification. The event functions are determined by
minimizing the least-squares error betweenyi(t) and ŷi(t), but the obtained event func-
tions are not restricted to the range[0, 1]. Thus, Kim clipped event functions at the range
[0, 1] [i.e. φk(t) = min(1,max(0, φk(t)))], but this resulted in increasing the estimation
errors.

It is difficult to determine the event functions that are restricted to the range[0, 1]
by the least-squares method without a clipping. To overcome this difficulty, we have
proposed a method for decomposition of speech parameters into a set of temporally over-
lapped event functionsφk(t) that are restricted to the range[0, 1] and corresponding event
vectorsai,k using NTD (Hiroya, 2010). The point is that NTD can determine the inter-
polation functions and the key frames based on a combination of non-negative matrix
factorization (NMF) (Lee and Seung, 1999) and dynamic programming (DP). We con-
sider minimizing the following cost function by the NMF algorithm:

m∑
k=2

tk∑
t=tk−1

p∑
i=1

(yi(t)− ai,kφk(t)− ai,k−1φk−1(t))
2 + α

m∑
k=2

tk∑
t=tk−1

(φk(t) + φk−1(t)− 1)2, (3)

where1 = t1 < t2 < · · · < tm = T andα is the weight. In line with a previous idea
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(Virtanen, 2007), we can obtain the multiplicative update rule for the event function:

φk(t)←

p∑
i=1

ai,kyi(t) + α

p∑
i=1

(ai,k−1ai,kφk−1(t) + a2i,kφk(t)) + α(φk−1(t) + φk(t))

φk(t) (4)

φk−1(t)←

p∑
i=1

ai,k−1yi(t) + α

p∑
i=1

(ai,k−1ai,kφk(t) + a2i,k−1φk−1(t)) + α(φk−1(t) + φk(t))

φk−1(t) (5)

The distortiond(y(t), ŷ(t)) of the cost function for each intervaltk−1 ≤ t ≤ tk
only depends on timetk−1 andtk. Therefore, the event timing

tk = arg min
t2,··· ,tm−1

T∑
t=1

d(y(t), ŷ(t)), 2 ≤ k ≤ m− 1 (6)

that minimizes total distortion for the whole interval1 ≤ t ≤ T is derived efficiently by
utilizing the DP method (Shiraki, 2004). That is, we have

D(tk) = min
tk−1∈Rk−1

(
D(tk−1) +

tk∑
t=tk−1

d(y(t), ŷ(t))
)

(7)

where

Rk−1 = {t|tk−1 − δ ≤ t ≤ tk−1 + δ}, (8)

D(tk) is an accumulated minimal distortion attk andδ is a search range.

In previous work (Hiroya, 2010), we assumed that event timing corresponds to the
central point of each phoneme on the time axis and found that the mean errors between the
measured EMA-based mid-sagittal articulatory parametersy(t) and the estimated ones
ŷ(t) were 0.16 mm. This indicates that articulatory motion during speech production
can be represented by articulatory positions at the central point of each phoneme and by
adequate interpolation functions: articulatory parameters are suitable for a sparse repre-
sentation. This is because the articulatory parameters for a given phoneme are prominent
and because the temporal patterns of the articulatory parameters are simple and smooth.
Thus, we had the idea that we would measure vocal-tract MRI images at key frames using
sparse sampling. In the next section, we will show the procedure for the proposed method.

3. Procedure for proposed method

We measured the vertical and horizontal positions of articulators, such as the lips, four
tongue positions, and lower incisor, using a two-dimensional EMA system (Carstens
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Figure 1. Procedure for proposed method.

AG100). The system can measure the articulators at a sampling rate of 250 Hz and simul-
taneously record the speech sounds at a sampling rate of 48 kHz.

In NTD, we first set the event vectors asai,k = yi(tk) for the initial event timingtk,
which was labeled at the central point of each phoneme on the time axis manually. Then,
the event functions and the event timings are determined by DP and the NMF update rules
of Eqs. (4)-(5). Note that event vectors were determined asai,k = yi(tk) depending on
the event timings.

Next, we conducted MRI scanning [Siemens MAGNETOM Verio (3T)] for vocal-
tract motion during speech production. For the MRI scanning, it was necessary that the
same subject in the EMA experiments produce the same sentences as in the EMA experi-
ment through MRI-compatible headphones in order to match the articulatory timing. The
MRI scan was conducted at event timingtk and measured the mid-sagittal section of the
vocal tract.

Using the event functionsφk(t) obtained by EMA and vocal-tract MRI images (as
event vectors)bi,j,k (1 ≤ i, j ≤ q) at event timingtk, whereq is the pixel length, we
generated a vocal-tract MRI moviêxi,j(t) = bi,j,kφk(t) + bi,j,k−1φk−1(t) (tk−1 ≤ t ≤ tk)
at the sampling rate of 250 Hz. The restriction ofφk(t) = 1 − φk−1(t) ∈ [0, 1] would
be beneficial for switching the event vectors of EMA with those of MRI. Shape-based
interpolation (Grevera and Udupa, 1996) between MRI images was introduced in order to
obtain sharp contours of the speech articulators.

4. Results

4.1. Comparison between event functions of MRI and EMA

In the proposed method, we need to use the event functions of EMA to generate a vocal-
tract MRI movie. Thus, we should firstly investigate whether the event functions of EMA
are similar to those of MRI. We created a vocal-tract MRI movie of the Japanese vowel
sequence /aiueo/ based on synchronized sampling with an external trigger and measured
EMA-based articulatory parameters of the same sequence. A Japanese male subject pro-
duced the vowel sequence to rhythmic repetitions of a noise-burst train composed of a
three-beat rhythm for both MRI and EMA experiments. Sampling rates were 67 and 250
Hz for MRI and EMA, respectively. A 256× 256 mm2 field of view, 256× 256-pixel
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Figure 2. Event functions of EMA, MRI around the lips of the vocal tract
and MRI at the whole articulatory area of /aiueo/.
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Figure 3. Comparison between upright (EMA) and supine (MRI) pos-
tures for /a/ to /o/. White circles represent receiver coil positions of EMA.

image size, and 3-mm slice thickness were used for MRI. All MRI images were converted
to 8-bit gray scale. In NTD, theα was set to 106 and 108 for EMA and MRI, respectively,
andδ was around 40 msec. A matrix of the MRI images was converted to a vector for
NTD.

Figure 2 shows the event functions of EMA and MRI. Event functions of MRI
were calculated for two regions: around the lips of the vocal tract, as compared to EMA,
and at the whole articulatory area. Event functions of EMA were similar to those of MRI.
Moreover, there is not a large difference between two event functions of MRI. These
results indicate that we can use event function of EMA to generate a vocal-tract MRI
movie.

The subject spoke in the upright postures for EMA measurements, whereas MRI
measurements require supine postures. However, a previous study (Kitamura et al., 2005)
suggested individual differences in the effects of gravity on the tongue body between
upright and supine postures. As shown in Fig. 3, there is not a large difference in the
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Figure 4. Scan timings for dynamic and sparse MRI of /aiueo/. Vertical
bars indicate scan timings.
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Figure 5. Vocal-tract images of dynamic and sparse methods. /a/ and
/u/ of /aiueo/, and /b/ of /tabako/.

vocal-tract information between upright (EMA) and supine (MRI) postures of /a/ to /o/
for the subject.

4.2. Comparison between dynamic and sparse MRI

We compared the proposed method, called sparse MRI, with a high-speed scanning
method, called dynamic MRI. Both TRs were 100 msec. A 144× 144-pixel size and
10-mm slice thickness were used for MRI. All MRI images were converted to 8-bit gray
scale. Dynamic MRI scanned at the rate of 9 Hz and sparse MRI scanned at event tim-
ing tk in the mid-sagittal section of vocal tract (Fig. 4). For both scannings, the subject
tried to speak while he listened to his own voice from the EMA experiment through MRI-
compatible headphones in order to match the articulation timing. The Japanese vowel se-
quence /aiueo/ and the word /tabako/ were used. For /tabako/ of sparse MRI, the number
of repetitions required was two because TR was larger than the durations between suc-
cessive event timings. The image of dynamic MRI at the central point of each phoneme
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Figure 6. Vocal-tract images between /e/ and /o/ for the synchronized
sampling, dynamic, and sparse methods.

was obtained by linear interpolation between two successive images. Figure 5 shows that
vocal-tract image at the central point of /a/ is the same for both sparse and dynamic MRI
since scan timing of dynamic and sparse MRI was almost the same. However, sparse MRI
is better than dynamic MRI for the lip protrusion for /u/ and lip closure for /b/. This in-
dicates that sparse MRI can measure the most important vocal-tract information for each
phoneme, compared with dynamic MRI.

4.3. Generation of a vocal-tract MRI movie

Figure 6 shows vocal-tract images for the synchronized sampling, dynamic, and sparse
methods in the same timing between /e/ and /o/ of /aiueo/. The image of sparse MRI was
obtained with the proposed method and the image of dynamic MRI was obtained by linear
interpolation between two successive images. We can see that the image of sparse MRI
is more similar to that of synchronized sampling than that of dynamic MRI because the
adequate interpolation functions were used for sparse MRI. The quality of the vocal-tract
MRI movie obtained by sparse MRI was high compared to that for dynamic MRI.

5. Conclusions
We presented a method for generating a vocal-tract MRI movie based on sparse sampling.
This is the first study to generate a vocal-tract MRI movie during speech production using
the high temporal resolution of EMA and high spatial resolution of MRI. The method will
be useful for constructing a large database of vocal-tract MRI movies and understanding
speech production mechanisms.
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