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ABSTRACT

We present a non-negative temporal decomposition method for line
spectrum pair and articulatory parameters. Based on the multiplica-
tive update rules derived from a non-negative matrix factorization
algorithm, these parameters decompose into a set of temporally over-
lapped event functions that are restricted to the range[0, 1] and cor-
responding event vectors. With the proposed method, the RMS error
of the measured and estimated articulatory parameters is 0.16 mm
and the spectral distance of the measured and estimated line spec-
trum pair parameters is 1.97 dB. These results also show that these
estimation errors of proposed method are significantly smaller than
those of the conventional method. This technique will be useful for
many applications, such as speech coding and speech modification.

Index Terms— Non-negative matrix factorization, Temporal
decomposition, articulatory parameters

1. INTRODUCTION

In speech processing, it is important to efficiently represent multi-
dimensional time-varying speech parameters, such as line spectrum
pair (LSP) and articulatory parameters. A hidden Markov model
(HMM) [1] is one of the models that can represent dynamical be-
havior as well as the trajectory smoothness of speech parameters.
Temporal decomposition (TD) [2] can represent speech parameters
as a set of temporally overlapped event functions and correspond-
ing event vectors. TD has been used for many applications: speech
coding [2, 3], segmentation of speech signals [4, 5], analysis of artic-
ulatory parameters [6, 7] and modification for the speech spectrum
[8] as well as for the speaking rhythm [9]. For these purposes, the
event functions should be restricted to the range[0, 1]. This restric-
tion contributes to reducing the quantization error in speech coding
and modifying speech parameters easily. However, they have been
clipped at the range[0, 1] because it is difficult to apply the restric-
tion to the conventional TD algorithm directly. Thus, a novel TD
algorithm with the restriction is required.

In this paper, we present a non-negative temporal decomposi-
tion (NTD) method to overcome the problem. For given speech pa-
rameters, this method can optimize the event functions, which are
restricted to the range[0, 1], and the event vectors using the multi-
plicative update rules derived from a non-negative matrix factoriza-
tion (NMF) [10] algorithm.

2. CONVENTIONAL TEMPORAL DECOMPOSITION

The original temporal decomposition [2] approximates theith
speech parameteryi(t) of time t to

ŷi(t) =

m∑
k=1

ai,kφk(t), 1 ≤ t ≤ T, 1 ≤ i ≤ p (1)
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Fig. 1. Example of event functions.

whereai,k is thekth event vector,φk(t) is thekth event function,
p is the dimension of the speech parameter,T is the length of the
parameter sequence andm is the number of event function. Shiraki
[11] has assumed thatφk(t) is zero fort < tk−1 andt > tk+1 (see
Fig. 1). Thus,ŷi(t) can be represented as a linear combination of
ai,k andai,k−1:

ŷi(t) = ai,kφk(t) + ai,k−1φk−1(t), tk−1 ≤ t ≤ tk. (2)

Kim [3] has proposed that the sum of all event functions is one at
any timet:

ŷi(t) = ai,kφk(t) + ai,k−1(1− φk(t)). (3)

The event functionsφk(t) are determined by minimizing the least-
squares error betweenyi(t) andŷi(t):

φk(t) =

p∑
i=1

(ai,k − ai,k−1)(yi(t)− ai,k−1)

p∑
i=1

(ai,k − ai,k−1)
2

. (4)

However, the obtainedevent functions are not restricted to the non-
negative value, nor the range[0, 1]. Thus, Kim clipped event func-
tions at the range[0, 1] [i.e. φk(t) = min(1,max(0, φk(t)))] and
then updated event vectorsai,k using the least-squares method as
follows.

m∑
k=1

ai,k

T∑
t=1

φk(t)φj(t) =

T∑
t=1

yi(t)φj(t), 1 ≤ j ≤ m (5)
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φk(t)←

p∑
i=1

ai,kyi(t) + α

p∑
i=1

(ai,k−1ai,kφk−1(t) + a2
i,kφk(t)) + α(φk−1(t) + φk(t))

φk(t) (7)

φk−1(t)←

p∑
i=1

ai,k−1yi(t) + α

p∑
i=1

(ai,k−1ai,kφk(t) + a2
i,k−1φk−1(t)) + α(φk−1(t) + φk(t))

φk−1(t) (8)

ai,k ←

tk+1∑
t=tk−1

yi(t)φk(t)

tk−1∑
t=tk−1

(ai,k−1φk−1(t)φk(t) + ai,kφ
2
k(t)) +

tk+1∑
t=tk

(ai,k+1φk(t)φk+1(t) + ai,kφ
2
k(t))

ai,k (9)

3. NON-NEGATIVE TEMPORAL DECOMPOSITION

It is difficult to determine the event functions that are restricted
to the range[0, 1] by the least-squares method without a clipping,
but the non-negative matrix factorization (NMF) [10, 12] algorithm
can iteratively determine the non-negative value of event func-
tions. Moreover, if we assume the model in Eq. (2) foryi(t) and
φk(t)+φk−1(t) = 1 at any timet, we can determine the event func-
tions that are restricted to the range[0, 1]. The problem is defined
as

min

m∑
k=2

tk∑
t=tk−1

p∑
i=1

(yi(t)− ai,kφk(t)− ai,k−1φk−1(t))
2

s.t. φk(t) ≥ 0, φk−1(t) ≥ 0, ai,k ≥ 0, ai,k−1 ≥ 0

φk(t) + φk−1(t) = 1 for ∀t, i, k

Thus, we consider minimizing the following cost function by NMF
algorithm:

m∑
k=2

tk∑
t=tk−1

p∑
i=1

(yi(t)− ai,kφk(t)− ai,k−1φk−1(t))
2

+α
m∑

k=2

tk∑
t=tk−1

(φk(t) + φk−1(t)− 1)2, (6)

where1 = t1 < t2 < · · · < tm = T andα is the weight. In line
with a previous idea [12], we can obtain the multiplicative update
rule for the event function and vector [Eqs. (7)-(9)].

4. OPTIMIZATION OF EVENT TIMING

The distortiond(y(t), ŷ(t)) of the cost function for each interval
tk−1 ≤ t ≤ tk only depends on timetk−1 andtk. Therefore, the
event timing

tk = arg min
t2,··· ,tm−1

T∑
t=1

d(y(t), ŷ(t)), 2 ≤ k ≤ m− 1 (10)

that minimizes total distortion for the whole interval1 ≤ t ≤ T
is derived efficiently by utilizing the dynamic programming (DP)
method [11]. That is, we have

D(tk) = min
tk−1∈Rk−1

(
D(tk−1) +

tk∑
t=tk−1

d(y(t), ŷ(t))
)

(11)

where

Rk−1 = {t|tk−1 − δ ≤ t ≤ tk−1 + δ}, (12)

D(tk) is an accumulated minimal distortion attk andδ is a search
range.

5. ALGORITHMS

5.1. Restricted TD (RTD)

In RTD [3], we first set the initial event vectors asai,k = yi(tk)
for the initial event timingtk. Then, the event functions and the
event timings are determined using Eq. (4) and DP. Finally, the event
functions are clipped at the range[0, 1] and only the event vectors are
updated by Eq. (5) for given event functions and event timings. Note
that Kim [3] has proposed a method for holding an ordering property
of LSP parameters. But this is irrelevant to the main subject, thus we
don’t use this in the paper.

5.2. NTD

In NTD, the initial event vectors and event timings are the same as
RTD. Then, the event functions and the event timings are determined
by DP and the NMF update rules of Eqs. (7)-(8). Note that the event
vectors are not updated at this stage. Finally, for given event timings,
the event functions and vectors are updated using Eqs. (7)-(9).

6. EXPERIMENTAL CONDITIONS

We compare the proposed method (NTD) with the conventional
method (RTD). We evaluate the proposed method using LSP and
articulatory parameters. Articulatory parameters and speech signal
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Fig. 2. Simultaneous observations to obtain articulatory-acoustic
data.
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Fig. 3. RMS error of articulatory parameters for the number ofδ’s.
Vertical bars indicate the standard error of the mean.

data were obtained from simultaneous observations using an electro-
magnetic articulographic (EMA) system [1] and audio recording of
continuous speech utterances (Fig. 2). The articulatory data were
collected using the EMA at a sampling rate of 250 Hz. The artic-
ulatory parameters were represented by the vertical and horizontal
positions of six receiver coils, which were placed on the lower in-
cisor (LI), the upper and lower lips (UL, LL), and the tongue (T1,
T2, T3; three positions). The speech signal was recorded at a sam-
pling rate of 16 kHz. Sixteen LSP parameter coefficients without
the 0-th coefficient were obtained using a 32-ms Hamming window
with a 4-ms frame shift.

In articulatory-acoustic recordings, one Japanese male subject
read 16 Japanese sentences. The average numbers of phonemes and
frames per sentence were 37 and 748, respectively. We labeled the
central point of each phoneme on the time axis, which we call initial
event timingtk. Thus,m is the number of phonemes. The labeling
was done manually by an expert. Theα was set to106 and103 for
articulatory and LSP parameters, respectively.

7. RESULTS

Figure 3 shows the estimation error of articulatory parameters using
RTD and NTD for the number ofδ’s. For everyδ, the error of NTD

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

0 1 2 3 4 5 6 7 8 9 10

S
p

e
ct

ra
l 

d
is

ta
n

ce
 (

d
B

)

RTD

NTD

Number of delta

Fig. 4. Spectral distance of LSP parameters for the number ofδ’s.
Vertical bars indicate the standard error of the mean.
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Fig. 5. Cross-correlation coefficients of event functions. Vertical
bars indicate the standard error of the mean.

was smaller than that of RTD. Figure 4 shows the spectral distance
of LSP parameters for the number ofδ’s. For everyδ, the spectral
distance of NTD was smaller than that of RTD. For both articulatory
and LSP parameters, the estimation error using NTD monotonically
decreased for the number ofδ’s. For NTD,φk(t) + φk−1(t) at any
time t was one. This indicates that the proposed method efficiently
reduces the estimation error under the condition that the event func-
tions are restricted to the range[0, 1].

The estimation error of articulatory parameters for NTD (0.16
mm) was much smaller than 1.22 mm for an articulatory HMM [13]
and 1.65 mm for a kinematic triphone model [14] because NTD pa-
rameters have not been statistically modeled in this study. But we
expect that the error of NTD with statistical modeling will be equiv-
alent to or smaller than that of other articulatory modeling by using
redundancy in NTD parameters.

For the application of NTD to speech coding and speech modi-
fication, better stability of the event function would contribute to re-
ducing the quantization error and improving the quality of modified
speech. To investigate this, we assessed the cross-correlation coef-
ficients of event functions for the successiveδ’s for articulatory and
LSP parameters (Fig. 5). This was done by concatenating the event
functions as[φ1, φ3, φ5, · · · ]: we calculated the cross-correlation of
solid lines in Fig. 6(d) and (e). The coefficient of the articulatory
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Fig. 6. (a) Speech waveform. (b) Measured (thin lines) and esti-
mated (thick lines) articulatory parameters of vertical positions. (c)
Measured (thin lines) and estimated (thick lines) first six LSP pa-
rameters. (d) Event functions of articulatory parameters. (e) Event
functions of LSP parameters.δ = 5.

parameters is almost 0.99, but that of LSP is smaller. Moreover, we
found the event functions of LSP parameters were largely changed
for δ of more than 7. This indicated that the stability of event func-
tions of articulatory parameters using NTD is better than that of LSP
parameters. One possible reason is that the temporal patterns of the
articulatory parameters are simpler and smoother than those of the
LSP parameters, but a more detailed analysis is required.

Finally, the cross-correlation coefficient of event functions be-
tween LSP (Fig. 6(e)) and articulatory parameters (Fig. 6(d)) using
NTD was calculated. The coefficients were 0.65, 0.53, and 0.36 for
δ = 0, 5, and10, respectively. The lag was around 3 msec.

8. CONCLUSIONS

The paper presented a non-negative temporal decomposition method
for speech parameters. The error of NTD is smaller than that of
RTD under the condition that the event functions are restricted to the
range[0, 1]. Using NTD, we plan to analyze speaker variability of

articulatory parameters.
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