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Abstract

Despite abundance of research, natural voice restoration af-
ter total laryngectomy (i. e., removal of the vocal folds of the
larynx), has remained a challenge. A typical way of producing
a relatively intelligible speech for patients suffering from this
inability is to use an electrolarynx. However, the outcome voice
sounds artificial and has “robotic” quality owing to constant
fundamental frequency (F0) patterns generated by the electro-
larynx. In existing frameworks on natural F0 patterns predic-
tion, a model is trained on a massive amount of parallel training
data to find a mapping that maps spectral features of the source
speech into F0 contours of the target speech. However, creating
big datasets for electrolaryngeal (EL) speech is considered as
a cumbersome and expensive task. Moreover, EL speech spec-
tral features are significantly different from spectral features of
the normal speech, and therefore, it is not straightforward to ef-
fectively use easily available normal speech datasets in training
of the model for EL speech. Consequently, the quality of the
models could be still low due to the lack of sufficient training
data. To address this problem, we investigate F0 pattern pre-
diction based on other features that could be shared between
normal speech and EL speech. By using shared input features,
we would be to train the prediction model using a large amount
of training data. As such features, in this work, we examine
F0 prediction accuracy based on phoneme-related features. The
findings show that by considering phoneme labels for both vow-
els and consonants and one-hot encoding of these labels, we are
able to predict F0 contours with high correlation coefficients.
Index Terms: electrolaryngeal speech, speech enhancement,
fundamental frequency pattern prediction, statistical voice con-
version, phoneme labels, recurrent neural network

1. Introduction
In human societies, the ability to communicate with oth-
ers to convey messages and express emotional feelings is of
paramount importance. Although different elements can de-
termine the quality of life (QoL) across societies, undoubtedly,
the ability to communicate is one of the key factors that can
significantly influence the QoL. In general, an speech signal
is the product of four systems [1]: 1. respiratory (air gener-
ator), 2. phonatory (vibrating apparatus), 3. resonatory (reso-
nance modulator) and 4. articulatory (articulating tract). During
the production of voiced speech segments such as voiced con-
sonants and vowels, the air flow expelled from the lungs sets

the vocal folds into vibration. These vibrations generate sound
waves and would subsequently get modulated by the shape of
the vocal tract and articulatory movement. However, in patients
with larynx cancer, vocal folds are sometimes completely re-
moved from the larynx (i. e., total laryngectomy), and hence,
production of voiced speech segments is impossible. Given that
the phonetic system of most languages are notably consisted of
voiced consonants and vowels, the absence of this acoustic fea-
ture would lead to marked voice abnormalities and decreased
intelligibility.

Over the past decades, many voice restoration techniques
have been proposed to fill the gap of vibrating apparatus and
re-produce speech. Amongst different available techniques, EL
speech has been considered as a viable method for producing
relatively intelligible voices by laryngectomees. In this method,
a battery operated vibrator, called an electrolarynx, is placed
against the neck and excitation signals are mechanically gen-
erated from outside. Although using the noninvasive electro-
larynx is an efficient method to produce speech while patients’
oral cavity and articulatory abilities are preserved, the resulting
EL speech is typically noisy and unnatural. On the one hand, in
order for EL speech to be heard easily, excitation signals must
have high intensities. Generating intensified buzzy excitation
signals results in intelligibility degradation of the EL speech,
because these signals are reflected back and leak outside. On the
other hand, by using an electrolarynx, it is not possible to gen-
erate natural F0 patterns corresponding to linguistic contents.
Hence, EL speech sounds unnatural and has a robotic quality.

To produce natural-sounding EL speech, it is required to
predict and control the underlying F0 contours of the EL
speech. Traditionally, statistical voice conversion (VC) [2, 3]
has been applied to this prediction task. This technique aims
to predict natural F0 contours based on the statistics extracted
from a parallel dataset consisting of utterance pairs of EL
speech and normal speech. In [4], Nakamura et al. have pro-
posed an speaking-aid system using VC, in which segmental
feature vectors of spectra of the EL speech were used to pre-
dict natural F0 contours. They have furthermore introduced an
EL-air speech system in which F0 contours can be controlled
by using an air-pressure sensor. In [5], the authors have de-
veloped a real-time statistical F0 contour prediction system for
vibration control of the electrolarynx. This system, in turn, uses
segmental spectral features to predict F0 contours, and more-
over, predicts forthcoming F0 values to control F0 patterns of
the excitation signals. In a recent work, Kobayashi et al. [6]
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have used a system based on deep neural networks (DNNs) to
map segmental features into target F0 contours. Even though
these systems have improved perceived naturalness of the EL
speech, the predicted F0 patterns still deviate from the target
ones and they are not able to present the prosodic system of the
language.

Recent advances in Text-to-Speech (TTS) [7, 8] and voice
conversion [9] systems, have made it possible to generate nat-
ural F0 contours from phoneme-related features and synthesize
speech with human quality. Inspired by these systems, in this
work, we investigate F0 prediction accuracy based on phoneme
labels to examine whether or not these labels could be consid-
ered as shared features between normal and EL speeches. We
hypothesize that the application of EL speech spectral features
cannot result in high prediction accuracy when a small amount
of parallel training data is available. Since EL speech spectral
features are significantly different from spectral features of the
normal speech, it is not straightforward to effectively use eas-
ily available normal speech datasets for training of the model for
the EL speech. Consequently, the quality of the models could be
low due to the lack of sufficient training data. By using shared
input features, we would be to train the prediction model using
a large amount of training data. As such features, in this work,
we examine F0 prediction accuracy based on phoneme-related
features. The findings show that by considering phoneme la-
bels for both vowels and consonants and one-hot encoding of
these labels, we are able to predict F0 contours with high cor-
relation coefficients. Furthermore, even if we only consider the
occurrence times for possible phoneme combinations in an ut-
terance, comparable prediction accuracy as in the case based on
segmental spectral features can be obtained.

2. Related works
In the literature of EL speech enhancement, statistical F0 pre-
diction based on Gaussian mixture models (GMMs) [3, 4, 5],
and F0 prediction using neural networks [6] have been proposed
for enhancing naturalness of the EL speech. In statistical F0

prediction, a parallel dataset consisting of utterance pairs of EL
speech and normal speech is developed in advance and a two-
step training-prediction process is performed to predict F0 con-
tours from segmental spectral features. In the training step, the
joint probability density function for acoustic features of the EL
speech and normal speech is modeled with a GMM. This GMM
is then trained based on the expectation-maximization (EM) al-
gorithm to optimize the model parameters. In the prediction
step, segmental spectral features of the EL speech are mapped
into the most likely F0 sequence of the normal speech based on
the maximum likelihood parameter generation (MLPG) tech-
nique.

GMM-based F0 prediction can result in more natural F0

patterns. However, due to modeling and conversion errors and
also inherit characteristics of the EL speech spectral features,
intelligibility degradations can be easily perceived in the syn-
thesizing voices, especially for the tonal languages such as
Japanese and Mandarin. Therefore, to further increase the com-
plexity of the prediction model, F0 pattern prediction based on
DNNs [6] has been used. This method follows similar prin-
ciples as in the GMM-based F0 prediction. However, in the
training step, instead of using EM algorithm to optimize GMM
parameters, the parameters of the prediction network (weights

and biases) are optimized using back-propagation through time
(BPTT) with any optimization technique such as stochastic gra-
dient descent (SGD).

DNNs can be considered as universal function approxima-
tors with the capability to learn the underlying mapping be-
tween input features and desired output feature in a supervised
format. Therefore, by using deep models, the network is able
to learn higher-level features that could be beneficial for under-
standing and modeling the relationships between acoustic fea-
tures of the EL speech and normal speech. However, the pre-
requisite of an accurate F0 prediction based on DNNs is the
availability of a large amount of training data. Because the the
existing EL speech datasets contain very limited number of ut-
terances, it is hard to train these models, and therefore, the net-
work may fail to learn an accurate mapping between segmental
spectral features of the EL speech and F0 contours of the nor-
mal speech.

3. F0 Prediction Based on One-Hot
Encoding of Phoneme Labels

3.1. Indexed speech as basis for F0 prediction

Although DNNs have shown their potentials in learning highly
non-linear and complicated mappings from the space of input
features into the underlying space of the output features, we
still observe that, as long as predicting F0 contours for the
EL speech is concerned, fairly limited improvements can be
achieved. This stems mainly from two facts. One the one
hand, EL speech spectral features are significantly different
from those of the normal speech, though they are varying ac-
cording to phonemes. Since electrolarynx always generates ex-
citation signals of constant fundamental frequency independent
of speech content, the spectrogram of EL speech does not con-
tain any relevant information about F0 variations for voiced
consonants and vowels. Hence, it is not straightforward to pre-
dict accurate F0 contours from EL speech spectral features. On
the other hand, creating datasets with a large amount of utter-
ance pairs of EL speech and normal speech is very costly and
time-consuming. Therefore, the quality of the prediction mod-
els could be still low due to the lack of sufficient training data.

To tackle these issues, it is necessary to look for some other
informative input features. These features should carry useful
information about voiced consonants and vowels, and also they
should be shared between EL speech and normal speech. By
having shared features, we would be able to train F0 prediction
networks for the EL speech using easily and publicly available
datasets for normal speech.

Recent advances in TTS [7, 8] and VC [9] systems, have
made it possible to generate natural F0 contours from phoneme-
related features and synthesize speech with human quality. The
authors in [9] have shown that by utilizing phonetic posterior-
grams (PPGs), it is possible to bridge between speakers and
train a deep recurrent neural network (DRNN) that successfully
converts PPG of the source speaker into acoustic features of
the target speaker using non-parallel datasets. Inspired by this
work, in this study, we investigate F0 pattern prediction for the
EL speech based on one-hot encoding of the phoneme labels.
PPG is defined as a time-versus-class matrix representing the
posterior probabilities of each phonetic class for each specific
time frame. Using the same analogy, we define a time-versus-

252



Figure 1: Block diagram of a system in which F0 contours
are predicted based on phoneme sequence. ASR system in this
structure is a frame-by-frame phoneme recognizer.

phoneme-label matrix and use this as input for the F0 prediction
network. In this matrix, phoneme labels are one-hot encoded,
so that we are confident about labels for individual time frames.
By considering phoneme sequence as input features, the rela-
tionships between adjacent phonemes (temporal information)
and phoneme combinations can be utilized to find a mapping
that maps phoneme-related features into target F0 contours.

3.2. Network structure and F0 prediction procedure

As illustrated in Figure 1, F0 pattern prediction based on one-
hot encoding of the phoneme labels is performed in two steps.
In the training step, extracted phoneme labels are one-hot en-
coded and fed into a network that is trained to learn the map-
pings between time-versus-phoneme-label matrices and target
F0 contours. In the prediction step, the final model is utilized
to predict a sequence of F0 values for the utterances in the eval-
uation set. In this system, phoneme labels are extracted frame-
by-frame from spectrogram of the utterances using a phoneme
recognizer such as DNN-based phoneme posteriorgram estima-
tor. Also, in order to model temporal dynamics of the features
within the adjacent frames, recurrent networks (e. g., LSTM
[10] or BiLSTM [11]) are used.

3.3. Different scenarios for predicting F0 contours based on
phoneme labels

In linguistics, phonemes are considered as the atoms of speech.
They are the smallest units of spoken sounds capable of distin-
guishing one word from others and conveying distinct mean-
ings. For predicting F0 contours based on phoneme labels, it
is necessary to investigate which sequence of phonemes can
contribute more to prediction accuracy. Since phonemes are
divided into vowels and consonants, we can define different
scenarios based on this labeling. Furthermore, we need to in-
vestigate whether or not the set of all possible phonemes in a
language is required for the prediction task. If we could reduce
the labels in this set, we would be able to use a frame-by-frame
phoneme recognizer with simpler structure. These investiga-
tions are language-dependent. In the following, possible sce-
narios for one-hot encoding of the phoneme labels in Japanese
are presented.

(i) Based on the set of all phoneme labels: Here, we de-
termine how many unique phoneme labels exist in our
dataset of indexed speeches. Then, for every utterance,
phoneme durations are calculated to figure out how many

frames are grouped under the same phoneme label. For
these frames, phoneme label is one-hot encoded. Hav-
ing done one-hot encoding of the phoneme labels over all
frames, these features are fed into the F0 prediction net-
work.

(ii) Based on the set of vowel labels: It is believed than vow-
els are playing an important role when F0 prediction is
concerned. Hence, here, for every indexed speech, we
keep all labels representing unique vowels, and substitute
those for consonants with their succeeding vowel. By do-
ing so, we can convert phonemes from being vowels and
consonants into vowels only. Moreover, we can reduce
the number of labels in the set of all phoneme labels which
may help us to use a simpler phoneme recognizer. Finally,
vowel durations are calculated and for frames having the
same phoneme label, one-hot encoding of the phoneme
label is done.

(iii) Based on the occurrence times for phoneme combina-
tions: Here, one-hot encoding is done differently. In-
stead of considering the existing phonemes and their re-
spective durations, in this case, we only focus on exact
time instances at which a phoneme combination starts and
ends. Since in this study we are investigating Japanese
language, a phoneme combination is either a single vowel,
or a consonant followed by a vowel. Every individual
phoneme combination is then considered as a tuple given
by (start time, content, end time). In this tuple, content is
an alias for the name of the combination we no longer care
about. Pairs of start/end time instances are calculated for
all of the existing combinations in the indexed speech, and
the final one-hot encoding is done based on an extremely
reduced set of labels.

These scenarios have been summarized in Table 1.

Table 1: Scenarios defined for converting phoneme labels into
one-hot features.

Used labels Example
1) All phoneme labels a r a y u r u g e N j i ts u o sp
2) All vowel labels (consonants are a a a u u u u e e i i i u u o sp
substituted by their succeeding vowel.)
3) Vowel (v) or consonant-vowel (cv) a ra yu ru ge N ji tsu o sp
Here, only occurrence times are considered. v cv cv cv cv v cv cv v sil

3.4. Target F0 preparation

For supervised training of the prediction network, ground truth
data or target F0 contours must be prepared in advance. To do
so, time warping is the common technique used to time align
input features with desired target features. However, EL speech
has many short pauses (SPs) which may either not exist in nor-
mal speech, or occur at different positions. (See Figure 2). To
diminish these mismatches, we use a warping process that is
constrained on phoneme labels. In other words, warping is done
phoneme label by phoneme label. We start off by the first pair
formed from the first phoneme labels from EL speech and nor-
mal speech. If they are similar, then warping is done based on
spectral features according to the process described in [12] to
minimize mel-cepstral distortion. If they are different, then we
know this could have happened because of an SP occurrence in
EL speech. In such cases, we zero pad target features, right at
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Figure 2: Mismatch in short pauses between EL speech and nor-
mal speech. From top to bottom: Extracted F0 contour for nor-
mal speech, waveform for normal speech, and the correspond-
ing waveform for EL speech.

the corresponding position to SP index, so that we are able to
make current phoneme labels similar again. Every time, once
warping for the current pair is done, we stack warping paths
to gradually form our final warping functions. This process is
repeated until the last pair of phoneme labels is warped. Fi-
nal warping functions are then applied to target F0 contours to
extend their time span. However, due to zero-padding, in the
warped F0 contours several flat patterns will be generated that
make these contours invalid as natural F0 contours. To resolve
this issue and furthermore to change these discontinuous con-
tours into continuous ones, spline interpolation is utilized. Fi-
nally, continuous target F0 contours are low-pass filtered to fil-
ter out rapid ripples, known as microprosody [13]. Preparation
of target F0 contours has been illustrated in Figure 3.

4. Experimental Evaluation
4.1. Experimental conditions

Dataset and feature extractor: The ATR speech dataset [14]
comprising of 503 Japanese sentences uttered with and without
an electrolarynx by a Japanese male speaker was used in our
experiments. The utterances in this dataset have been grouped
in 10 sets each with 50 utterances, except for the 10th set that
contains 53 utterances. Forced-aligned phoneme labels and re-
quired acoustic features were extracted using the open-source
Julius speech recognition system [15] and the STRAIGHT
vocoder [16], respectively. The first 25 mel-cepstral coefficients
extracted for both speech types were used as spectral features
for time warping.
Network architecture: Two stacked bi-directional Long Short-
Term Memory (BiLSTM) layers followed by a single time-
distributed dense layer formed the architecture of our F0 pre-
diction network. For recurrent layers, the hyperbolic tangent
(tanh) activation function was used, and the number of hidden
units was set to 128. In the last layer, the linear activation func-
tion was utilized and by defining loss function as the root mean
square error (RMSE) between predicted F0 contours and target
ones, network parameters were optimized using the Adam opti-

mizer [17] for utterance batches of size 32. The learning rate α,
β1 and β2 were set to 0.0004, 0.9 and 0.999, respectively.
Experiments: For every speech type, predicting F0 contours
based on conventional spectral features for the existing utter-
ances in set A of the ATR dataset was considered as the base-
line method. We then conducted tow different sets of experi-
ments to investigate: 1. how predefined scenarios for one-hot
encoding of the phoneme labels would affect the accuracy of
the predicted F0 contours, and 2. whether or not these fea-
tures could be shared between EL speech and normal speech
(i. e., can we use easily available datasets for normal speech to
increase the F0 prediction accuracy for the EL speech). Experi-
ments addressing the first goal of our investigations are denoted
as G1, and those related to the second goal as G2. For G1 exper-
iments, same utterances as for the baseline method were used,
namely 50 utterances in set A. For G2 experiments, we had to
form training sets with utterances of both speech types, but with
different contents (data augmentation). To achieve this, 32 EL
utterances from set A were always fixed as training set and ad-
ditional 32, 64, 128 and 256 normal utterances from different
sets, other than set A for normal speech, were augmented to
this training set. We further performed G2 experiments for only
normal speech where instead of fixing 32 EL utterances from
set A as constant members of the training sets, 32 normal ut-
terances from set A were substituted. Investigating the impact
of having no mismatches in short pauses was the main motiva-
tion for performing G2 experiments for only normal speech. In
all experiments, target F0 contours were standardized to zero-
mean and unit variance using the statistics of the training sets,
and 4-fold cross validation test was conducted for the evaluation
set (i. e., 10 EL utterances from set A) to report the final results.

4.2. Experimental evaluations

Predicted F0 contours for the evaluation set were objectively
evaluated for only voiced frames using Pearson’s product-
moment correlation measure r given by [18]:

rxy =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
, (1)

where xi and yi are the individual F0 values from the predicted
and target F0 contours, respectively. Further, x̄ and ȳ are the
mean values and n is the length of F0 contours for only voiced
frames.

Figure 4 gives a comparison between average r values for
different types of input features when only 32 utterances were
used for training (G1 experiments without any data augmenta-
tion). It is evident that by using spectral features, accurate F0

contours with very small standard errors could be predicted for
normal speech. However, the prediction accuracy drops when
EL speech spectral features were used. When vocal folds are vi-
brating, for instance at the generation time of voiced consonant
or vowels, particular F0 values are observed in the spectrogram
of the normal speech. This useful information can help the net-
work to learn the underlying patterns required for an accurate
F0 pattern prediction. However, F0 values of the EL speech
are mechanically generated independent of utterance content.
Hence, the network performance is relatively poor when trained
on a small amount of training data. If we consider one-hot fea-
tures, we can see that for all scenarios comparable or higher r
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(a) Prepared for the normal speech (b) Prepared for the EL speech

Figure 3: Preparation of target F0 contours. Time warping was applied to the extracted F0 contours for normal speech.

values have been achieved. This indicates that one-hot encod-
ing of the phoneme labels can indeed be used for F0 prediction,
even if a reduced set of phoneme labels is considered. This
is beneficial, because the prediction is made not based on fre-
quency patterns embedded in the spectral features, but based on
unique codes that represent phoneme labels.

The impact of increasing the number of training utterances
on the prediction accuracy (G2 experiments) has been presented
in Figure 5. Considering the obtained results for the normal
speech, we can see that by increasing the number of utter-
ances in the training sets, the network prediction capability has
been improved and higher correlation coefficients have been ob-
tained. This indeed was expected, since providing a network
with more data has a direct influence on its performance.

Furthermore, it is evident that through one-hot encoding of
all phoneme labels, it is possible to obtain high average r val-
ues. This is because when we consider all labels, we can well
encode possible combinations between vowels and consonants
in an utterance. It is known that vowels have a distinct steady
formant patterns when occurred in isolation. These patterns,
however, are altered by the adjacent consonant which is known
as formant transition, and have important information about the
place and manner of articulation of the following or the preced-
ing consonant. These important information are embedded in
the spectral features and that is the reason why F0 prediction
based on spectral features of the normal speech results in high
r values. Using the same analogy, if we one-hot encode all of
the phoneme labels, we enforce the network to learn the pos-
sible vowel-consonant combinations, and hence we are able to
achieve higher correlation coefficients.

Considering the augmentation of the training sets with ad-
ditional normal utterances for the EL speech experiments, we
can see that the obtained average r values for the case of using
all phoneme labels are higher than those of the other two cases.
However, they are not as high as the r values calculated for
the experiments in which only normal speech was used. One
possible reason for this difference could be the way we aug-
mented training sets with additional utterances. We used 32 EL
utterances of set A, and the additional utterances were selected
from normal utterances of other sets. This might not have pro-
vided sufficient training patterns for the F0 prediction network,
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C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t 

(r
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean

Standard error

Figure 4: Comparison of average r values obtained for G1 ex-
periments (when only 32 utterances of set A were used for train-
ing of the prediction network).

mainly due to existing mismatches in the count and position of
the short pauses between EL speech and normal speech. Sam-
ples of the predicted F0 contours can be found in Figure 6.

Lastly, it is worth exploring the impact of network archi-
tecture on the obtained prediction accuracies. In sequential pre-
diction tasks, where samples of the input sequence for all time
steps are available, we may prefer to use bi-directional recur-
rent networks. By using bi-directional recurrent networks, we
benefit from context information in both forward and backward
directions provided by the input features and their reverse copy.
However, providing a system with the reversed copy of its in-
put features violates the causality property stating that, for any
time step t, outputs of the system should not depend on future
inputs. Consequently, in order to realize a real-time prediction
system, uni-directional recurrent networks should be used. It
is also worth mentioning that in our experiments, phoneme la-
bels were extracted based on forced alignment. That is, for any
utterance in the dataset, the corresponding transcript was also
available. When speech is produced in real-time by laryngec-
tomees, no transcript can be considered. To address this issue,
speech signal must be delayed for some frames corresponding
to a specific time in [msec], and then phoneme labels must be
extracted in a frame-by-frame manner using a phoneme recog-
nizer. By doing so, we will be able to extract a fragment of the
underlying transcript.
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Figure 6: Samples of the predicted F0 contours for a) normal
speech using spectral features, b) EL speech using spectral fea-
tures, c)∼ e) EL speech using one-hot encoding for all phoneme
labels, all vowel labels and occurrence times for phoneme com-
binations, respectively. For one-hot cases, the training sets were
augmented with 128 normal utterances (G2 experiments).

5. Conclusion

Enhancing naturalness of the EL speech was addressed in this
work. To circumvent the lack of sufficient EL speech data for
training models that map EL speech spectral features into natu-
ral F0 contours, we investigated F0 pattern prediction based on
other features that can be shared between EL speech and normal
speech. As such features, we considered various scenarios for
one-hot encoding of the phoneme labels. These features were
generated both for EL speech and normal speech, and used in
the training of a recurrent network that was designed to learn
the mapping between phoneme labels and target F0 contours.
The findings revealed that by one-hot encoding of both vowels
and consonants labels, we are able to achieve F0 contours with
higher correlation coefficients. Furthermore, by using a reduced
set of the phoneme labels, we are still able to predict F0 con-
tours with comparable accuracies to those obtained based on the
spectral features.
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