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Abstract

This paper proposes a method to extract prosodic fea-
tures from a speech signal by leveraging auxiliary linguistic
information. A prosodic feature extractor called the statistical
phrase/accent command estimation (SPACE) has recently been
proposed. This extractor is based on a statistical model formu-
lated as a stochastic counterpart of the Fujisaki model, a well-
founded mathematical model representing the control mecha-
nism of vocal fold vibration. The key idea of this approach
is that a phrase/accent command pair sequence is modeled as
an output sequence of a path-restricted hidden Markov model
(HMM) so that estimating the state transition amounts to esti-
mating the phrase/accent commands. Since the phrase and ac-
cent commands are related to linguistic information, we may
expect to improve the command estimation accuracy by using
them as auxiliary information for the inference. To model the
relationship between the phrase/accent commands and linguis-
tic information, we construct a deep neural network (DNN) that
maps the linguistic feature vectors to the state posterior proba-
bilities of the HMM. Thus, given a pitch contour and linguistic
information, we can estimate phrase/accent commands via state
decoding. We call this method “DNN-SPACE.” Experimental
results revealed that using linguistic information was effective
in improving the command estimation accuracy.

Index Terms: the Fujisaki model, SPACE, linguistic informa-
tion, DNN

1. Introduction

The fundamental frequency (Fp) contours in speech contain
various types of non-linguistic information such as the speaker’s
identity, emotions and intentions. Modeling the Fj contours
of speech utterances can thus be potentially useful for many
speech applications, including speech recognition, speaker
recognition, speech synthesis and dialog systems.

The Fujisaki model [1, 2] is a well-founded mathematical
model that describes an I contour as the sum of two contribu-
tions. This model approximates actual Fp contours of speech
fairly well when the model parameters are appropriately cho-
sen, and its validity has been demonstrated for many typolog-
ically diverse languages [1, 3, 4, 5, 6, 7, 8, 9]. Since prosodic
features in speech are predominantly characterized by the levels
and timings of the phrase and accent components, one important
challenge is to solve the inverse problem of estimating the Fu-
jisaki model parameters automatically from a raw Fg contour.

For estimating the Fujisaki model parameters from a raw
Fp contour, several methods have been developed [2, 10, 11, 12,
13, 14, 15]. Among these methods, the statistical phrase/accent
command estimation (SPACE) [16, 17, 15] method is notewor-
thy because it is based on a statistical model formulated as a
stochastic counterpart of the Fujisaki model. The key idea of
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this approach is that a phrase/accent command pair sequence
is modeled as an output sequence of a path-restricted hidden
Markov model (HMM) so that estimating the state transition
amounts to estimating the phrase/accent commands. There are
two benefits for this statistical reformulation: one is to derive
an efficient parameter inference algorithm utilizing powerful
statistical methods, and the other is to obtain an automatically
trainable version of the Fujisaki model. Owing to these ben-
efits, some SPACE-based applications have already been pro-
posed such as F generation for text-to-speech synthesis [18]
or Fy prediction for electrolaryngeal speech enhancement [19].
Therefore, if we could improve the parameter estimation accu-
racy of the SPACE method, we expect that it will also be able
to improve the basic performance of such SPACE-based appli-
cations.

An important approach to improve Fujisaki model pa-
rameter estimation is leveraging auxiliary linguistic informa-
tion [20, 21, 22, 23]. Since the phrase/accent commands are
closely associated with the linguistic information such as breath
group or accent nucleus, it is expected that the command esti-
mation accuracy can be improved by using them as auxiliary in-
formation for inferences. In a previous study, Hirose et al. [21]
proposed to use linguistic information to obtain a first approxi-
mation of the location of the commands which is then adjusted
by an iterative analysis-by-synthesis process. Torres et al. [22]
also proposed to use genetic algorithms to estimate Fujisaki
model parameters considering linguistic aspects. It is expected
that the parameter estimation accuracy of the SPACE method
will also improve by utilizing the linguistic information.

Motivated in a way similar to these previous studies, we
aimed to improve the parameter estimation accuracy of the
SPACE method by extending the statistical model so that it
would incorporate a linguistic information model. More specit-
ically, we constructed a deep neural network (DNN) that maps
the linguistic feature vectors to the state posterior probabilities
of the HMM. We formulated a generative model of the Fj con-
tours by combining the DNN with the SPACE model in such
a way that a parameter estimation algorithm could be derived
on the basis of a DNN-HMM [24] framework and an auxiliary
function method. We call this proposed method “DNN-SPACE”
in this paper. The key of the formulation is to incorporate a lin-
guistic information model to the conventional SPACE method
without changing its basic parameter optimization algorithms.

The rest of this paper is organized as follows. Section 2
briefly reviews the original Fujisaki model and a discrete-time
stochastic counterpart to the Fujisaki model (SPACE). Section
3 formulates the proposed method (DNN-SPACE) to extend
SPACE to integrate the linguistic information models. Section
4 presents experimental evaluations obtained for the proposed
method. Section 5 concludes the paper with a summary of key
points and a mention of future work.
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Figure 1: Command function modeling with an HMM.

2. Generative model of speech F{, contours
2.1. Original Fujisaki model

The Fujisaki model [1, 2] assumes an Fp contour on a loga-
rithmic scale, y(t), where ¢ is time, is the superposition of three
components: a phrase component y,(t), an accent component
Yo (t), and a base component yy:

y(t) = yp(t) + ya(t) + yo. ey
The phrase component y,(¢) consists of the major-scale pitch
variations over the duration of the prosodic units, and the ac-
cent component y, (t) consists of the smallerscale pitch varia-
tions in accented syllables. These two components are modeled
as the outputs of second-order critically damped filters, one be-
ing excited with a command function uy(t) consisting of Dirac
deltas (phrase commands), and the other with uq(t) consisting
of rectangular pulses (accent commands):

zp(t) = Gp(t) x up(t), 2
_Jafte™™ (t>0)

GAH—{O o) ®

Za(t) = Ga(t) * ua(t), @
_ | B*e™Pt (t>0)

Ga(t) = {0 (t < 0) %)

where * denotes convolution over time. The baseline compo-
nent y, is a constant value related to the lower bound of the
speaker’s Fp, below which no regular vocal fold vibration can
be maintained. « and S are natural angular frequencies of
the two second-order systems, which are known to be almost
constant within an utterance as well as across utterances for a
particular speaker. It has been shown that « 3 rad/s and
B = 20 rad/s can be used as default values.

It is interesting to note that the phrase and accent com-
mands, which we will henceforth refer to as the Fujisaki model
parameters, can be interpreted as quantities related to linguistic
information. In the Japanese language, a phrase command and
an accent command typically occur at the beginning of each
breath group and over the range of accent nucleus in each ac-
centual phrase, respectively.

2.2. Probabilistic formulation of F; contour model

(SPACE)

1075

Here, we briefly review the conventional probabilistic pitch
contour model based on the discrete-time version of the Fujisaki
model [16, 17, 15].

In the original Fujisaki model, phrase commands and ac-
cent commands are assumed to respectively consist of Dirac
deltas and rectangular pulses. In addition, they are not al-
lowed to overlap each other. To incorporate these requirements,
we find it convenient to model the up[k] and wuq[k] pair, i.e.,
olk] = (up[k],ualk]) ", using a path-restricted HMM. In pre-
vious studies [16, 17, 15], the authors assumed that {o[k]} 1,
is a sequence of outputs generated from an HMM with the spe-
cific topology illustrated in Fig. 1.

In state 7o, fp[k] and pq[k] are both constrained to be zero.
In state p1, referred to as the “phrase state”, up[k] can take a
non-zero value, Cp,[k], whereas pq[k] is still restricted to zero.
At the phrase state, no self transitions are allowed. In state 71,
uplk] and pq[k] become zero again. This path constraint re-
stricts pp[k] to consisting of isolated deltas. State r; leads to
states a1, - - - , an, referred to as “accent states”. At each accent
state, uq[k] can take a different non-zero value CT(L‘Z), whereas
up|k] is forced to be zero. A direct state transition from an ac-
cent state to a different state without passing through state r; is
not allowed. This path constraint restricts pq[k] to consisting
of rectangular pulses. The output distribution of each state is
assumed to be the Gaussian distribution

olk] ~ N(es,,, s, ), (6)
where s, indicates the state variable. Namely, the mean vec-
tor p[k] = (up[k], palk]) T = cs, and the covariance matrix
3[k] = T, is considered to evolve in time as a result of the
state transition si, - - - , Six. The definition of the above HMM
can be summarized as follows:

\

-

output sequence : o[k] = (up[k], ua[k])"

state set S = {ro,po, 71,00, - ,an—-1}

state sequence : 8 = {sk}k

output distribution : p(o[k]|sk = 1) = N(c;[k], i)
(0, O)T (’L € ro, 7“1)
cilk] = { (CPKL,0)T (i€p)
(0,C5NT (i€ an)
2
| Ypi 0
zr_{ ; ﬁjl

state transition probability : ¢; ; = p(sk = i[sk—1 = 7)
\_ /
Given the state sequence s = {si}1_;, the above HMM
generates the uy[k] and u,[k] pair. Taking into consideration
(2) and (4), we then fed up[k] and uq[k] through the different
critically damped filters G, [k] and G, [k] to generate the phrase
and accent components yy, [k] and y, [k]:
zplk] = Gplk] * up K], )
alk] = Galk] * ua[K] ®)
where * denotes convolution over k. An Fy contour is then
given by

y[k] = p[k] + za[k] + 2, ©)

where x;, denotes the baseline value.

3. Proposed model (DNN-SPACE)

As discussed in sec. 2.1, phrase and accent commands are
closely associated with linguistic information such as breath
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Figure 2: Graphical representation of proposed model.

groups or accent nucleus. Thus, we may expect to improve the
command estimation accuracy by leveraging auxiliary linguis-
tic information. To incorporate the linguistic information model
to the conventional SPACE method, we constructed a DNN that
maps the linguistic feature vectors to the state posterior prob-
abilities of the HMM. We formulated the generative model of
the Fp contours by combining the DNN with the SPACE model
in such a way that a parameter estimation algorithm could be
derived on the basis of the DNN-HMM [24] framework and an
auxiliary function method. The key to our formulation is in-
corporating a linguistic information model to the conventional
SPACE method without changing its basic parameter optimiza-
tion algorithms.

Given the linguistic information sequence w = {wlk]}, we
constructed a DNN that maps w|k] to the posterior probability
of the HMM state s;. For simplicity, the DNN was trained to
discriminate the three sets of HMM states shown below given
the linguistic feature wk].

* Phrase state ({po})
* Accent states ({ao, - ,an})
* The other states ({ro,r1})

All the accent states share the same posterior probability given
the linguistic information. In the work we report in this pa-
per, we assumed that the DNN can be trained with speech cor-
pora that include linguistic annotations and manually annotated
phrase/accent command functions. Accordingly, we formulated
a generative model of the Fj contours by combining the DNN
with the SPACE method on the basis of the DNN-HMM [24]
framework. More specifically, we assumed the generative prob-
ability p(w|s, \) was time-independent and transformed by ap-
plying Bayes’ theorem:

p(wls, \) = [ [ p(wlk]|sk, A) (10)
k
_ 171 P(sk|wlk], \)p(wlk])
— 1;[ (o) ) (11)

Here, A denotes the parameters of the DNN. We used the rel-
ative frequency for p(sy) and assumed p(w[k]) as a constant.
The formulation for the generative process of the other parame-
ters ({y, o, s, 0}) is the same as that described in sec. 2.2. Fig-
ure 2 shows the graphical representation of the proposed model.

There are two benefits for this formulation. First, by utiliz-
ing the linguistic feature w (k] as an input vector of the DNN, we
can assume there was no specific distribution for p(w[k]|sk, A).
Therefore, we can use the proposed DNN-SPACE method
framework to leverage auxiliary information other than linguis-
tic information, such as spectral features or image features. Sec-
ond, the basic parameter estimation algorithms are not changed
from those for the conventional SPACE method. The parame-
ter estimation algorithm for the proposed method is derived to
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maximize the posterior probability p(o, s, 0|y, w, \) with re-
spect to o0, s and 0. In a similar way that Sato et al. did for
their proposed parameter optimization algorithm [25], for our
method we derived an iterative algorithm to search the maxi-
mum posterior probability:

6 = argmaxp(0, 3, 0|y, w, \), (12)
5 = argmax p(, s, 0|y, w, \), (13)
6= arg max p(0, 8, 0|y, w, \). (14)
0
It should be noted from the decomposition
p(y, 0,w, s,6|\) =p(y|o)p(o|s, O)p(w|s, \)
p(s[0)p(0) (15)

that the objective function of (12) and (14) is independent from
w and A. This means the updates of (12) and (14) can be de-
rived in the same way as Sato et al. described [25] by using the
auxiliary function method. As for the update of (13), the objec-
tive function is in the same form as that of DNN-HMM [24].
Therefore, a Viterbi algorithm-based update algorithm can be
derived.

4. Experiments
4.1. Experimental conditions

To evaluate the parameter estimation accuracy of the proposed
method, we conducted an experiment using the ATR Japanese
speech database B-set [26]. This database consists of 503 pho-
netically balanced sentences. We selected speech samples of
one male speaker (MHT). The ground truth data of the Fujisaki
model parameters had been manually annotated by an expert in
the speech prosody field. In these ground truth data, the baseline
values were all set at log 60 Hz. We compared the performance
of the proposed method with that of two conventional Fujisaki
model parameter extractors that do not utilize linguistic infor-
mation; Narusawa’s method [11] and the SPACE method [17].
We used 450 sentences for training the DNN and then tested the
parameter estimation accuracy on the remaining 53 sentences.

We used the DNN with two hidden layers with 256 units,
a fully-connected network and a sigmoid activation function.
As linguistic feature w, we used 495 dimensional vectors that
are used as the linguistic feature vectors for DNN-based speech
synthesis. The vectors include information such as phonemes
and accent types [27]. The weights of the DNN were initial-
ized randomly, then optimized to minimize the cross entropy be-
tween the target and predicted value, using the Adam [28]-based
back-propagation algorithm. The parameters for the Adam al-
gorithm were set as e = 0.0001, 81 = 0.9, 82 = 0.999, and
e = le — 8. We used 22 sentences as the development set.

We obtained V/UV segments by simple energy threshold-
ing. The constant parameters were fixed at tp = 8ms, a =
3.0 rad/s, B = 20.0 rad/s, vj[k] 0.2%, v2[k] = 0.12,
v = 0.001% and vZ[k] = 10'® for unvoiced regions and
valk] = 0.2% for voiced regions. The parameter x;, was set
at the minimum log Fp value in the voiced regions. The initial
values for the proposed method were set at those obtained with
a conventional method [17] that does not utilize linguistic in-
formation. The parameter estimation algorithm was run for 20
iterations.

We evaluated the accuracy of the parameter estimation on
the basis of two criteria: log Fo RMSE (root mean sequared
error) and detection rates. Our aim was to confirm whether the
proposed model can achieve higher parameter estimation accu-
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Figure 3: Example of command detection. (1) An observed
Fo contour in voiced regions (solid line) and the estimated Fy
contours by the proposed method (dotted line). The estimated
phrase and accent commands. (2) Narusawa’s method [11].
(3) SPACE [17]. (4) DNN-SPACE (the proposed method). (5)
Grand truth (manually labeled by an expert).

racy. The detection rate was used to evaluate the accuracy of
the parameter estimates, which was calculated in the follow-
ing way: we performed matching between the estimated and
ground truth command sequences on a command-by-command
basis by using dynamic programming algorithm. If the time
difference between the estimated and ground truth phrase com-
mands was shorter than .S’ seconds, the estimated phrase com-
mand was considered “matched” and the local distance was set
at zero. Otherwise the local distance was set at 1. As for
the accent commands, we took the average of the time differ-
ence between the onsets of the estimated and ground truth ac-
cent commands and the time difference between the offsets of
the estimated and ground truth accent commands. In the same
way, when the average time difference was shorter than S sec-
onds, the estimated accent command was considered matched.
The magnitudes of the phrase and accent commands were not
taken into account in our evaluation. This is because the mag-
nitude estimation was very sensitive to the baseline Fp value,
which was set differently in the proposed method and in man-
ual annotation. Let Ng and N, be the total number of com-
mands in the estimated and ground truth command sequences,
Ny be the number of the matched commands between the
two sequences, and Ngsum, Nasum and Nuysum be the sum of
Ng, Na, Ny for all 53 sentences. We defined the insertion er-
ror rate Ey as (Ngsum — Numsum)/Nasum, the deletion error rate
Ep as (Nasum — Nmsum)/Nasum, and the detection rate D as
1— FEr— Ep.
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Table 1: Detection rates and log Fo RMSE (5=0.3s)

Detection rates  log Fo RMSE
Narusawa [11] 0.666 0.1160
SPACE [17] 0.700 0.0540
DNN-SPACE (proposed) 0.717 0.0636

4.2. Experimental results

Table 1 shows the results obtained with our quantitative eval-
uation with § = 0.3 s. The “Narusawa” and “SPACE” rows
shows the detection rate and log Fy RMSE of the command se-
quences obtained with the conventional method which does not
utilize linguistic information. The “DNN-SPACE” row shows
the command sequence obtained with the proposed method us-
ing linguistic information. We can see that the detection rate of
the proposed method is improved compared to the conventional
methods. We can conclude from the result that leveraging aux-
iliary linguistic information for parameter estimation improves
the command estimation accuracy. While the log ¥y RMSE of
the proposed method was improved compared to Narusawa’s
method, it was slightly worse than the SPACE method. These
results show that improvement in command detection accuracy
by utilizing the linguistic information does not always lead to
more accurate Iy contour estimation. This is because the Fu-
jisaki model has the nature that even though a set of command
functions that ignores the relationship with the linguistic infor-
mation, it can approximate a given observed Fp contour.

Figure 3 shows the parameter estimation results along with
the ground truth data. We can also confirm that the proposed
model is able to estimate parameters more accurately than the
previous models. For example, while the conventional Naru-
sawa and SPACE methods had insertion errors of phrase com-
mands around ¢ = 3.0, our proposed method eliminated them.
This is because our method can utilize linguistic information in
which there is no phrase boundary around ¢ = 3.0.

5. Conclusion

In this paper, we described a method we propose to extract
prosodic features from a speech signal by leveraging auxiliary
linguistic information. The DNN-SPACE method we propose
was extended from the conventional SPACE method to model
the relationship between phrase/accent commands and linguis-
tic information. We evaluated the method’s parameter estima-
tion accuracy and revealed that using linguistic information was
effective in improving the command estimation accuracy. Our
future work will include incorporating sequence model such as
RNN instead of DNN to model the time dependence of com-
mand functions and further improve the parameter estimation
accuracy.
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