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Abstract
This paper proposes a unified approach to jointly solving the separation, dereverberation, and classification
of mixed sound sources from microphone array observations. The proposed method uses a frequency-wise
convolutive mixture model to express the mixing process under highly reverberant environments and the auxil-
iary classifier conditional variational autoencoder (ACVAE) to model the complex spectrograms of underlying
sources. Using an ACVAE as the source generative model allows us to estimate the latent vectors and the class
index of each source in a test mixture by computing the outputs of the pretrained approximate posterior inference
networks without using backpropagation. We experimentally confirmed that the proposed method outperformed
conventional methods in terms of both computation time and source classification.
Keywords: Source separation, blind dereverberation, multichannel audio signal processing, multichannel
variational autoencoder (MVAE)

1 INTRODUCTION
Source separation is a technique of separating individual source signals from observed mixture signals. In partic-
ular, blind source separation (BSS) achieves the separation of source signals without any prior information about
sources and spatial transfer characteristics between microphones and sources. One of the most generally used
approaches to solving determined BSS problems, with equal numbers of microphones and sources, is indepen-
dent component analysis (ICA) [1], which achieves source separation by assuming the statistical independence
between sources.
A frequency-domain formulation of ICA provides the flexibility of utilizing various models for the time-frequency
representation of source signals. For example, determined multichannel non-negative matrix factorization (DM-
NMF) [2], which was later called “independent low-rank matrix analysis" (ILRMA) [3], adopts the NMF con-
cept to source spectrogram modeling which approximates source power spectrograms as linear combinations of
spectral templates scaled by time-varying amplitudes. One drawback as regards ILRMA is that it can fail to
work for sources with spectrograms that do not comply with the NMF model. In stead of the NMF model,
the multichannel variational autoencoder (MVAE) method [4] uses the pretrained decoder of a conditional VAE
(CVAE) as a generative model of the complex spectrograms of each source. This method allows us to perform
source separation and source class identification simultaneously by optimizing the decoder inputs, consisting of
the latent space variables and the source class index, so that the log-likelihood is maximized. Thanks to the
strong representation power of neural networks for source spectrogram modeling, MVAE was shown to produce
good source separation performances. However, MVAE still suffers from two main issues, namely, performance
degradations caused by long reverberation and expensive computational costs.
To address the first drawback, we have previously proposed MVAE+ [5], which employs a frequency-wise con-
volutive mixture model instead of the instantaneous mixture model so that it can handle long reverberation.
Under this model, we have derived a convergence-guaranteed algorithm for joint separation and dereverberation,
consisting of alternately updating the dereverberation filter, the demixing matrix and the source model parame-
ters. To overcome the second drawback, we have recently introduced a fast algorithm called the “fast MVAE”
(fMVAE) [6], where the idea is to replace the process of optimizing the decoder inputs using backpropagation
with the forward computations of the two pretrained approximate posterior inference networks.
To combine the advantages of MVAE+ and fMVAE, this paper proposes a fast algorithm for MVAE+ that
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performs source separation, dereverberation and source classification in a joint manner. The rest of this paper
is structured as follows: Section 2 formulates a multichannel BSS problem with frequency-domain convolutive
mixture models and reviews MVAE+. Section 3 presents the proposed fast algorithm that not only reduces
the computational time but also improves source classification performance. The experimental results of speech
separation and source classification under highly reverberant environments are presented in Section 4.

2 UNIFIED APPROACH FOR SOURCE SEPARATION AND DEREVERBERATION
2.1 Problem formulation
We consider a determined situation where J source signals are observed by I microphones (J = I). Let xi( f ,n)
and s j( f ,n) denote the short-time Fourier transform (STFT) coefficients of the signal observed at the i-th mi-
crophone and the j-th source signal, where f and n are the frequency and time indices, respectively.
Now, we formulate the separation system as a frequency-domain convolutive mixture model in order to handle
highly reverberant environments where the length of the room impulse responses (RIRs) can be longer than
STFT frame length [2, 5, 7, 8]. With this model, we can write the relationship between the observed signals
xxx( f ,n) = [x1( f ,n), . . . ,xI( f ,n)]T ∈ CI and sources sss( f ,n) = [s1( f ,n), . . . ,sI( f ,n)]T ∈ CI in the following multi-
channel finite-impulse-response:

sss( f ,n) =
N′

∑
n′=0

WWW H( f ,n′)xxx( f ,n−n′). (1)

Here, WWW ( f ,0) corresponds to the separation matrix and (·)H denotes Hermitian transpose. When WWW H( f ,0) is
invertible, (1) can be rewritten equivalently as follows:

yyy( f ,n) = xxx( f ,n)−
N′

∑
n′=1

DDDH( f ,n′)xxx( f ,n−n′), (2)

sss( f ,n) =WWW H( f ,0)yyy( f ,n), (3)

where DDDH( f ,n′)=−(WWW H( f ,0))−1WWW H( f ,n′), 1≤ n′≤N′ denotes the dereverberation filter, yyy( f ,n)= [y1( f ,n), . . . ,
yI( f ,n)]T denotes a dereverberated version of the mixture signals and sss( f ,n) denotes the source signals. Note
that (2) can be seen as a dereverberation process applied to the observed mixture signal xxx( f ,n), whereas (3)
can be seen as an instantaneous demixing process applied to the dereverberated version of the mixture signal
yyy( f ,n).
Let us now assume the local Gaussian model (LGM) [9, 10] in which s j( f ,n) independently follows a zero-
mean complex Gaussian distribution with power spectral density v j( f ,n) = E[|s j( f ,n)|2],

s j( f ,n)∼NC(s j( f ,n)|0,v j( f ,n)). (4)

We further assume that s j( f ,n) are statistically independent to each other. sss( f ,n) thus follows

sss( f ,n)∼NC(sss( f ,n)|0,VVV ( f ,n)), (5)

where VVV ( f ,n) is a diagonal matrix with diagonal entries v1( f ,n), . . . ,vI( f ,n). From (1) and (5), we can show
that yyy( f ,n) follows

yyy( f ,n)∼NC(yyy( f ,n)|0,(WWW H( f ))−1VVV ( f ,n)WWW ( f )−1). (6)

Hence, the negative log-likelihood of the spectral parameters V = {v j( f ,n)} f ,n, j, the dereverberation filter D =
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{DDDH( f ,n′)} f ,n′ , separation matrices W given the observed signal X is given as

I (D ,W ,V |X )
c
=−2N log

∣∣detWWW H( f )
∣∣+ ∑

f ,n, j

(
logv j( f ,n)+

|wH
j yyy( f ,n)|2

v j( f ,n)

)
, (7)

where =c denotes equality up to constant terms. It is important to note that if we individually treat each
element of v j( f ,n) as a free parameter to optimize, the negative log-likelihood will be split into frequency-wise
source separation and dereverberation problems. This results in the problem that permutations of the separated
components of each frequency cannot be uniquely determined. Thus, we typically need to apply permutation
alignment to group the separated components of different frequency bins that originate from the same source
signal after we obtain W or apply some constraints to v j( f ,n) to eliminate the permutation ambiguity during
the estimation of W .

2.2 MVAE+: a unified approach using multichannel variational autoencoder
The MVAE method [4] uses a conditional VAE (CVAE) [11] to model and estimate the spectrograms of the
sources s j( f ,n). A reverberation-aware extension of the MVAE method, which we call MVAE+, employs a
separation system given by (2) and (3).
Let SSS = {s( f ,n)} f ,n be the complex spectrogram of a particular sound source and c be the corresponding at-
tribute class label whose form is a one-hot vector. Given a set of labeled training samples {SSSm,cm}M

m=1, a
CVAE, consisting of an encoder qφ (z|SSS,c) and a decoder pθ (SSS|z,c), can be trained by maximizing

J (φ ,θ) = E(SSS,c)∼pD(SSS,c)[Ez∼qφ (z|SSS,c)[log pθ (SSS|z,c)]−KL[qφ (z|SSS,c)||p(z)]], (8)

where E(SSS,c)∼pD(SSS,c)[·] denotes the sample mean over the training examples and KL[·||·] is the Kullback-Leibler
divergence. Here, we define the decoder distribution as a zero-mean complex Gaussian distribution as follows
so that it has the same form as the LGM (4):

pθ (SSS|z,c,g) = ∏
f ,n

NC(s( f ,n)|0,v( f ,n)), (9)

v( f ,n) = g ·σ2
θ ( f ,n;z,c), (10)

where σ2
θ
( f ,n;z,c) denotes the ( f ,n)-th element of the decoder output and g represents the global scale of the

generated spectrogram. As regards the encoder distribution qφ (z|SSS,c), we assume a regular Gaussian distribution

qφ (z|SSS,c) = ∏
k

N (z(k)|µφ (k;SSS,c),σ2
φ (k;SSS,c)), (11)

where z(k), µφ (k;SSS,c) and σ2
φ
(k;SSS,c) represent the k-th element of the latent space variable z and the encoder

outputs µφ (SSS,c) and σ2
φ
(SSS,c), respectively. The trained decoder distribution can then be used as a generative

model of the complex spectrogram of the j-th source pθ (SSS j|z j,c j,g j), where z j, c j and g j are the unknown
parameters of the model. This generative model is called the CVAE source model. Note that since c j denotes
the class index of source j, estimating c j corresponds to identifying the class of source j in a test mixture.
The optimization algorithm of MVAE+ consists of iteratively updating the separation matrices W using the
iterative projection (IP) method [12], the source model parameters Ψ = {z j,c j} j using backpropagation, the
dereverberation filter D = {DDDH( f ,n′)} f ,n′ using the multichannel linear prediction method and the global scale
G = {g j} j using the following update rule:

g j←
1

FN ∑
f ,n

|wwwH
j ( f )xxx( f ,n)|2

σ2
θ
( f ,n;z j,c j)

. (12)

MVAE+ is notable in that (i) it takes full advantage of the strong representation power of DNNs for source
power spectrogram modeling, (ii) the convergence of the source separation algorithm is guaranteed, and (iii) it
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is capable of removing the reverberant component in the observed mixture signals. We experimentally confirmed
in [5] that MVAE+ successfully improved on both MVAE and ILRMA+ [8], namely a reverberation-aware ex-
tension of ILRMA, showing the effects of the CVAE source model and the frequency-wise convolutive mixture
model.
However, MVAE+ does not address the remaining two drawbacks of MVAE, namely the high computational
cost and the limited source classification accuracy.

3 PROPOSED METHOD
3.1 Auxiliary classifier VAE
The auxiliary classifier VAE (ACVAE) [13] is a variant of CVAE that incorporates an information-theoretic
regularization [14] to enhance the effect of the class label on the decoder output by maximizing the mutual
information between c and S ∼ pθ (S|z,c) conditioned on z. As shown in [6, 13], the regularization term that
we would like to maximize with respect to φ , θ , ψ becomes

L (φ ,θ ,ψ) = E(S,c)∼pD(S,c),qφ (z|S,c)[Ec∼p(c),S∼pθ (S|z,c)[log(c|S)]].

Since the labeled training samples can also be used to train the auxiliary classifier (c|S), ACVAE also includes
the cross-entropy

I (ψ) = E(S,c)∼pD(S,c)[log(c|S)] (13)

in the training criterion. The entire training criterion is thus given by

J (φ ,θ)+λL L (φ ,θ ,ψ)+λI I (ψ), (14)

where λL ≥ 0 and λI ≥ 0 are weight parameters.
Note that the auxiliary classifier (c|S) both assists the encoder and decoder to learn a more disentangled repre-
sentation.

3.2 optimization process for proposed method
In this subsection, we describe an optimization algorithm for obtaining D , W , and Ψ. The MVAE+ algorithm
consists of iteratively maximizing the log-likelihood (7) with respect to D , W , and Ψ in turn. One drawback
as regards MVAE+ is that the process of optimizing Ψ has particularly been computationally expensive. Note
that when D and W are fixed, maximizing the log-likelihood (7) with respect to Ψ is equivalent to finding
the maximum point of the distribution p(z j,c j|S j) for each j. While the MVAE and MVAE+ method used
backpropagation for finding z j and c j, fMVAE took a different approach to reduce the computational effort.
By using the fact that the trained encoder qφ (z j|S j,c j) of the CVAE model and the trained auxiliary classifier
(c j|S j) are approximations to the exact posteriors p(z j|S j,c j) and p(c j|S j), the distribution p(z j,c j|S j) can be
approximated as the product of qφ (z j|S j,c j) and (c j|S j). Thus, we can search for the points that approximately
maximize p(z j,c j|S j) by computing the output of (c j|S j) followed by computing the mean of qφ (z j|S j,c j).
These values can be obtained simply via forward computations of the two networks. Here, we use this idea of
fMVAE to update Ψ.
The update rules for D can be derived as in [5, 8]. Let us vectorize {D( f ,n′)} by

ddd∗( f ) = [dddT
1 ( f ,1), . . . ,dddT

I ( f ,1),dddT
1 ( f ,2), . . . ,dddT

I ( f ,2), . . . ,dddT
1 ( f ,N′), . . . .,dddT

I ( f ,N′)]H ∈ CI2N′ , (15)

where dddi( f ,n′) is the i-th column of DDD( f ,n′) and (·)∗ represents the complex conjugate. Then, the update rule
for each ddd∗( f ) can be derived as a closed form:

ddd∗( f )←

(
∑
n

XXXH( f ,n)Σw/v( f ,n)XXX( f ,n)

)−1(
∑
n

XXXH( f ,n)Σw/v( f ,n)xxx( f ,n)

)
, (16)
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Figure 1. Microphone and source positions, where ◦ and × represent the positions of microphones and sources
respectively.

with

XXX( f ,n) = [I⊗ xxxT( f ,n−1), I⊗ xxxT( f ,n−2), . . . , I⊗ xxxT( f ,n−N′)] ∈ CI×I2N′ , (17)

and Σw/v( f ,n) = ∑ j
www j( f )wwwH

j ( f )
v j( f ,n) , which is assumed to be positive definite. Here, ⊗ stands for the Kronecker prod-

uct.
We employ the following update rules derived on the basis of the IP method [12] to update W :

www j( f )← (WWW H( f ,0)Σy/v j( f ))
−1eee j, (18)

www j( f )←
www j( f )√

wwwH
j ( f )Σy/v j( f )www j( f )

, (19)

where Σy/v j( f ) = (1/N)∑n yyy( f ,n)yyyH( f ,n)/v j( f ,n) and eee j denotes the j-th column of the I× I identity matrix.
Therefore, the proposed algorithm is summarized as follows:

1. Train θ , φ and ψ using (14).

2. Initialize z j, c j, G , W and D .

3. Repeat the following update steps for each j.

(a) Update www j( f ) using (18) and (19).
(b) Update c j← argmaxc j∈{1,2,...,C}(c j|S j)

(c) Update z j← µφ (SSS j,c j)

(d) Update g j using (12).
(e) Update ddd∗( f ) using (16).

4 EXPERIMENTAL RESULTS
To evaluate the effectiveness of the proposed method under highly reverberant environments, we conducted
multi-speaker separation experiments to compare the source separation performance, computational time and
source classification accuracy of the proposed approach with those of ILRMA+ [8] and MVAE+ [5].

4.1 Experimental conditions
For learning the parameters of CVAE for MVAE+, we used the same clean speech samples as in [4, 5]. For
learning the parameters of ACVAE, we used reverberant speech samples that were generated from the same
samples mentioned above and the measured RIRs. Specifically, we used six RIRs involved in the CENSREC-4
database for training networks of ACVAE and used two RIRs excerpted from the RWCP database to generate
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Table 1. Conditions of RIRs used for training CVAE source model of the proposed method and generating
observed mixture signals in tests.

Database Recording environment Reverberation time (RT60) [ms]

CENSREC-4
(Used in training phase)

In-car 55 ms
Office 250

Lounge 500
Japanese style bath 600

Living room 650
Meeting room 650

RWCP
(Used in test phase)

Japanese style room 600 ms
Meeting room 780

the multichannel mixture signals. Table 1 and Fig. 1 respectively show the conditions of RIRs and the two
configurations of the microphones and sources we tested. We used utterances of two female speakers “SF1”
and “SF2”, and two male speakers “SM1” and “SM2” excerpted from the Voice Conversion Challenge (VCC)
2018 dataset [15] to compose the training and evaluation sets. The audio files for each speaker were manually
segmented into 116 short sentences (about 7 minutes totally), where 81 and 35 sentences (about 5 and 2 min-
utes) were provided as training and evaluation sets, respectively. We generated 10 speech combinations for each
speaker pair, namely SF1+SF2, SF1+SM1, SF2+SM2, and SM1+SM2. Hence there were 80 test signals in total
under each reverberant environment. The length of each signal was about 4 to 7 seconds long. The class label
c was a four-dimensional one-hot vector that indicates the speaker identity.
We resampled all mixture signals at 16 kHz. The STFT was computed using a 256 ms long Hamming window
with 64 ms window shift. For ILRMA+, the basis number K was set at 5. The dereverberation filter length
N’ was set at 3 for JR1 and 4 for OFC, respectively. We run 100 iterations for ILRMA+, 60 iterations for
MVAE+ and 40 iterations for the proposed method. To initialize WWW H( f ) and DDDH( f ,n′) for MVAE+ and the
proposed method, we ran ILRMA+ for 30 iterations. We used the same network architectures for the encoder
and decoder in this paper as those used in [4, 5], i.e., a three-layer fully-convolutional network with gated linear
units (GLUs) [16] and a three-layer fully-deconvolutional network with GLUs. We also used the same network
architectures for ACVAE as those used in [6]. Specifically, architectures of the encoder and decoder were the
same as those described above, and the classifier network consisted of a four-layer fully-convolutional network
with GLUs and a softmax-layer as the output layer. Adam optimization [17] was used for training networks
and estimating Ψ during the source separation. Note that we must take account of the sum-to-one constraints in
MVAE+ when updating c j, which can be easily implemented by inserting appropriately designed softmax layer
outputs

c j = Softmax(u j), (20)

and treat u j as the parameter to be estimated instead.
The optimization algorithms were run using an Intel(R) Core(TM) i7-7800X CPU@3.50 GHz and a TITAN V
GPU.

4.2 Results
We took the average of the signal-to-distortion ratios (SDRs), signal-to-interference ratios (SIRs) and signal-
to-artifact ratios (SARs) [18] over the 80 test signals under each condition to evaluate the source separation
performance, and we measured the computational times of ILRMA+, MVAE+ and the proposed method.
Tab. 2–3 respectively show the separation performances and computational times of ILRMA+, MVAE+ and the
proposed method under the two reverberant conditions. The proposed method was 7.5 times faster than MVAE+
each iteration and slightly faster than ILRMA+ in terms of total computational time when using GPU. We
confirmed that the proposed method achieved a comparable performance in terms of SIR improvement compared
with MVAE+. The proposed method also outperformed ILRMA+ in terms of SDR and SIR improvements while
SAR was slightly worse than ILRMA+. Further investigation on the SAR degradation is one direction of our
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Table 2. Average SDR, SIR and SAR improvements of ILRMA+, MVAE+ and the proposed method. The
values in bold are the highest scores.

RIRs Methods Improvement [dB]
SDR SIR SAR

JR1
T60 = 600 ms

ILRMA+ 5.06 11.19 1.15
MVAE+ 6.66 14.73 2.22
Proposed 5.50 14.34 0.90

OFC
T60 = 780 ms

ILRMA+ 5.46 11.56 1.62
MVAE+ 6.89 14.89 2.64
Proposed 5.99 14.60 1.49

Table 3. Computational times of MVAE+, the proposed method and ILRMA+. MVAE+ and the proposed
method were initialized with by running the ILRMA+ algorithm for 30 iterations in CPU. MVAE+ ran 60
iterations of the optimization algorithm in GPU and the proposed method ran 40 iterations of the optimization
algorithm in CPU or GPU. ILRMA ran 100 iterations in CPU.

Method JR1 (RT60 = 600 ms) OFC (RT60 = 780 ms)
Runtime / Iteration [sec] Total [sec] Runtime / Iteration [sec] Total [sec]

MVAE+ (GPU) 5.935058 389.018216 6.156569 409.731895
Proposed (CPU) 0.935716 63.547227 1.189260 81.256035
Proposed (GPU) 0.689945 54.147118 0.935897 71.375679
ILRMA+ (CPU) 0.694537 70.446281 0.951857 96.179699

Table 4. Accuracy rates of source classifications obtained with MVAE+ and the proposed method.

all iterations [%] final estimation [%]
MVAE+ 50.51 74.38
Proposed 78.98 80.00

future work.
To evaluate the performances of source classification, we computed the classification accuracy rates over all
the results estimated at each iteration and those estimated at the final iteration. Table 4 shows the obtained
classification accuracy rates. We confirmed that the proposed method could estimate the attribute class of each
source signal more accurately by utilizing the classifier in the optimization process for class label estimation.

5 CONCLUSIONS
This paper proposed a unified approach to simultaneously solving source separation, dereverberation, and source
classification problems. In the proposed method, we used the frequency-domain convolutive mixture model to
model the separation system, and VAEs with an auxiliary classifier (ACVAE) to model and estimate the power
spectrograms and speaker identity of the source signals. The optimization process of the proposed method con-
sists of iteratively updating (i) the spectral parameters of each source by the forward calculation of the auxiliary
classifier VAE, (ii) the separation matrices using the IP method and (iii) the dereverberation filters using mul-
tichannel linear prediction. The experimental results showed that the proposed method achieved comparable
performance to MVAE+ in terms of SIR improvement with a source classification rate of 80 % and a reduction
of about 83 % in the computational time in each iteration.
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