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ABSTRACT

In this paper, we propose SepNet, a deep neural network (DNN)
designed to predict separation matrices from multichannel observa-
tions. One well-known approach to blind source separation (BSS)
involves independent component analysis (ICA). A recently devel-
oped method called independent low-rank matrix analysis (ILRMA)
is one of its powerful variants. These methods allow the estimation
of separation matrices based on deterministic iterative algorithms.
Specifically, ILRMA is designed to update the separation matrix
according to an update rule derived based on the majorization-
minimization principle. Although ILRMA performs reasonably
well under some conditions, there is still room for improvement in
terms of both separation accuracy and computation time, especially
for large-scale microphone arrays. The existence of a deterministic
iterative algorithm that can find one of the stationary points of the
BSS problem implies that a DNN can also play that role if designed
and trained properly. Motivated by this, we propose introducing a
DNN that learns to convert a predefined input (e.g., an identity ma-
trix) into a true separation matrix in accordance with a multichannel
observation. To enable it to find one of the multiple solutions corre-
sponding to different permutations of the source indices, we further
propose adopting a permutation invariant training strategy to train
the network. By using a fully convolutional architecture, we can
design the network so that the forward propagation can be computed
efficiently. The experimental results revealed that SepNet was able
to find separation matrices faster and with better separation accuracy
than ILRMA for mixtures of two sources.

Index Terms— Blind source separation, microphone array,
deep neural network, permutation invariant training

1. INTRODUCTION

Blind source separation (BSS) is a technique for extracting individ-
ual source signals from mixture signals recorded by a microphone
array without any prior information about the source signals and the
transfer characteristics between the sources and microphones. One
widely used approach for the determined BSS problem is indepen-
dent component analysis (ICA) [1], which achieves source separa-
tion by finding a separation matrix that makes the separated signals
as statistically independent as possible. Many ICA-based methods
are formulated in the frequency domain. Frequency-domain meth-
ods enable fast implementations compared to methods formulated
in the time domain. In addition, they allow us to utilize various
models for the time-frequency representations of source signals and

This work was supported by JST CREST Grant Number JPMJCR19A3
and JSPS KAKENHI Grant Number 19H04131.

array responses to find clues for separation matrix estimation. For
example, independent vector analysis (IVA) [2–4] is a frequency-
domain method that solves frequency-wise source separation and
permutation alignment simultaneously by assuming that the magni-
tudes of the frequency components originating from the same source
tend to vary coherently over time. Determined multichannel non-
negative matrix factorization [5], later called independent low-rank
matrix analysis (ILRMA) [6, 7], is another relatively recent exam-
ple that adopts the non-negative matrix factorization (NMF) con-
cept to model the power spectrogram of each source. Recently, sev-
eral attempts have also been made to combine deep neural networks
(DNNs) with the ICA-based methods or other methods for further
improvement [8–15]. Their aim is to improve the representation
power of the source spectrogram model employed in multichannel
NMF [5, 16, 17] or ILRMA so that better separation matrices can be
found.

All the methods above involve iterative procedures for estimat-
ing the separation matrix. A fast update rule for the separation ma-
trix has been proposed in [4]. Although this update rule allows
the separation matrix to converge with a small number of iterations,
the computational cost per iteration can be expensive especially for
large-scale microphone arrays. This can be problematic, for exam-
ple, when implementing real-time BSS systems. To address this,
a faster update rule has recently been proposed [18]. While these
update rules are derived manually, in this paper, we take a learning-
based approach with the aim of automatically obtaining even faster
and more accurate update rules using a DNN. The idea is similar in
spirit to the concept of deep unfolding [19] in that each layer of a
DNN is interpreted as a single update step in an iterative algorithm.

The existence of a deterministic iterative algorithm that leads to
one of the stationary points of the BSS problem motivates us to ex-
pect that a DNN, if designed and trained properly, can also play that
role. Namely, we can think of a DNN that converts a predefined
input (corresponding to an initial point of an iterative algorithm)
into the true separation matrix in accordance with a multichannel
observation. However, implementing such a DNN is not necessarily
straightforward, since the BSS problem is an ill-posed one that can
have multiple solutions corresponding to different permutations of
the source indices. A deterministic BSS algorithm can find one of
these solutions, but in most cases it cannot predict in advance which
permutation it will end up with. The problem is that the resulting
permutation varies depending on an initial point of the iterative al-
gorithm and observed signals. Thus, naively using the source sig-
nals arranged in some fixed prespecified order as a regression target
for model training would result in a useless model, namely one that
produces a separation matrix that does not achieve separation at all.
To allow the DNN to flexibly find one of the desired solutions in
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accordance with an observation, we further propose adopting a per-
mutation invariant training (PIT) strategy [20] to train the network.
On top of this, we use a fully convolutional architecture to design the
network so that the forward propagation can be computed efficiently.
We call this model SepNet, which stands for the Separation matrix
prediction Network.

The rest of this paper is structured as follows. Section 2 formu-
lates the BSS problem and briefly reviews ILRMA, Section 3 de-
scribes the details of the architecture of SepNet and discusses the
training process, and Section 4 presents the experimental results.

2. PROBLEM FORMULATION

2.1. Determined BSS

We consider a determined situation where J source signals are ob-
served by I microphones (J = I). Let xi(f, n) and sj(f, n) denote
the short-time Fourier transform (STFT) coefficients of the signal
observed at the ith microphone and the jth source signal, where f
and n are the frequency and time indices, respectively. Under a de-
termined situation, we can use a separation system of the form

s(f, n) = WH(f)x(f, n), (1)

W(f) = [w1(f), . . . ,wJ(f)] ∈ CI×J , (2)

to describe the relationship between the observed signals x(f, n) =
[x1(f, n), . . . , xI(f, n)]

T ∈ CI and sources s(f, n) = [s1(f, n),
. . . , sJ(f, n)]

T ∈ CJ , where W(f) is called the separation matrix
and (·)H denotes Hermitian transpose. The aim here is to estimate
W = {wj(f)}j,f from the observations X = {xi(f, n)}i,f,n.

2.2. ILRMA

If we assume each source j to independently follow the local Gaus-
sian model [21, 22] sj(f, n) ∼ NC(sj(f, n)|0, vj(f, n)), where
vj(f, n) denotes the power spectral density of the (f, n)th time-
frequency element, the negative log-likelihood of V = {vj(f, n)}f,n,j

and W = {wj(f)}j,f given the observed mixture signals X =
{xi(f, n)}i,f,n is given as

L(V,W)
c
=− 2N log

∣∣detWH(f)
∣∣

+
∑
f,n,j

(
log vj(f, n) +

|wH
j (f)x(f, n)|2

vj(f, n)

)
, (3)

where =c denotes equality up to constant terms.
ILRMA [5–7] is a BSS method that incorporates the NMF

model into (3) by expressing vj(f, n) as the linear sum of M
basis spectra B = {bj,m(f)}j,m,f ≥ 0 scaled by time-varying
magnitudes H = {hj,m(n)}j,m,n ≥ 0. Namely, vj(f, n) =∑M

m=1 bj,m(f)hj,m(n). The optimization algorithm of ILRMA
consists of iteratively updating W , B and H so that (3) is ensured
to be nondecreasing at each iteration. To update B and H, we
can employ the expectation-maximization (EM) algorithm or the
majorization-minimization (MM) algorithm [5–7]. To update W ,
we can use the natural gradient method or IP. The update rule derived
on the basis of the IP method [4] is given as

wj(f)← (WH(f)Σx/vj(f))
−1ej , (4)

wj(f)← wj(f)/
√

wH
j (f)Σx/vj (f)wj(f), (5)

・・・DNN

Block

DNN

Block

DNN

Block
Demix

observed
mixture

separated
signals

estimated
separation matrixpredefined

input

Fig. 1: Entire architecture of proposed method for estimating sepa-
ration matrix from predefined input and observed mixture.

+

+
DNN Block

Fig. 2: Diagram of building blocks (DNN Blocks). Each building
block consists of two layers with no learnable parameters (Lpre,
Lpost) and two layers with learnable parameters (Pθ ,Qϕ).

where Σx/vj (f) = (1/N)
∑

n x(f, n)xH(f, n)/vj(f, n) is a
weighted spatial covariance matrix and ej denotes the j-th column
of the I × I identity matrix. The ILRMA algorithm is guaranteed
to converge to a stationary point of (3) and experimentally shown to
converge quickly with a small number of iterations. As (4) shows,
each iteration of the ILRMA algorithm includes a matrix inversion,
which becomes computationally expensive especially when J is
large.

3. SEPNET

To obtain a fast and accurate separation matrix estimator, we pro-
pose the idea of using an appropriately sized DNN as an alternative
to an iterative algorithm for finding W . We call this DNN SepNet.
To this end, we consider a DNN that takes X = {x(f, n)}f,n and
a set W(0) of identity matrices as the inputs, and produces the set
W(k) = {W(k)(f)}f of separation matrix estimates from each
block k. The input W(0) and each block k of this DNN can be
thought of as corresponding to the initial point and a single step of a
virtual iterative algorithm, respectively.

3.1. Architecture

Fig. 1 and Fig. 2 show the entire architecture of SepNet and the
block diagram for each building block. As shown in Fig. 1, the
proposed architecture consists of K blocks with the same structure,
so the entire network can be viewed as a deep architecture consisting
of multiple update processes.

Rather than designing the entire architecture from scratch, we
consider it reasonable to design each block by taking inspiration
from the update equation shown in Subsec. 2.1. As shown in (4),
the update equation in the IP method uses a weighted spatial covari-
ance matrix Σx/vj (f) = (1/N)

∑
n x(f, n)xH(f, n)/vj(f, n) to

update each row of WH(f), whose weight is determined according
to the estimate vj(f, n) of the power spectral density of the corre-
sponding source. We thus configure each block to consist of four
differentiable layers Lpre, Pθ , Lpost, and Qϕ playing the follow-
ing roles: The first layer, Lpre, produces source signal estimates by
simply applying the separation matrix estimates produced from the
previous block to the observed signals. The second layer, Pθ , es-
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timates the power spectrogram corresponding to each source signal
estimate obtained from Lpre. The third layer, Lpost, computes the
weighted spatial covariance matrix using each power spectrogram
estimate obtained from Pθ . The fourth layer, Qϕ, finally updates
the separation matrix estimates using the weighted spatial covari-
ance matrices computed through Lpost. Here, Lpre and Lpost de-
note layers with no learnable parameters, whereas Pθ and Qϕ de-
note nonlinear layers parameterized by learnable parameters θ and
ϕ, respectively. By usingW(k−1) = {w(k−1)

j (f)}j,f to denote the

output of the (k − 1)th block and using Ŷ(k) = {ŷ(k)
j (f, n)}j,f,n,

V(k) = {v(k)j (f, n)}j,f,n, and U (k) = {U(k)
j (f)}j,f to denote the

outputs of the intermediate layers in the kth block, the final output
W(k) = {w(k)

j (f)}j,f of the kth block is given as

Ŷ(k) = Lpre(W(k−1),X ), (6)

V(k) = Pθ(k)(Ŷ(k)), (7)

U (k) = Lpost(V(k)), (8)

W(k) =W(k−1) +Qϕ(k)(W(k−1),U (k)), (9)

where each element ŷ(k)
j (f, n) of Ŷ and each element U(k)

j (f) of
U (k) are given respectively as

ŷ
(k)
j (f, n) = |w(k−1)

j
H(f)x(f, n)|2, (10)

U
(k)
j (f) =

1

N

∑
n

x(f, n)xH(f, n)

v
(k)
j (f, n)

. (11)

(7) can be seen as a process of refining the power spectrograms of
the tentatively separated signals. Note that (9) is designed to have
a residual connection, so Qϕ(k) is responsible for predicting the di-
rection in which W(k−1) should be updated. As detailed later, we
design both Pθ andQϕ using fully convolutional architectures.

(7) and (9) assume the use of different parameter sets θ(k) and
ϕ(k) for each block. Alternatively, we can think of tying the param-
eters in all the blocks together (by removing the superscript k from
θ(k) and ϕ(k)) to reduce the parameters to be learned. To distinguish
between these two versions, we call the former the untied model and
the latter the tied model. A comparison of these versions will be
made later.

3.2. Training process

The training process is the key to the success of SepNet. Given
a training example of the pair {X ,S}, one possible option for the
training objective would be to use a direct separation error, namely
the distance between w

(k)
j

H(f)x(f, n) and sj(f, n):

E(θ(k)) = EX ,S

[∑
j

∑
f,n

|w(k)
j

H(f)x(f, n)− sj(f, n)|
]
, (12)

where EX ,S [·] denotes the sample mean over all the training ex-
amples. However, model training using this objective comes with
the permutation problem mentioned earlier. That is, the order of
the sources in the target S may not be the same as the order of
the sources in the network output W . To solve this problem, we
adopt a PIT strategy [20], which was originally introduced to achieve
speaker-independent monaural speech separation. The idea is to first
find the best output-target assignment and then minimize the sepa-
ration error given that assignment. By using π(j) ∈ {1, . . . , J} to
denote the source index in the target to which the source index j in

the network output is assigned, the PIT objective can be written as

E(θ(k)) =

EX ,S

[
min
π

∑
j

∑
f,n

|w(k)
j

H(f)x(f, n)− sπ(j)(f, n)|
]
. (13)

Namely, we evaluate the separation errors for J ! possible output-
target assignments, from which we find the best assignment π that
gives the minimum error for each training example. Our goal is to
minimize the mean of the minimum errors computed in this way over
all the training examples. Note that only in the I = J = 2 case did
our method work well even without PIT, by simply sorting the source
indices in the target in ascending order of the direction-of-arrivals.

4. EXPERIMENTS

4.1. Experimental settings

We conducted a multichannel speech separation experiment to eval-
uate our method. ILRMA was chosen as a baseline method for com-
parison. For the experiment, we created two types of samples of
multichannel reverberant mixtures, one being two-channel record-
ings of two speakers and the other being three-channel recordings
of three speakers. To simulate an open-set scenario, we used dif-
ferent speech databases consisting of recordings of completely dif-
ferent speakers to create the training and test sets. Specifically, we
used utterances of 18 speakers excerpted from the CMU ARCTIC
database [23] for training, and those of four speakers excerpted from
the Voice Conversion Challenge (VCC) 2018 dataset [24] for eval-
uation. The training and test sets consist of 3,000 and 100 samples,
respectively. The mixture signals were created from simulated two-
channel recordings of two sources and three-channel recordings of
three sources, where the room impulse responses were generated by
using the image method [25]. The depth, width, and height of the
room were set at 4.0, 5.0, and 3.0 m. We created each sample of the
training and test sets as follows. First, the reverberation time (T60)
was randomly set within the range of 55 to 160 ms. Second, each
microphone was randomly placed at least 0.5 m away from the walls
of the room. Third, once the positions of the microphone were de-
termined, each speaker was randomly placed at a distance of 0.5 m
to 1.0 m from all the microphones so that the angle between each
speaker pair with respect to the center of the microphones was at
least 20◦. All the signals were sampled at 8 kHz. The network ar-
chitectures for Pθ and Qϕ are detailed in Fig. 3. We configured Pθ

to consist of four sub-layers, each of which was designed using a
2D convolution layer (Conv) or a 2D transposed convolution layer
(Deconv) with a gated linear unit (GLU) [26]. We configured Qϕ to
consist of five sub-layers, each of which was designed using a 3D
convolution layer (Conv) or a 3D transposed convolution layer (De-
conv) with a GLU. In Qϕ, a complex-valued matrix is treated as a
three-way array for convenience of implementation. Namely, when
interpreted as an image, the row and column correspond to the height
and width, and the real and imaginary parts correspond to first and
second channels, respectively. Since the network is fully convolu-
tional, X is allowed to have an arbitrary length. During training, the
utterance was divided into 4.16-s-long segments (128 frames). The
tied and untied models were designed to have ten and four blocks,
respectively. The STFT was computed using a Hamming window
with a length of 64 ms and an overlap of 32 ms. For ILRMA, the
basis number M was set to 2, and the algorithm was run for 50 itera-
tions. The initial value of the separation matrix was set at an identity
matrix for each frequency bin. All the algorithms were implemented
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Fig. 3: Detailed network architectures for layer Pθ andQϕ. “h”, “w”, “c” and “k” denote the height, width, channel number, and kernel size,
respectively. “J” denotes the channel number of input mixture signals. “Conv”, “Deconv”, “BN”, and “GLU” denote 2D or 3D convolution,
2D or 3D deconvolution, batch normalization, and gated linear unit, respectively.
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(b) Result for three-speaker separation.

Fig. 4: Average scores of SDR, SIR, and SAR per computational time for ILRMA and both of the proposed methods. The tied model and
untied model run ten and four iterations respectively in a CPU or GPU. ILRMA runs 50 iterations in a CPU.

in PyTorch and run on Intel (R) Core i7-7800X CPU@3.50 GHz and
GeForce TITAN V GPU.

4.2. Results and Discussion

We computed the average of the signal-to-distortion ratios (SDRs),
signal-to-interference ratios (SIRs), and signal-to-artifact ratios
(SARs) [27] over the 100 test samples to evaluate the source separa-
tion performance and measured the computational time per iteration.
Fig. 4 shows graphs of the speech separation accuracy versus run
time obtained with the separation matrices estimated at each iter-
ation in ILRMA and at each block in SepNet. The results show
that both the tied and untied models could produce good separation
matrices even from the first block. The separation matrices produced
from the final block in the untied model yielded better separation
accuracy than the best accuracy achieved by ILRMA. Moreover, the
time it took to reach the final block in the untied model was much
shorter than the time ILRMA needed to obtain the best accuracy.
Although the tied model performed slightly better than the untied
model in terms of the SAR, the untied model performed significantly
better in terms of the SDR and SIR. This may indicate that the more

flexible the network architecture of SepNet is, the better it performs.

5. CONCLUSION

In this paper, we proposed SepNet, a DNN-based separation matrix
predictor for determined frequency-domain BSS. The idea was to let
a DNN learn how to find separation matrices from observed signals.
For model training, we adopted the PIT strategy to address the per-
mutation mismatch between the order of the sources in the network
output and the order of the sources in the regression target. The ex-
perimental results revealed that SepNet was able to find separation
matrices faster and with better separation accuracy than ILRMA for
mixtures of two and three sources.

Although SepNet is advantageous over ILRMA or the IP method
in terms of the computational efficiency of the inference process, the
training process becomes more challenging as the source/channel
number increases. This is because the time complexity of PIT is fac-
torial O(J !). Hence, developing methods for efficient model train-
ing is important.
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