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ABSTRACT
Sounds provide us with vast amounts of information about surround-
ing objects and can even remind us visual images of them. Is it
possible to implement this noteworthy human ability on machines?
In this paper, we study a new task that consists of predicting im-
age recognition results in the form of semantic segmentation with
given multichannel audio signals. Our approach uses a convolutional
neural network that is designed to directly output semantic segmen-
tation results by taking audio features as its inputs. A bilinear fea-
ture fusion scheme is incorporated that efficiently models underlying
higher-order interactions between audio and visual sources. Experi-
mental evaluations with both synthetic and real sound datasets show
that our approach can recover the desired segmented images reason-
ably well.

Index Terms— cross-modal analysis, semantic segmentation,
convolutional neural network, multichannel audio

1. INTRODUCTION

Human beings develop a deeper understanding of their surrounding
environments by combining their senses. They know what kinds of
sounds are likely to be generated by certain sources, and they can
infer what kind of object is making a given sound and its location.
For example, if we suddenly hear a barking sound, we can produce
a mental image of a dog somewhere nearby, without looking at it.
This remarkable ability called auditory scene analysis [1] has been
proven to be particularly useful in our daily lives [2] and allows us
to perform cross-modal mappings between natural sounds and their
physical sources as in hearing a dog generates a visual image of a
dog. This may pose one interesting question – Is it possible to equip
the machines with such a noteworthy ability?

In this paper, we attempt to develop a method for predicting what
objects are where in a scene from audio information alone, i.e., with-
out actually looking at the scene. An overview of the problem con-
sidered in this paper is illustrated in Fig. 1. Suppose there are a few
sound sources, e.g., people, standing in a room, and their voices and
appearance are synchronously captured by a microphone array and
a camera, respectively. Our task is to predict the semantic segmen-
tation result, i.e., the pixel-level object classification result of the
camera image similar to that shown in the bottom right part of the
figure, solely from the recorded multichannel audio signals.

Some very recent studies have focused on cross-modal analysis
between audio and visual information, such as visual feature learn-
ing from sounds [3, 4], sound prediction from silent videos [5], and
cross-modal content generation [6]. A paper that is more relevant to
ours is [7], which proposes learning audio features based on image-
level object classification results. Another such paper is [8], which
considers audio source localization from unlabeled videos. In con-
trast to these previous studies, we consider the new task of predicting
pixel-level semantic segmentation results from multichannel audio
signals. To the best of our knowledge, this topic has never before
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Fig. 1. Illustrative overview of our framework. A pair of tempo-
rally synchronized multichannel audio signals and an RGB image of
a scene are captured by a microphone array and a camera, respec-
tively. Our task is to predict the semantic segmentation result of the
image from an angular spectrum and MFCCs extracted from the au-
dio signals. To this end, our approach uses a convolutional neural
network (CNN) with bilinear feature fusion.

been addressed. This is a more challenging task that requires the
joint handling of semantic and geometric correspondences between
audio and visual sources at the pixel-level. It may provide the com-
munity with the opportunity to consider a new multiplex problem
featuring audio and image processing that covers several central re-
search topics including scene understanding, 3D geometry, object
localization, and event detection.

Human beings probably gain the ability to handle such a com-
plex cross-modal association by learning through experience [9]. In-
spired by this, we approach the problem by considering machine
learning using convolutional neural networks (CNNs). Our CNN ar-
chitecture is designed to employ multichannel audio features as its
inputs and to directly output the predicted segmentation result. We
incorporate a bilinear feature fusion scheme in our network to ef-
ficiently model higher-order interactions between audio and visual
information. Experiments on both synthetic and real sound datasets
show that our model can recover desirable segmentation results rea-
sonably well.

2. METHOD

The approach we propose in this paper first extracts audio features
from multichannel audio signals, and then uses a CNN to predict the
desirable segmentation results from the features. In this paper, we
consistently consider a case where a microphone array consists of
four microphones.

2.1. Audio Features

One straightforward choice would be to directly feed raw waveforms
or spectrograms into a CNN as attempted before in [7] for audio
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feature learning. However, the multichannel audio that we use is far
richer than the monaural sound assumed in their work, hence, it is
more important to extract the information needed to make learning
stable.

Since semantic information and spatial information are both
needed to recover the semantic segmentation results, the desired
audio features should provide information about the spatial posi-
tions and categories of the sound sources (e.g., male, female, dogs,
etc.) at the same time. We therefore extract the angular spectrum
(AS) and the mel frequency cepstral coefficients (MFCC), which are
often used for sound source localization and audio event detection,
respectively. Specifically, we use the classical GCC-PHAT method
[10] to estimate the two-dimensional AS in the form of a normalized
2D array of azimuth and elevation angles. As regarding the MFCCs,
we first compute d-dimensional coefficients for w windows from
each of four channels and then concatenate them into the form of
a tensor with a size of w × d × 4 (channels). We use d = 12 and
w = 124 in our method. The resulting AS and MFCCs can both
be seen as 2D images, and thus can be fed into a CNN with 2D
convolution layers.

2.2. CNN Architecture

Our CNN architecture is basically inspired by a fully convolutional
network (FCN) for image semantic segmentation [11]. An FCN typ-
ically consists of a sequence of convolution and upconvolution lay-
ers for obtaining the direct mapping from an RGB image to its seg-
mented form. However, such a simple architecture is insufficient in
our case, which requires the integration of the two audio features,
i.e., AS and MFCCs, and their translation to a segmented image,
which is spatially inconsistent with the audio features.

We therefore designed our network to have the following three
blocks, which we call the Encoding Block, Fusion Block, and De-
coding Block. (i) The Encoding Block has two separate sequences
of convolution layers for the two features, which makes it possible
to preserve their meaningful information while reducing their spa-
tial size, (ii) the Fusion Block fuses the two streams into a single
feature map, and (iii) the Decoding Block is a sequence of upconvo-
lution layers for upsampling the feature map to recover the desired
segmented image. The overall architecture is illustrated in Fig. 2.
Bilinear feature fusion. The Fusion Block is especially important
in our task for aligning audio-visual features. One simple solution
would be to employ concatenation after aligning the dimensions of
the two features by using fully-connected (FC) layers. However,
such a straightforward application of FC layers tends to be costly and
prone to overfitting. To avoid this problem, we propose the adoption
of bilinear feature fusion [12, 13, 14], which has proved effective for
modeling the inherent interactions behind spatially unaligned fea-
tures with fewer parameters.

Denote the outputs of the Encoding Block for AS and MFCCs
by a ∈ RDa and m ∈ RDb , respectively1, and the output of the
Fusion Block by v ∈ RDv . The basic assumption is that the fused
vector v can be computed by using a bilinear projection of a and m.

v = (T ×1 a)×2 m, (1)

where ×i means a mode-i product, and T is a 3-way tensor of size
Da × Dm × Dv which has to be learned through a training pro-
cess. Although such a “full” tensor model is sufficiently flexible to
model higher-order interactions between dimensions over the feature

1Although each is naturally a 3-way tensor as is, they can be readily re-
shaped into a vector by flattening.

Convolution layers

Convolution layers

Upconvolution layers

Encoding Block Fusion Block Decoding Block

Fig. 2. Our CNN architecture.

vectors, its huge number of parameters often makes this approach
prohibitive. T can be decomposed by Tucker decomposition into

T = ((Tc ×1 Wa)×2 Wm)×3 Wv, (2)

where Tc ∈ Rda×dm×dv is a core tensor that captures the princi-
pal interactions between the vectors, and Wa ∈ RDa×da , Wm ∈
RDm×dm , and Wv ∈ RDv×dv are factor matrices for a, m, and v,
respectively. Typically d{a,m,v} � D{a,m,v}. Plugging this into
Eq. (1), we obtain

v = (((Tc ×1 (a
>Wa))×2 (m

>Wm))×3 Wv, (3)

where the resulting number of parameters is significantly reduced to
dadmdv +Dada +Dmdm +Dvdv . The number of parameters can
be reduced even further by assuming that the slice matrices inside
the core tensor Tc are of low-rank [14]. If the rank is R, Eq. (3)
turns into

v =

(
R∑

r=1

(a>WaMr) ∗ (m>WmNr)

)
Wv (4)

where Mr ∈ Rda×dv and Nr ∈ Rdm×dv are compositions of r-th
slice of Tc. Our Fusion Block uses Eq. (4) to compute v and it is fed
to the following Decoding Block. Note that Eq. (4) is differentiable
with respect to all the unknowns, so they can be trained through
backpropagation.
Implementation details. The AS and MFCCs are first separately
fed to the Encoding Block of our CNN. The AS stream consists of
seven Conv-ReLU (ReLU after 2D convolution) layers with a kernel
size of 3× 3 and a stride of 2× 2. The MFCC stream has six Conv-
ReLU layers, where the first half have a kernel size of 3 × 3 and a
stride of 2× 1 and the second half have a kernel size of 3× 3 and a
stride of 2× 2. The number of channels is gradually increased from
64 to 256 for both. The outputs from both streams have a dimen-
sion of 1024 after flattening (hence Da = Dm = 1024). They are
then fed into the Fusion Block. In the Fusion Block, the size of the
core tensor Tc and the factor matrices Wa, Wm and Wv are set at
da = dm = dv = 32, andR = 10. Given these numbers, the result-
ing output of the Fusion Block can be reshaped into a single 3-way
tensor with a size of 6×4×128 (henceDv = 3072). The Decoding
Block consists of three upconvolution layers and a softmax function
at the top. Inspired by the generator used for deep convolutional gen-
erative adversarial networks (DCGANs), rather than FCN, they are
designed to have relatively richer depths. Specifically, the configura-
tions of the three layers are composed of a stride of 2, kernel sizes of
16, 8 and 4, and 128, 64, and C channels in that exact order, where
C is the number of object categories (i.e., sound source categories)
to be classified. The resolution of the final image is 360× 480.

The model is implemented using Tensorflow. All the training is
accomplished with Adam and takes 100 epochs from scratch. The
learning rate is set at 1×10−4, β1 = 0.5, and β2 = 0.999. The loss
function used is cross-entropy loss.
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Fig. 3. Synthetic data generator and example of generated ground
truth images.

Table 1. Results with synthetic dataset.
pixel acc mean acc mean IU f.w. IU

Spec 0.946 0.420 0.396 0.907
MFCC Only 0.940 0.483 0.438 0.904
AS Only 0.960 0.592 0.535 0.938
FC Fusion 0.966 0.671 0.596 0.943
Ours 0.967 0.716 0.623 0.946

3. EXPERIMENTS

To facilitate an evaluation of various sound source settings, we first
evaluate our method using synthetic datasets with a reverberant room
environment. Then we demonstrate the performance on a real sound
dataset recorded with a simple setup.

3.1. Evaluation with Synthetic Dataset

We first explain how we generate our synthetic dataset and then re-
port our quantitative and qualitative results.

Dataset Generation. We generated our dataset by using a data gen-
erator to simulate audio mixtures and camera images in a reverber-
ant 3D room (Fig. 3). We assume situations where objects (sound
sources) in five categories, i.e., male, female, dog, cat, and pig, are
in a rectangular room 4.5 m wide× 6.0 m long× 2.5 m high, where
our microphones and camera are mounted on a wall. Up to three ob-
ject models (such as those shown in Fig. 3) from the five categories
are positioned randomly in the room and produce sounds simultane-
ously. More specifically, the spatial coordinates of their positions are
sampled from a uniform distribution with a constraint that requires
the minimum distance between two arbitrary objects to exceed 30
cm. Ten types of different object models are prepared for each cat-
egory. Given the positions, the audio signals to be captured by each
microphone are synthetically generated by using the Roomsimove
toolbox2. The sound sources of the human voices and animal sounds
are selected randomly from TIMIT and (the corresponding sound
classes of) ESC-503 [15], respectively, and assigned to the source
positions of the object models (i.e., mouth positions). All the sources
are resampled to 16 kHz. The ground truth semantic segmentation
result is generated by assuming a normal perspective projection. The
2D camera image is first simulated by applying a perspective trans-
formation to the 3D coordinate of the room, and a segmented image
is then obtained by extracting the regions of the object models from
the image. Example images are also given in Fig. 3.

The resulting synthetic dataset comprises 30, 000 pairs of mul-
tichannel audio signals and the corresponding ground truth images.

2http://bass-db.gforge.inria.fr/bss locate/
3https://github.com/karoldvl/ESC-50
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Fig. 4. Qualitative results with synthetic dataset. Colors correspond
to categories of objects (sound sources).

We used 25, 000 for training and 5, 000 for the test.

Results. In addition to our method (Ours), we also evaluate several
variants for comparative analysis. First, to clarify the effectiveness
of two handcrafted features compared to raw signals, we evaluate
a model Spec that uses complex spectrograms of four channels as
the input to the CNN, instead of AS and MFCC. Second, to ana-
lyze the complementarity of AS and MFCC, we prepare two sep-
arate models of AS Only and MFCC Only, respectively, that use
only of the two features. Third, to show the effectiveness of the bi-
linear feature fusion in Ours, we also evaluate a network that uses a
fully-connected layer (followed by concatenation) for feature fusion
(FC Fusion). For the sake of fairness, all the networks are designed
to have approximately the same number of trainable parameters and
depths. We evaluate the performance of the models with respect to
four common metrics for semantic segmentation [11]: pixel accu-
racy (pixel acc), mean accuracy (mean acc), mean intersection-over-
union (mean IU) and frequency weighted IU (f.w. IU). All of them
take values in [0.0, 1.0], and higher is better.

The quantitative results are shown in Table 1. First, all the meth-
ods yield prediction accuracies that are clearly better than chance
levels. This confirms that our framework can recover the visual se-
mantic segmentation results from multichannel audio. Second, AS
Only and MFCC Only perform better than Spec. This may suggest
that it may be difficult to find a meaningful mapping from such a
highly redundant feature representation for the pixel-level predic-
tion. Third, Ours and FC Fusion outperform MFCC Only and AS
Only. This proves that the features are complementary in our task.
Fourth, Ours is always competitive with or slightly better than FC
Fusion especially in terms of mean acc and mean IU, which suggests
that Ours can efficiently model the interactions behind the audio-
visual information with the same number of parameters.

Fig. 4 shows some examples of ground truth and predicted seg-
mentation results obtained with the compared methods. The results
provided by Ours are visually closer to the corresponding ground
truth images when they are compared with those obtained by the
other methods. MFCC Only tends to return correct categories but
incorrect positions even for relatively simple cases such as those
in the first and second rows in Fig. 4 due to the absence of loca-
tion information. Conversely, AS can almost always correctly pre-
dict positions but returns incorrect categories. Ours and FC Fusion
clearly outperform AS Only and MFCC Only, which suggests that
the two features are both important and complementary. The results
predicted by FC Fusion are rather fragmented compared with those
predicted by Ours, which may be due to overfitting. Ours can still
return smooth and reasonable predictions even for a more complex
example in the fourth row where a male is standing in front of a dog.
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Fig. 5. Experimental setup for real sound experiments (top). Exam-
ples of RGB images captured by a camera and corresponding ground
truth segmented images (bottom).

Table 2. Results with real sound dataset.
pixel acc mean acc mean IU f.w. IU

Spec 0.979 0.697 0.684 0.965
MFCC Only 0.993 0.915 0.874 0.987
AS Only 0.984 0.811 0.767 0.973
FC Fusion 0.993 0.918 0.883 0.988
Ours 0.998 0.974 0.957 0.996

3.2. Evaluation with Real Sound Dataset

The aim of this experiment is to analyze the applicability of our
method to real sounds.
Dataset Generation. We use a structured setup as shown in Fig. 5
to generate our dataset. Four omnidirectional DPA ST4006A mi-
crophones and a top view camera synchronously record the sounds
(running noise) and visuals of a small toy train running on circumfer-
entially connected track. To control the reverb and noises, the entire
setup is covered with a clear acrylic box 60 cm wide × 90 cm long
× 60 cm high. We record 20 mins of audio signals and correspond-
ing ground truth images and use half the results for training and the
other half for the test. Other protocols are the same as those used in
Sec. 3. Examples of the ground truth segmented images obtained
with this setup are shown in the bottom row of Fig. 5.
Results. The quantitative results are shown in Table 2. The overall
tendencies are similar to those found with the synthetic dataset. Most
of the methods yield reasonable prediction accuracies. This confirms
the applicability of our framework to real sounds. Ours is always
competitive with or better than the other methods, which proves the
effectiveness of our method in this setup.

Fig. 6 shows a few examples of the predicted results. As we can
see from the results in the first and second rows, Ours and FC Fu-
sion return more accurate prediction results than the others. Spec is
unable to predict the positions of the train in most of the examples.
From these observations, we can conclude that the combination of
MFCC and AS is effective even with real sounds. A comparison of
Ours with FC Fusion shows that the silhouettes predicted by FC Fu-
sion tend to be degenerated, while Ours recovers a shape closer to
that in the ground truth images. This emphasizes that the bilinear
fusion scheme is more robust and can efficiently determine the se-
mantic and geometric alignments over the audio-visual information.

4. CONCLUSION

We focused on the task of predicting image semantic segmentation
results from multichannel audio signals, which has never before been
addressed. This task requires us to associate both the semantic and
geometric aspects of audio and visual information at the pixel level.
To achieve this goal, we based our approach on a combination of
CNN-based machine learning and handcrafted features extracted by

toy train background

Ground Truth MFCC Only AS Only FC Fusion OursSpec

Fig. 6. Qualitative results with real sound dataset.

using signal processing techniques. Experiments with both synthetic
and real sound datasets proved that our approach could yield reason-
able prediction accuracies. With these results, this paper will pro-
vide an opportunity for the community to consider a novel multiplex
audio-visual processing problem. Conducting evaluations on more
diverse sound source categories in more unstructured setups would
constitute interesting future directions for this research.
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