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Abstract
We have previously proposed a generative model of speech F0

contours, based on the discrete-time version of the Fujisaki
model (a model of the mechanisim for controlling F0s through
laryngeal muscles). One advantage of this model is that it al-
lows us to apply statistical methods to estimate the Fujisaki-
model parameters from speech F0 contours. This paper pro-
poses a new generative model of speech F0 contours incorpo-
rating a vocabulary model of intonation patterns. A parameter
inference algorithm for the present model is derived. We quan-
titatively evaluated the performance of our parameter inference
algorithm.

1. Introduction
All human speech has expression. We recognize it as part of
the humanness of speech, and it is a quality listeners expect to
find in daily human communication. Without expression speech
sounds lifeless and artificial. Our future goal is to quantify the
expression of speech in such a way that we can analyze and
synthesize it based on an engineering approach.

Fundamental frequency (F0) contours in normal speech
convey various types of non-linguistic information such as
speaker’s identity, emotion, attitude and intention. Modeling
the F0 contours of speech utterances can thus be potentially
useful for many speech applications, including emotion recog-
nition, speaker recognition, speech synthesis, and dialogue sys-
tems, where prosodic features play an important role. F0 con-
tours consist of two major components: major-scale pitch vari-
ations over the duration of the prosodic units (called the phrase
component) and smaller-scale pitch variations in accented syl-
lables (called the accent component). This is justified by the
fact that the thyroid cartilage involves two mutually indepen-
dent types of movement with different muscular reaction times.
Specifically, the phrase and accent components respectively
correspond to contributions associated with the translation and
rotation movements of the thyroid cartilage. The Fujisaki model
[1] is a well-founded mathematical model that describes an F0

contour as the sum of these two contributions. This model is
known to approximate actual F0 contours of speech surpris-
ingly well when the model parameters are chosen appropriately,
and its validity has been shown for many, typologically diverse
languages. For this reason, and thanks to the intuitive associa-
tion of the model parameters with the mechanical factors in the
control mechanism of phonation, the Fujisaki model has been
widely used with notable success to design F0 contours for syn-
thesizing natural speech.

Since a prosodic feature in speech is predominantly charac-
terized by the levels and timings of the phrase and accent com-

ponents, one important challenge is to solve an inverse probelm
of estimating the Fujisaki-model parameters automatically from
a raw F0 contour.

However, this problem has been a difficult task. Several
techniques have already been developed [2, 3, 4], but so far
with limited success due to the ill-posedness of the inverse
problem and the analytical complexity of the Fujisaki model.
We have previously derived a stochastic model of speech F0

contours by translating the Fujisaki model into a probabilistic
generative model [5, 6, 7]. This reformulation has success-
fully allowed us to derive an efficient algorithm based on the
expectation-maximization (EM) algorithm for estimating the
Fujisaki-model parameters from a raw F0 contour.

A key idea in our previous model is that the sequence of
the phrase and accent command pair (i.e., the parameters that
we want to estimate) is modeled as a path-restricted hidden
Markov model (HMM) so that estimating the state transition of
the HMM directly amounts to estimating the Fujisaki-model pa-
rameters. Generally speaking, the better top-down knowledge
is incorporated, the better the solution to an inverse problem is
obtained. In speech recognition, for example, designing an ap-
propriate state transition network of an HMM allows us to effec-
tively search for a linguistically likely phoneme sequence that
best explains an observed sequence. With the same strategy, we
would want to design an appropriate state transition network of
our HMM to effectively reduce the solution space of the phrase
and accent command sequences. Here, a question is how to de-
sign a state transition network for our model. In normal speech,
many phrases or sentences share the same intonation pattern.
This is because an intonation pattern is usually determined by
the grammatical structure of an uttered sentence or the accent
type each phrase is associated with. Thus, it may be natural
to hypothesize that phrase and accent command sequences are
governed by a vocabulary model. More specifically, we assume
that we have a dictionary consisting of a finite number of left-
to-right HMM templates and a sequence of the phrase and ac-
cent command pair is generated according to a concatenation
of those templates. In this paper, we formulate a probabilistic
F0 contour model by designing a state transition network of our
HMM based on the above assumption and derive a parameter
optimization algorithm.

2. Probabilistic Pitch Contour Model
2.1. Original Fujisaki Model

The Fujisaki model [1] assumes that an F0 contour on a loga-
rithmic scale, x(t), where t is time, is the superposition of three
components: a phrase component xp(t), an accent component
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Figure 1: Original Fujisaki model [1].

xa(t), and a base component xb:

x(t) =xp(t) + xa(t) + xb. (1)

The phrase component xp(t) consists of the major-scale pitch
variations over the duration of the prosodic units, and the accent
component xa(t) consists of the smaller-scale pitch variations
in accented syllables. These two components are modeled as
the outputs of second-order critically damped filters, one be-
ing excited with a command function up(t) consisting of Dirac
deltas (phrase commands), and the other with ua(t) consisting
of rectangular pulses (accent commands):

xp(t) =Gp(t) ∗ up(t), (2)

Gp(t) =

(

α2te−αt (t ≥ 0)

0 (t < 0)
, (3)

xa(t) =Ga(t) ∗ ua(t), (4)

Ga(t) =

(

β2te−βt (t ≥ 0)

0 (t < 0)
, (5)

where ∗ denotes convolution over time. The baseline compo-
nent xb is a constant value related to the lower bound of the
speaker’s F0, below which no regular vocal fold vibration can
be maintained. α and β are natural angular frequencies of the
two second-order systems, which are known to be almost con-
stant within an utterance as well as across utterances for a par-
ticular speaker. It has been shown that α = 3 rad/s and β = 20
rad/s can be used as default values [1].

2.2. Probabilistic speech F0 contour model

Here, we briefly review our probabilistic pitch contour model
based on the discrete-time version of the Fujisaki model [5, 6,
7].

In the original Fujisaki model, the phrase commands and
accent commands are assumed to consist of Dirac deltas and
rectangular pulses, respectively. In addition, they are not al-
lowed to overlap each other. To incorporate these requirements,
we find it convenient to model the up[k] and ua[k] pair, i.e.,
o[k] = (up[k], ua[k])T, using a hidden Markov model (HMM).
In [5, 6, 7], we have assumed that {o[k]}K

k=1 is a sequence of
outputs generated from an HMM with the specific topology il-
lustrated in Fig. 2. The output distribution of each state is as-
sumed to be a Gaussian distribution

o[k] ∼N (o[k]; csk ,Υsk) , (6)

where sk indicates the state variable. Namely, the mean vector
—[k] = (µp[k], µa[k])T = csk and covariance matrix Σ[k] =
Υsk are considered to evolve in time as a result of the state
transition s1, . . . , sK . The definition of the above HMM can be
summarized as follows:

Figure 2: Previous HMM topology for phrase-accent command se-
quence modeling [5, 6, 7]. In state r0, µp[k] and µa[k] are both con-
strained to be zero. In state p1, µp[k] can take a non-zero value, Ap[k],
whereas µa[k] is still restricted to zero. In state p1, no self-transitions
are allowed. In state r1, µp[k] and µa[k] again become zero. This
path constraint restricts µp[k] to consisting of isolated deltas. State a0

leads to states a1, . . . , aN , in each of which µa[k] can take a different
non-zero value A

(n)
a , whereas µp[k] is forced to be zero. Direct state

transitions from state an to state an′ without passing through state r1
are not allowed. This constraint restricts µa[k] to consisting of rectan-
gular pulses.

Output sequence: {o[k]}K
k=1

State sequence: {sk}K
k=1

Output distribution: P (o[k]|sk) = N (o[k]; csk ,Υsk)
Mean sequence: —[k] = (µp[k], µa[k])T = csk

Transition probability: ϕi′,i = log P (sk = i|sk−1 = i′)

Given the state sequence s = {sk}K
k=1, the above HMM

generates the up[k] and ua[k] pair. From (2) and (4), up[k]
and ua[k] are then fed through different critically damped fil-
ters, Gp[k] and Ga[k], to generate the phrase and accent com-
ponents, xp[k] and xa[k]:

xp[k] = up[k] ∗ Gp[k], (7)
xa[k] = ua[k] ∗ Ga[k], (8)

where ∗ denotes convolution over k. An F0 contour is then
given by

x[k] = xp[k] + xa[k] + xb, (9)

where xb denotes the baseline value.
For real speech F0 contours, we must take account of

the uncertainty in the observed F0 data, since observed data
should not always be considered reliable. For example, ob-
served F0 values in unvoiced regions must not be trusted. To
incorporate the degree of uncertainty of F0 observations, we
consider modeling an observed F0 contour y[k] as a superpo-
sition of the “ideal” F0 contour x[k] and a noise component
xn[k] ∼ N

`

0, υ2
n[k]

´

, where υ2
n[k] represents the degree of

uncertainty of the F0 observation at time k, which is assumed
to be given.

Overall, an observed F0 contour y[k] is described as

y[k] = x[k] + xn[k]. (10)

1018



By marginalizing xn[k] out, we obtain the probability density
function of y = {y[k]}K

k=1, given o = {o[k]}K
k=1, as

P (y|o) =

K
Y

k=1

N (y[k]; x[k], υ2
n[k]),

x[k] = Gp[k] ∗ up[k] + Ga[k] ∗ ua[k] + ub. (11)

Recall from (6) that given a state sequence s =
{sk}K

k=1, o is generated according to P (o|s, „) =
QK

k=1 N (o[k]; csk [k],Υsk) where „ denotes the mean vec-
tors and covariance matrices of the state emission distributions.
P (s) is given by the product of the state transition probabilities:
P (s) = ϕs1

QK
k=2 ϕsk,sk−1 .

3. Proposed model
3.1. Vocabulary model of phrase-accent command se-
quence

A key idea in the above model is that the sequence of the phrase
and accent command pair is modeled as an HMM. In this paper,
we are concerned with designing an HMM topology (a state
transition network). The previous HMM topology shown in 2.2
allows for any state transitions unless they break the Fujisaki
model’s constraint. However, most of the state transitions are
not appropriate in a linguistic sense. If we can effectively con-
strain the solution space of the phrase and accent command se-
quence through an HMM topology design, we may expect to
obtain a better solution to the inverse problem. Here, a question
is how to design a state transition network for our model.

In normal speech, we use many intonation patterns when
we speak. However, the types of intonation patterns are lim-
ited. We use a common intonation pattern to utter a large set of
phrases (or sentences). As for Japanese, phrases or sentences
can be categorized according to accent types. Phrases with the
same accent type show the same pitch pattern. For example,
when we utter the phrases “arayuru genjitsu wo” and “ashita
wa rinko da”, the intonation patterns should be almost the same
since the corresponding accent types are the same. Thus, it may
be natural to hypothesize that all phrase and accent command
sequences are drawn from a vocabulary consisting of relatively
small number of intonation pattern templates. Namely, we as-
sume that we have a dictionary consisting of a finite number of
left-to-right HMM templates and a sequence of the phrase and
accent command pair is generated according to a concatenation
of those templates. This can be modeled by an HMM topology
described in Fig. 3. In order to parameterize the duration of the
self-transition (except for state p1, p2, . . .), as with [6, 7], we
split each state into a certain number of substates such that they
all have exactly the same emission densities. Fig. 4 shows an
example of the splitting of state a1,1.

The proposed method consists of two stages: training and
recognition. In the training stage, the mean vectors of the state
emission distributions and the state transition probabilities are
learned from a training data set. This corresponds to learning
the intonation pattern templates. In the recognition stage, we
search for the optimal state sequence with fixed templates and
state transition probabilities, given a test data. Both stages are
based upon the same optimization algorithm, which will be de-
cribed in the next section. The only difference is that the HMM
parameters (the mean parameters of the state emission distribu-
tions and the state transition probabilities) are fixed during the
recognition stage.

Figure 3: Proposed HMM topology for phrase-accent command
sequence modeling based on the vocabulary model of pitch pat-
tern templates.

Figure 4: The splitting of state a1,1 into 4 substates a1,1,0,
a1,1,1, a1,1,2, and a1,1,3. ϕa1,1,0,a1,1,1 corresponds to the prob-
ability of staying at state a1,1 with 4 consecutive times. states r
are treated similarly with states a.

3.2. Parameter Optimization Algorithm

In this section, we describe an iterative algorithm that searches
for the maximum a posteriori estimates of o and „ by lo-
cally maximizing P (o, „|y) given y using the generalized
Expectation-Maximization (EM) algorithm. We treat s as
a latent variable and consider marginalizing P (o, „, s|y) ∝
P (y|o)P (o|s, „)P (s) with respect to s to obtain the objec-
tive P (o, „|y). The auxiliary function (as known as the “Q-
function”) can be written as

Q(o, „, o′, „′) =
X

s

P (s|y, o′, „′) log P (o, „, s|y)

c
= log P (y|o) +

X

s

P (s|y, o′, „′) log P (o|s, „)P (s),

where c
= denotes equality up to constant terms. An iterative

algorithm that consists of computing P (s|y, o′, „′) (via the
Forward-Backward algorithm), increasing Q(o, „, o′, „′) with
respect to o and „, and then substituting o and „ into o′ and
„′ locally maximizes the posterior P (o, „|y). Here, care must
be taken that increasing Q(o, „, o′, „′) with respect to o must
be performed subject to non-negativity. This can be done by
invoking the idea of [8]. By using the Jensen’s inequality we
obtain an inequality

−
“

X

i∈{p,a,b}

X

l

Gi[k − l]ui[l]
”2

≥ −
X

i∈{p,a,b}

X

l

G2
i [k − l]u2

i [l]

λi,k,l
, (12)
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Table 1: Accuracy rates (S=0.3s). The left, middle, and right
columns show the accuracy rates of the phrase and accent com-
mands, the phrase commands alone, and the accent commands
alone, respectively. The “Init” row shows the accuracy rates
obtained with the θ before the EM iterations (henceforth Naru-
sawa’s method [4]), the “N templates” row shows that of the
estimated command sequence after the EM iterations with the
number N of the templates, and the “Conv.” row shows those
obtained with our previous method [6, 7].

All Phrase commands Accent commands
Init [4] 65.9% 67.4% 65.1%
T = 5 70.2% 70.3% 70.0%
T = 10 70.0% 71.0% 69.5%
T = 15 67.3% 72.5% 64.7%

Conv. [6, 7] 69.3% 63.8% 72.1%

where Gb[k] = δ[k] (Kronecker’s delta), λi,k,l ≥ 0 is an aux-
iliary variable satisfying

P

i

P

l λi,k,l = 1. We can use this in-
equality to construct a lower bound function for Q(o, „, o′, „′).
The maximization of this lower bound function w.r.t. o (subject
to non-negativity) and λ can be achieved analytically, which
guarantees a certain increase of Q(o, „, o′, „′).

After convergence, we search for the optimal state sequence
s by using the Viterbi algorithm.

4. Experimental Evaluation
Accuracy of phrase and accent commands estimation should de-
pend on the size of the vocabulary model (i.e., the number of the
intonation pattern templates). Thus, we evaluated the present
method with different settings of the number of the templates in
terms of estimation accuracy.

In the training stage, For each utterance in the first 50 sen-
tences of ATR speech database [9] spoken by a male speaker
(MHT), F0 contours were extracted using the method described
in [10], from which the model parameters were estimated. The
constant parameters were fixed respectively at t0 = 8 ms,
α = 3.0 rad/s, β = 20.0 rad/s, υ2

n[k] = 1015 for unvoiced
regions and υ2

n[k] = 0.22 for voiced regions. ub was set at
the minimum log F0 value in the voiced regions. Numbers of
substates for states a and a were 250.

In the recognition stage, for each F0 contour extracted in
the same way as training stage from the last 53 sentences in the
ATR speech database, the Fujisaki model parameters were es-
timated from which commands estimation accuracies were cal-
culated. In both stage, the initial values of θ were set at the
values obtained with the method described in [4]. We tested
the present method with different settings of the number of the
templates T : 5, 10, and 15. The number of accent commands in
each template was set at 1 to 3. The numbers of templates with
1, 2, 3 or 4 accent commands were (2, 2, 1, 0), (4, 4, 2, 0) and
(5, 5, 3, 2) for T = 5, 10, 15, respectively.

Evaluation procedure is same as our previous works [6, 7],
where a pair of commands are matched in the dynamic pro-
gramming if the difference between the estimated and ground
truth was shorter than S seconds. The magnitudes of the phrase
and accent commands not taken account because the magnitude
estimation was very sensitive to the baseline F0 value, which
were set differently in the present method and in the manual
annotation.

Tab. 1 shows the result of our quantitative evaluation with
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Figure 5: An example of results from Viterbi decoding in the
recognition stage. Commands sequences are extracted from
japanese utterances “watashi wa sore o ryokan ni motte kaetta”
(above) and “ippyo no kakusa wa sarani hirogaru daro” (be-
low.) In the first command sequence, there are three templates.
First and second templates are the same and are classified as
“template A,” while the third is classified as “template B.” In the
second command sequence, there are two templates and both
are classified as “template B.”

S = 0.3 s. The accuracy rate is slightly improved in T =
5 and 10. This is probably because the present method is a
template-based method which made a best use of information
about the levels and timings of accent commands to accurately
estimate at which position each phrase command should appear.
In T = 15, although the accuracy rate of the phrase commands
was improved, unnecessary templates with 4 accent commands
seemed to make the accuracy of accent commands worse.

5. Discussion
The proposed method is a template-based method, thus it can be
considered that the method classifies commands sequences into
finite kind of templates, as shown in Fig. 5. This side effects
suggests possibility to combine our method with clustering-
based approach, namely speaker recognition [11], voice con-
version [12], or text to speech synthesis [13]. Such classifica-
tion can worsen accuracies of command estimation, however,
as shown in the preceding sections, accuracy rates are at least
equivalent to previous methods.

6. Conclusion
This paper dealt with the problem of estimating the Fujisaki-
model parameters (phrase-accent command sequence) from a
raw F0 contour, and proposed a probabilistic generative model
of speech F0 contours incorporating a vocabulary model of
pitch pattern templates. The present method was evaluated in
terms of phrase and accent commands estimation accuracy with
different settings of the number of the templates. The experi-
mental results revealed that the reduction in the solution space
of the phrase and accent sequence had an effect on improving
the accuracy of command estimation.
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