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ABSTRACT

This paper proposes an extension of multichannel non-negative ma-
trix factorization (MNMF) that simultaneously solves source separa-
tion and dereverberation. While MNMF was originally formulated
under an underdetermined problem setting where sources can out-
number microphones, a determined counterpart of MNMF, which we
call the determined MNMF (DMNMF), has recently been proposed
with notable success. This approach is particularly notable in that
the optimization process can be more than 30 times faster than the
underdetermined version owing to the fact that it involves no matrix
inversion computations. One drawback as regards all methods based
on instantaneous mixture models, including MNMF, is that they are
weak against long reverberation. To overcome this drawback, this
paper proposes an extension of DMNMF using a frequency-domain
convolutive mixture model. The optimization process of the pro-
posed method consists of iteratively updating (i) the spectral param-
eters of each source using the majorization-minimization algorithm,
(ii) the separation matrix using iterative projection, and (iii) the dere-
verberation filters using multichannel linear prediction. Experimen-
tal results showed that the proposed method yielded higher separa-
tion performance and dereverberation performance than the baseline
method under highly reverberant environments.

Index Terms— Blind source separation, blind dereverberation,
non-negative matrix factorization, independent component analysis

1. INTRODUCTION

Blind source separation (BSS) is a technique for separating out indi-
vidual source signals from microphone array inputs when the trans-
fer characteristics between sources and microphones are unknown.
The frequency-domain BSS approach provides the flexibility of al-
lowing us to utilize various models for the time-frequency represen-
tations of source signals and/or array responses. For example, inde-
pendent vector analysis (IVA) [1, 2] allows us to efficiently solve
frequency-wise source separation and permutation alignment in a
joint manner by assuming that the magnitudes of the frequency com-
ponents originating from the same source tend to vary coherently
over time.

With a different approach, multichannel extensions of non-
negative matrix factorization (NMF) have attracted a lot of attention
in recent years [3–8]. NMF was originally applied to monaural
source separation tasks [9,10]. The idea is to approximate the power
(or magnitude) spectrogram of a mixture signal, interpreted as a
non-negative matrix, as the product of two non-negative matrices.
This amounts to assuming that the power spectrum of a mixture sig-
nal observed at each time frame can be approximated by the linear
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sum of a limited number of basis spectra scaled by time-varying
amplitudes. Multichannel NMF (MNMF) is an extension of this
approach to a multichannel case in order to allow for the use of
spatial information as an additional clue for separation. It can also
be viewed as an extension of frequency-domain BSS that allows the
use of spectral templates as a clue for both frequency-wise source
separation and permutation alignment.

The original MNMF [3–5] was formulated under an underdeter-
mined problem setting where sources can outnumber microphones.
A determined version of MNMF (DMNMF) [6–8] specializes in the
overdetermined case and can be implemented without using any ma-
trix inversion, shortening the computation time more than 30 times
than the underdetermined MNMF. In [7, 8], a theoretical relation of
DMNMF to IVA is discussed, which has naturally allowed for the in-
corporation of a fast update rule of the separation matrix developed
for IVA, called the “iterative projection (IP)” [11], into the parame-
ter optimization process of DMNMF. It has been shown that this has
contributed not only to further accelerating the entire optimization
process but also improving the separation performance.

One drawback as regards methods using instantaneous mixture
models is that they are weak against long reverberation. It has been
shown in [6, 12] that source separation of highly reverberant mix-
tures can be solved effectively by using frequency-domain convolu-
tive mixture models and that the parameters of frequency-domain
convolutive mixture models can be efficiently estimated by itera-
tively updating the separation matrix, the dereverberation filters and
the spectral parameters of each source. In this paper, we take this
approach to develop an extension of DMNMF using a frequency-
domain convolutive mixture model, where the optimization process
consists of iteratively updating (i) the NMF parameters using the
majorization-minimization (MM) algorithm, (ii) the separation ma-
trix using iterative projection (IP), and (iii) the dereverberation filters
using multichannel linear prediction.

2. PROBLEM FORMULATION

We start by introducing a frequency-domain convolutive mixture
model employed in [6, 12]. Let us consider a situation in which
signals emanate from M sources and are captured by M micro-
phones. Let xi(f, n) be the short-time Fourier transform (STFT)
of the signal observed at the i-th microphone, where f and n are
the frequency and time indices, respectively. Also let x(f, n) =
[x1(f, n), ..., xM (f, n)]T ∈ C

M be a vector of observed data. We
use sj(f, n) to denote the j-th source conponents and s(f, n) =
[s1(f, n), ..., sM (f, n)]T ∈ C

M to denote a vector of M source
components. Under a determined problem setting, many conven-
tional BSS systems employ frequency-domain instantaneous mix-
ture model:

s(f, n) = W H(f)x(f, n) (1)
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where W H(f) is called the separation matrix. However, in a highly
reverberant condition where the length of the room impulse re-
sponses can be longer than the STFT frame length, the ability of
this model to separate sources will be limited. In this paper, we use
a separation system that has a multichannel finite-impulse-response
form in the time-frequency domain [6, 12] such that:

s(f, n) = W H(f, 0)x(f, n) +
N′∑

n′=1

W H(f, n′)x(f, n− n′),

(2)

where W H(f, n′), 0 ≤ n′ ≤ N ′ are the coefficient matrices of size
M×M , and (·)H stands for Hermitian transpose. When W H(f, 0) is
invertible, (2) can be written equivalently by the following process:

y(f, n) = x(f, n) −
N′∑

n′=1

GH(f, n′)x(f, n− n′), (3)

s(f, n) = W H(f, 0)y(f, n), (4)

where GH(f, n′) := −(W H(f, 0))−1W H(f, n′). Equation (3) can
be seen as a dereverberation process of the observed mixture sig-
nal x(f, n), whereas (4) can be seen as an instantaneous demixing
process of the dereverberated mixture signal y(f, n).

Let us assume that sj(f, n) is a random variable:

sj(f, n) ∼ NC (sj(f, n) | 0, vj(f, n)) (5)

and that sj(f, n) and sj′(f
′, n′) are statistically independent when

(f, n, j) �= (f ′, n′, j′). Here,

NC (sj(f, n) | 0, vj(f, n))∝ 1

vj(f, n)
exp

(
−|sj(f, n)|

2

vj(f, n)

)
(6)

denotes the complex Gaussian distribution. We further assume that
the power spectral density vj(f, n) can be modeled as

vj(f, n) =

K∑
k=1

hj,k(f)uj,k(n), (7)

where hj,k(f) ≥ 0 is the (j, k) element of the basis matrix and
uj,k(n) ≥ 0 is the (j, k) element of the activation matrix for the j-
th source. Multichannel source separation methods using the power
spectrogram model (7) or its variants are called MNMF [3,5–8]. The
negative log-likelihood of the signal yi(f, n) is given by

Q(ΘV ,ΘW ,ΘG) :=− 2N
∑
f

log
∣∣∣detW H(f, 0)

∣∣∣
+
∑
f,n,j

(
log vj(f, n) +

|sj(f, n)|2
vj(f, n)

)
, (8)

where ΘV := {H ,U} with H = {hj,k(f)} and U = {uj,k(n)},
ΘW := {W H(f, 0)}, and ΘG := {GH(f, n′)}.

3. OPTIMIZATION PROCESS

The cost function (8) can be iteratively decreased by using a coordi-
nate descent method in which each iteration comprises the following

three minimization steps:

Θ̂V ← argmin
ΘV

Q(ΘV , Θ̂W , Θ̂G) (9)

Θ̂W← argmin
ΘW

Q(Θ̂V ,ΘW , Θ̂G) (10)

Θ̂G ← argmin
ΘG

Q(Θ̂V , Θ̂W ,ΘG). (11)

In the next subsections, we focus on each step and derive the update
rules.

3.1. Update procedure for Θ̂V

The update rules for Θ̂V can be derived by the MM algorithm. Drop-
ping the constant terms with respect to Θ̂V from (8), we obtain

C1(ΘV ):=
∑
f,n,j

(
log

K∑
k=1

hj,k(f)uj,k(n) +
|sj(f, n)|2∑K

k=1 hj,k(f)uj,k(n)

)
,

(12)

where vj(f, n) in (8) is replaced by (7). To minimize this function,
we can design a majorization function of C1 with a convenient form
[13–15]

C+
1 (ΘV , Θ̄)=

∑
f,n,j

[
1

ξ(f, n)

(
K∑

k=1

hj,k(f)uj,k(n)−ξ(f, n)
)

+ log ξ(f, n) + |sj(f, n)|2
K∑

k=1

λ2
k(f, n)

hj,k(f)uj,k(n)

]
, (13)

where Θ̄ := {ξ,λ}with ξ = {ξ(f, n)} and λ = {λk(f, n)}. It can
be verified that the majorization function C+

1 satisfies the following
properties:

1. C1(ΘV ) ≤ C+
1 (ΘV , Θ̄) (14)

2. C1(ΘV ) = min
Θ̄

C+
1 (ΘV , Θ̄). (15)

Here, (14) holds with equality and, at the same time, the minimum
in (15) is achieved when

ξ(f, n) =
K∑

k′=1

hj,k′(f)uj,k′(n), (16)

λk(f, n) = hj,k(f)uj,k(n)/
K∑

k′=1

hj,k′(f)uj,k′(n). (17)

The function C1 is expected to be minimized indirectly by repeating
the following two steps.

1. Minimize C+
1 with respect to Θ̄ by (16) and (17), which

makes C1(ΘV ) = C+
1 (ΘV , Θ̄).

2. Minimize C+
1 with respect to ΘV .

For the second step, making the partial derivatives of C+
1 with re-

spect to each element of H and U to be zero yields the following
update rules for H and U :

hj,k(f)← hj,k(f)

√√√√∑
j′ |sj′(f, n)|2 uj′,k(n)r

−2
j′ (f, n)∑

j′ uj′,k(n)r
−1
j′ (f, n)

, (18)

uj,k(n)← uj,k(f)

√√√√∑j′ |sj′(f, n)|2 hj′,k(n)r
−2
j′ (f, n)∑

j′ hj′,k(n)r
−1
j′ (f, n)

, (19)

where rj′(f, n) :=
∑K

k′=1 hj′,k′(f)uj′,k′(n).
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3.2. Update procedure for Θ̂W

Dropping the constant terms with respect to Θ̂W from (8), we obtain

C2(ΘW ) := −2N
∑
f

log
∣∣∣detW H(f, 0)

∣∣∣
+N

∑
f,j

wH
j (f)Σy/vj(f)wj(f), (20)

where wj(f) is the j-th column vector of W (f, 0) and Σy/vj(f) =
1
N

∑
n

y(f,n)yH(f,n)
vj(f,n)

, which is assumed positive definite (i.e.,
{y(f, n)}n is a linearly independent set). As noted above, when
the parameters Θ̂V and Θ̂G are fixed, the cost function (8), which
is equal to (20), can be seen as an instantaneous demixing process
of the dereverberated mixture signal y(f, n). To update Θ̂W , sev-
eral determined BSS techniques are available, such as the natural
gradient method [16], FastICA (FICA) [17] and IP [2].

IP [2] is a block coordinate descent algorithm, consisting of se-
quentially optimizing one column vector of W H(f, 0) at a time
while keeping the other column vectors fixed. Differentiating
C2(ΘW ) with respect to the conjugate w∗

j (f) of wj(f), and setting
the result to zero, we have

Σy/vj(f)wj(f) − 2
∂

∂w∗
j (f)

log detW H(f, 0) = 0. (21)

By using the matrix derivatives formula ∂
∂A

det(A)=A−T det(A),
(21) can be rearranged in the following simultaneous vector equa-
tions:

wH
j (f)Σy/vj(f)wj(f) = 1, (22)

wH
j′(f)Σy/vj(f)wj(f) = 0 for j′ �= j, (23)

A solution to (22) and (23) can be found by performing the fol-
lowing updates

wj(f)← (W H(f, 0)Σy/vj(f))
−1ej , (24)

wj(f)← wj(f)√
wH

j (f)Σy/vj(f)wj(f)
, (25)

for all f and j. Here, ej denotes the j-th column of the M × M
identity matrix I .

3.3. Update procedure for Θ̂G

Dropping the constant terms with respect to Θ̂G from (8), we obtain

C3(ΘG):=
∑
f,n

∥∥∥∥∥∥x(f, n)−
N′∑

n′=1

GH(f, n′)x(f, n− n′)

∥∥∥∥∥∥
2

Σw/v(f,n)

,

(26)

where ‖x‖Σw/v(f,n)
:=

√
xHΣw/v(f,n)x with Σw/v(f,n) =∑

j
w(f)wH(f)

vj (f,n)
which is assumed positive definite, and O denotes

the zero matrix. It is clear that, for each f , all elements of the
matrices {G(f, n′)} minimizing (26) are mutually dependent. To
update G(f, n′) for each f independently, we vectorize {G(f, n′)}
as follows:

g(f) := vec({G(f, n′)})
:= [gT

1 (f, 1), ..., g
T
M (f, 1), gT

1 (f, 2), ..., g
T
M (f, 2), ...,

gT
M (f,N ′ − 1), gT

1 (f,N
′), ..., gT

M (f,N ′)]T ∈ C
M2N′

,
(27)

Table 1. Input average SIRs and DRRs (dB)
Male + Male Male + Female Female + Female

SIR 0.2190 0.1160 0.0738
DRR 2.9172 2.2031 4.4501

Table 2. Average computational time (sec.)
Proposed (IP) 371.1974

Proposed (FICA) 396.7370
Baseline [7, 8] 303.5906

Sequential 321.8167

where gm(f, n′) is the m-th column of G(f, n′). By using g(f),
we can rewrite the term

∑N′
n′=1 G

H(f, n′)x(f, n− n′) in (26) as

N′∑
n′=1

GH(f, n′)x(f, n− n′) = X(f, n)g∗(f), (28)

where

X(f, n) = [I ⊗ xT(f, n− 1) I ⊗ xT(f, n− 2) (29)

· · · I ⊗ xT(f, n−N ′)] ∈ C
M×M2N′

.

Here, ⊗ stands for Kronecker product. Substituting (28) into (26),
the cost function is rewritten as

C3(ΘG) =
∑
f,n

(x(f, n)−X(f, n)g∗(f))H

×Σw/v(f,n) (x(f, n)−X(f, n)g∗(f)) . (30)

Our objective in this part is now to minimize this function with re-
spect to g∗(f).

Equation (30) is readily solved because the cost function is
quadratic with respect to g∗(f). We calculate the partial derivatives
of C3(ΘG) to be zero, the update rule for g∗(f) is obtained as

g∗(f)←
(∑

n

XH(f, n)Σw/v(f,n)X(f, n)

)−1

×
(∑

n

XH(f, n)Σw/v(f,n)x(f, n)

)
, (31)

for all f .

3.4. Summary of optimization process

Overall, the proposed algorithm is summarized as follows.

1. Initialize H,U , W H(f, 0) and GH(f, n′).
2. Update H,U using (18), (19) for all f, n, j.
3. Update W H(f, 0) using (24), (25) for all f, j.
4. Update GH(f, n′) using (31) for all f .

Repeat 2–4 until convergence.

4. EXPERIMENTAL RESULTS

We evaluate the effect of the convolutive model under highly rever-
berant environments and the difference between computational time
by separating matrix update method. We quantitatively compared
the source separation performance of the proposed approach using IP
and FICA, conventional DMNMF and sequential method (Sequen-
tial). All of the examples use the same two-input four-output im-
pulse response, which was measured in an anechoic chamber where
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Fig. 2. Average DRR for each gender pair.

the reverberation time was 0.6 sec. With this impulse response, we
mixed two speech signals into four mixtures. The two speech signals
of male or female speakers, taken from the ATR speech database,
were sampled at 16 kHz and band limited to the 50 Hz to 7 kHz fre-
quency range. We generate 10 speech combinations for each gender
pair, male+male, male+female and female+female. The average in-
put Signal-to-Interference ratios (SIRs) and Direct-to-Reverberation
ratios (DRRs) are shown in Table 1. Time-frequency representa-
tions were obtained using the polyphase filterbank analysis with a
frame length of 32 ms and a hop size of 8 ms. For the DMNMF, we
performed time-frequency analysis with a frame length of 256 ms
and a hop size of 64 ms. The filter length N ′ was set as follows:
N ′ = 25 for Pf < 0.8; N ′ = 20 for 0.8 ≤ Pf < 1.5; N ′ = 15 for
1.5 ≤ Pf < 3; N ′ = 10 for Pf ≥ 3; ,where Pf is the frequency in
kHz of the f -th frequency bin. The NMF basis number K was set at
20. The iterative algorithm was run for 20 iterations. For each step
of update the separation matrix W H(f, 0), the FICA algorithm was
run for 100 iterations.

Table 2 shows IP is faster then FICA algorithm, where Baseline
refer to conventional DMNMF [7, 8]. The “Sequential” is a method
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that performs dereverberation and DMNMF sequentially. Figs. 1
and 2 show average output SIRs and DRRs and the 95% confidence
interval for each gender pair. One factor of the performance differ-
ence is that the filter length N ′ was fixed as described above in all
cases. Figs. 3 and 4 show average output SIRs and DRRs for each
frequency. Fig. 3 shows that the proposed approach attains higher
SIR for all frequencies. Referring to Fig. 4, the proposed approach
attains significantly higher DRRs than the baseline method over the
wide range below 3 kHz, although its DRRs are lower (significantly
only for frequency between 6.2 – 6.7 kHz) above 3 kHz. Overall,
these results show that the proposed approaches perform better than
the conventional DMNMF and sequential methods.

5. CONCLUSION

One drawback as regards all methods based on instantaneous mix-
ture models, including MNMF, is that they are weak against long
reverberation. To overcome this drawback, this paper proposed an
extension of DMNMF using a frequency-domain convolutive mix-
ture model, which allows us to solve source separation and derever-
beration sumultaneously. The optimization process of the proposed
method consists of iteratively updating (i) the spectral parameters of
each source using the majorization-minimization algorithm, (ii) the
separation matrix using IP, and (iii) the dereverberation filters using
multichannel linear prediction. Experimental results showed that the
proposed method yielded higher separation performance and dere-
verberation performance than the baseline method under highly re-
verberant environments.
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