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Abstract

We deal through this paper with the problem of estimating “information” of each sound

source separately from an acoustic signal of compound sound. Here “information” is used in

a wide sense to include not only the waveform itself of the separate source signal but also the

power spectrum, fundamental frequency (F0), spectral envelope and other features. Such a

technique could be potentially useful for a wide range of applications such as robot auditory

sensor, robust speech recognition, automatic transcription of music, waveform encoding for

the audio CODEC (compression-decompression) system, a new equalizer system enabling

bass and treble controls for separate source, and indexing of music for music retrieval system.

Generally speaking, if the compound signal were separated, then it would be a simple

matter to obtain an F0 estimate from each stream using a single voice F0 estimation method

and, on the other hand, if the F0s were known in advance, could be very useful information

available for separation algorithms. Therefore, source separation and F0 estimation are

essentially a “chicken-and-egg problem”, and it is thus perhaps better if one could formulate

these two tasks as a joint optimization problem. In Chapter 2, we introduce a method called

“Harmonic Clustering”, which searches for the optimal spectral masking function and the

optimal F0 estimate for each source by performing the source separation step and the F0

estimation step iteratively.

In Chapter 3, we establish a generalized principle of Harmonic Clustering by showing that

Harmonic Clustering can be understood as the minimization of the distortion between the

power spectrum of the mixed sound and a mixture of spectral cluster models. Based on this

fact, it becomes clear that this problem amounts to a maximum likelihood problem with

the continuous Poisson distribution as the likelihood function. This Bayesian reformulation

enables us not only to impose empirical constraints, which are usually necessary for any

underdetermined problems, to the parameters by introducing prior probabilities but also

to derive a model selection criterion, that leads to estimating the number of sources. We

confirmed through the experiments the effectiveness of the two techniques introduced in this

chapter: multiple F0 estimation and source number estimation.
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Human listeners are able to concentrate on listening to a target sound without difficulty

even in the situation where many speakers are talking at the same time or many instruments

are played together. Recent efforts are being directed toward the attempt to implement this

ability by human called the “auditory stream segregation”. Such an approach is referred to as

the “Computational Auditory Scene Analysis (CASA)”. In Chapter 4, we aim at developing

a computational algorithm enabling the decomposition of the time-frequency components

of the signal of interest into distinct clusters such that each of them is associated with a

single auditory stream. To do so, we directly model a spectro-temporal model whose shape

can be taken freely within the constraint called “Bregman’s grouping cues”, and then try

to fit the mixture of this model to the observed spectrogram as well as possible. We call

this approach “Harmonic-Temporal Clustering”. While most of the conventional methods

usually perform separately the extraction of the instantaneous features at each discrete time

point and the estimation of the whole tracks of these features, the method described in

this chapter performs these procedures simultaneously. We confirmed the advantage of the

proposed method over conventional methods through experimental evaluations.

Although many efforts have been devoted to both F0 estimation and spectral envelope

estimation intensively in the speech processing area, the problem of determining F0 and

spectral envelope seems to have been tackled independently. If the F0 were known in advance,

then the spectral envelope could be estimated very reliably. On the other hand, if the

spectral envelope were known in advance, then we could easily correct subharmonic errors.

F0 estimation and spectral envelope estimation, having such a chicken and egg relationship,

should thus be done jointly rather than independently with successive procedures. From this

standpoint, we will propose a new speech analyzer that jointly estimates pitch and spectral

envelope using a parametric speech source-filter model. We found through the experiments

a significant advantage of jointly estimating F0 and spectral envelope in both F0 estimation

and spectral envelope estimation.

The approaches of the preceding chapters are based on the approximate assumption of

additivity of the power spectra (neglecting the terms corresponding to interferences between

frequency components), but it becomes usually difficult to infer F0s when two voices are

mixed with close F0s as far as we are only looking at the power spectrum. In this case not

only the harmonic structure but also the phase difference of each signal becomes an important

cue for separation. Moreover, having in mind future source separation methods designed for

multi-channel signals of multiple sensory input, analysis methods in the complex spectrum
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domain including the phase estimation are indispensable. Taking into account the significant

effectiveness and the advantage of the approach described in the preceding chapters, we

have been motivated to extend it to a complex-spectrum-domain approach without losing

its essential characteristics. The main topic of Chapter 6 is the development of a nonlinear

optimization algorithm to obtain the maximum likelihood parameter of the superimposed

periodic signal model: focusing on the fact that the difficulty of the single tone frequency

estimation or the fundamental frequency estimation, which are at the core of the parameter

estimation problem for the sinusoidal signal model, comes essentially from the nonlinearity

of the model in the frequency parameter, we introduce a new iterative estimation algorithm

using a principle called the “auxiliary function method”. This idea was inspired by the

principle of the EM algorithm. Through simulations, we confirmed that the advantage of

the proposed method over the existing gradient descent-based method in the ability to avoid

local solutions and the convergence speed. We also confirmed the basic performance of our

method through 1ch speech separation experiments on real speech signal.
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Abstract in Japanese

本研究は、様々な音が混在する中で目的音の情報（基本周波数やスペクトル包絡など）を

分離推定する多重音解析技術を提案するものである。多重音解析技術は実用性が高く、ロボッ

ト聴覚、知能的音響センサ、音声認識、音源分離、自動採譜、オーディオコーデックの効率

的な符号化機能、楽音ごとにイコライズできる高自由度イコライザ、音楽コンテンツの自動

メタデータ化とそれによる多種機能つき音楽検索システムなど、実に広範囲にわたるアプリ

ケーションへの応用が期待される。

多重音中の各音源の基本周波数は、各音源のスペクトルが既知であれば、高い精度で推定

できる。一方で、多重音スペクトルは、各音源の基本周波数が既知であれば高い精度で分離

できうる。このことから分かるように、多重音スペクトル分離と基本周波数推定の問題はい

わゆる「鶏と卵の関係」にある。従って、多重音スペクトルを音源ごとに分解することと各

音源の基本周波数は同時最適化問題として解かれるべきであると我々は考えた。そこで、第

2章では、音源分離と基本周波数推定を同時最適化問題として定式化し、対象とする混合音

のパワースペクトルを音源ごとに対応するようにクラスタ化する分配関数 (バイナリマスク)

と、各音源の基本周波数を最適推定する原理を提案する。この最適解探索は音源分離ステッ

プと基本周波数ステップの反復計算により行うことができ、この方法を調波構造化クラスタ

リングと呼ぶ。

第 3章では、調波構造化クラスタリングの原理を一般化したのちに、これをベイズ的枠組

で別解釈および再定式化を行う。その結果から、調波構造化クラスタリングはパラメトリッ

クな調波構造モデルの重ね合わせによる観測スペクトルの最適フィッティングであるという

解釈ができること、この解釈に基づきさらにはモデル構造選択規準により音源数を推定する

ための規準が作れることが示される。評価実験により、本章で提案した 2 つの要素技術であ

る、調波構造化クラスタリングによる多重ピッチ推定法と音源数自動決定法の有効性がいず

れも示された。

人間の聴覚機能を計算機で実現しようという試みが活発に進められており、その枠組を総

称して計算論的聴覚情景分析 (Computational Auditory Scene Analysis: CASA)と呼ぶ。近

年この研究分野における興味の対象は、Bregmanが指摘した音脈 (人間がひとまとまりと知

覚する音の流れ)が形成されるための条件 (分凝要件)に基づく混合音分離法の実現にある。
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第 4章では、入力された音響信号の時間周波数成分を音脈に対応する時間周波数成分に分解

する問題を定式化する。第 4章で提案する調波時間構造化クラスタリングのアイディアの要

点は、Bregmanの分凝要件から逸脱しない範囲の自由度をもった時変スペクトルを直接的に

モデル化し、これを混合したもので対象の時変スペクトルを説明しようとすることである。

各時刻で独立に調波成分を見つけ出すための処理 (周波数方向の群化)と、抽出された調波成

分特徴量の時系列を時間方向にスムージングする処理 (時間方向の群化) を多段処理的に行

う多くの従来法に対し、調波時間構造化クラスタリングは、これらを協調し合う同時最適化

問題として定式化したものに相当し、個々の音源の時間周波数全域に渡ったパワースペクト

ル構造を一挙に推定できる新しい方法論である。評価実験により、混合音声信号および音楽

音響信号の基本周波数推定精度が、それぞれの分野における最先端の従来法を上回ることを

確認した。

第 5章では、従来まで独立な問題として扱われがちであったスペクトル包絡推定と基本周

波数推定は本来相補関係にあるべきとの問題意識のもと、これらを同時最適化問題として定

式化し、個々の音源のスペクトル包絡推定も同時に行える多重音解析法への応用可能性を示

した。また、単一話者音声を対象としたピッチ推定、合成分析、分析合成に関する各評価実

験を通して、提案法のようにピッチ周波数とスペクトル包絡を同時推定することがいずれの

推定の精度に対しても良い効果をもたらしたことを確認した。

第 5章までの手法は、パワースペクトルの加法性が近似的に成り立つ (周波数成分間の干

渉項を無視できる)という仮定のもとで、観測パワースペクトルから所望の情報を得るため

のアプローチであった。しかし、2音以上の近接する基本周波数の分離推定や、近接周波数

成分の分離を高精度に行うためには、調波構造だけでなく各信号の位相差が分離の手がかり

になる。さらに、将来的に複数センサ入力の多チャンネル信号を対象とした音源分離手法を

視野に入れるのであれば、位相推定を含んだ複素スペクトル領域での解析が不可欠である。

第 5章までの方法論の有効性と上記のような展望を踏まえ、第 6章では、第 3章のアプロー

チをその本質を損なうことなく複素スペクトル領域に拡張できないかということがテーマで

あり、中心的な議論の対象は、周期信号重畳モデルの最尤パラメータを求めるための非線形

最適化アルゴリズムを開発することである。そこで、正弦波重畳モデルのパラメータ推定問

題の核である周波数推定ないし基本周波数推定の難しさの本質が、正弦波重畳モデルが周波

数パラメータに関して非線形である点にあることに着目し、補助関数を用いた新しい反復推

定アルゴリズムを導く。この考え方は、EMアルゴリズムのヒントにして着想したものであ

る。シミュレーション実験により、第 6章で提案するパラメータ最適化アルゴリズムは勾配

法を用いる多数の従来法よりも局所解回避能力と収束速度の面で優れていることを示した。

また、実音声を用いた 1チャネル混合音声分離実験を行い、提案法の基本性能を確認した。
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Chapter 1

Introduction

1.1 Background

We deal through this paper with the problem of estimating “information” of each sound

source separately from an acoustic signal of concurrent sound sources. The acoustic signal

can be the compound sound of several people speaking at the same time, or several musical

instruments playing together. Here “information” is used in a wide sense to include not only

the waveform itself of the separate source signal but also the power spectrum, fundamental

frequency (F0), spectral envelope and other features. Such a technique could be poten-

tially useful for a wide range of applications such as robot auditory sensor, robust speech

recognition, automatic transcription of music, waveform encoding for the audio CODEC

(compression-decompression) system, a new equalizer system enabling bass and treble con-

trols for separate source, and indexing of music for music retrieval system. The problem,

however, is not so simple to solve. We will henceforth call this kind of problem “multisource

analysis”. Multisource analysis can be categorized in several types of problem setting de-

pending on the situation one assumes. A situation where there are more sensors than source

signals, for instance, is referred to as the overdetermined case, in which the source separa-

tion can be performed satisfactorily especially in clean environment by using the well-known

“Independent Component Analysis” (see, for example, [46, 47]). A situation where there are

less sensors than source signals, on the other hand, is referred to as the underdetermined

case. In such a situation, one requires some empirical assumption in addition to the statis-

tical independence of sources. One of the most well-known such assumptions is called the

“time-frequency sparseness of speech”, which assumes that time-frequency components of

sources rarely overlap with each other. This assumption is experimentally supported by the

1



2 Chapter 1 Introduction

methods that use a binary mask to extract only the time-frequency components which seems

to have propagated from the same spatial direction (or position) [117, 91, 92, 8].

On the contrary, the particular problem of interest in this paper is a multisource analysis

where one only has a single sensory input and does not know how many sources in the

compound acoustic signal. We will be confronted with such a situation, for example, when

we need to detect musical note from monaural CD recordings, or when several different

source signals originate from very close position even if we had multiple sensors. The greatest

difference from the multisensor case is thus that it is impossible to obtain spatial data of

sources.

1.2 Source Separation and F0 Estimation

The auditory system is able to extract the period despite very different waveforms or

spectra of sounds at the ears. Explanations of how this is done have been elaborated since

antiquity [27]. Even with a monaural recording, a musically inclined listener can often follow

and concentrate on the particular melodic line of each instrument in a polyphonic ensemble.

This implies that human can hear several pitches from a single compound waveform. As

psychophysical data on this capability are said to be fragmentary (see, for example, [12,

13, 51]), the limits of this capability, and the parameters that determine them, are not well

known. This “proof of feasibility” has nevertheless encouraged the search for algorithms

for multisource analysis. The task of multisource analysis in essence involves two tasks:

source separation and F0 estimation. If the compound signal representing the mixture were

separated into single source signals, then it would be a simple matter to derive an F0 estimate

from each stream using a single voice F0 estimation algorithm (comprehensive reviews for

single voice F0 estimation methods can be seen in [49, 50]). On the other hand the F0s, if

known in advance, could be very useful information available for separation algorithms. This

leads to a “chicken and egg” situation: estimation and segregation are each a prerequisite of

the other, the difficulty being to “bootstrap” this process.

Conventional techniques for multisource analysis are usually designed to cope with either

of the two tasks, F0 (multipitch) estimation and source separation. Many publications on

methods corresponding to the former type have been proposed [111, 101, 59, 105, 38, 79, 60,

61, 116, 45, 10, 32, 43, 66, 67, 69, 102, 88, 89, 112, 107, 108, 75, 23, 24, 26, 72, 113, 114, 115,

22, 57], which can be found in de Cheveigné’s excellent review paper [28].



Chapter 1 Introduction 3

A learning-based method such like sparse coding [110], non-negative sparse coding [109,

2, 97], and non-negative matrix factorization [94] models the signal or power spectrum as

a weighted sum of basis functions and tries to estimate them such that each of them is a

waveform structure or a power spectrum structure that seems to recur many times in the

whole acoustic signals or spectrogram. This approach enables source separation without

estimating F0s and thus corresponds to the latter type.

However, since source separation and F0 estimation, as is mentioned beforehand, are in

essence a “chicken and egg” problem, it is perhaps better if one could formulate these two

tasks as a joint optimization problem. In Chapter 2, a new principle called “Harmonic

Clustering” is introduced, which iteratively performs two steps: source separation and F0

estimation, in which the common objective function is decreased/increased monotonically

at each iteration step. This is reformulated in Chapter 3 in a Bayesian framework, which

enables further extensions.

1.3 Estimating the Number of Sources

Up to now, no concern was given to finding the number of sources present within a mixture.

This is a difficult aspect of multisource analysis. Many studies ignore it and concentrate on

the simpler task of producing some fixed number of estimates, regardless of the number of

sources.

Some signals are inherently ambiguous, and may be interpreted either as a single voice

with low F0, or as the sum of several voices with higher, harmonically-related F0s. Tuned to

find as many voices as possible (or to favor the shortest possible periods) an algorithm may

“dismember” a voice into subsets of partials, tuned to find as few as possible (or the longest

possible periods) it may coalesce multiple voices. The voice count is accordingly over- or

underestimated.

Iterative estimation methods typically apply a model at each iteration, and assign as much

signal power to a voice as fits this model. Iteration continues on the remainder, and stops

when the spectrum (or waveform) has been depleted of power. In the presence of noise, it

may be difficult to distinguish between residual noise and yet another source.

In the method of [26], cancellation filters are applied successively to remove each periodic

voice. The algorithm stops when application of a new filter reduces power by less than a

criterion ratio. Klapuri evaluates the “global weight” of the F0 candidate derived from the
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residual after a voice has been suppressed, and stops the search if that weight falls below

threshold [67]. In nonnegative deconvolution [90, 95], the number of sources is given by the

number of elements of deconvolved matrix with amplitudes greater than some threshold. Wu

and colleagues [113, 114, 115] use an HMM to model transitions between states of 0, 1 or 2

voices.

The Bayesian formulation of the Harmonic Clustering enables us further to derive a the-

oretical framework for estimating the number of sources.

1.4 Temporal and Spectral Continuity

In general, there are two situations in which the multisource analysis becomes extremely

difficult to solve: One is when the F0s of two or more sources coincide at a particular instant

of time, and the other is when the partials of one source overlap with those of other sources.

Are there any ways to make a reasonable guess for restoring the partial amplitudes of the

underlying sources in such situations? A hint for this apparently unsolvable question is the

temporal and spectral continuity of source signals.

A common assumption is that voices should change gradually over time. Continuity of

F0 contours is often exploited in so-called “post-processing” algorithms [49] such as median-

smoothing, dynamic programming, Kalman filtering [76, 106, 4], hidden Markov models

[113, 114, 115], or multiple agents [75, 45] in order to improve the F0 estimation results

obtained via some frame-by-frame F0 estimation algorithm. In addition to continuity of F0

tracks, the assumption that partial amplitudes vary smoothly can be used to track voices

over instants when F0s cross. A challenge to the multisource analysis using the continuity-

constraints of F0 and amplitude tracks is called the “Computational Auditory Scene Analysis

(CASA)”, which will be mentioned more in details in Chapter 4.

An assumption that has been used recently is spectral smoothness, that is, limited variation

of partial amplitudes across frequency axis [67, 116, 108, 10, 21, 69]. Speech and many

musical instruments usually have smooth spectral envelopes. Irregularity of the compound

spectrum then signals the presence of multiple voices, and smoothness allows the contribution

of a voice to shared partials to be discounted. For example if two voices are at an octave

from each other, partials of even rank are the superposition of both voices. Based on spectral

smoothness, the contribution of the voice of the lower F0 can be inferred from the amplitude

of partials of odd rank, and can then be subtracted to reveal the presence of the voice of the
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higher F0. Spectral smoothness has also been used to reduce subharmonic errors [10, 67].

If the F0s of all the sources within a mixture were known in advance, then the spectral

envelope could be inferred very reliably using the spectral smoothness constraint. On the

other hand, if the spectral envelope were known in advance, then we could easily correct

subharmonic errors as noted above. Here we find another “chicken and egg” situation,

which motivates us to formulate a joint estimation method of F0 and spectral envelope with

the spectral smoothness constraint. This will be discussed in Chapter 5.

1.5 Objective of the Thesis

The objective of this paper is to propose a unified methodological framework, in which one

can handle (1) source separation, (2) multipitch estimation, (3) estimation of the number of

sources, (4) estimation of the continuous temporal trajectories of F0s and amplitudes, and

(5) spectral envelope estimation, at the same time.
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Harmonic Clustering

2.1 Introduction

The auditory system is able to extract the period despite very different waveforms or

spectra of sounds at the ears. Explanations of how this is done have been elaborated since

antiquity [27]. Even with a monaural recording, a musically inclined listener can often

follow and concentrate on the particular melodic line of each instrument in a polyphonic

ensemble. This implies that several pitches may be heard from a single compound waveform.

As psychophysical data on this capability are said to be fragmentary (see, for example,

[12, 13, 51]), the limits of this capability, and the parameters that determine them, are not

well known. This “proof of feasibility” has nevertheless encouraged the search for algorithms

for multisource analysis. The task of multisource analysis in essence involves two tasks:

source separation and F0 estimation. If the compound signal representing the mixture were

separated into single source signals, then it would be a simple matter to derive an F0 estimate

from each stream using a single voice F0 estimation algorithm (comprehensive reviews for

single voice F0 estimation methods can be seen in [49, 50]). On the other hand the F0s, if

known in advance, could feed some of the separation algorithms. This leads to a “chicken

and egg” situation: estimation and segregation are each a prerequisite of the other, the

difficulty being to “bootstrap” this process.

Conventional techniques for multisource analysis are usually designed to cope with either

of the two tasks, F0 (multipitch) estimation and source separation. Many publications on

methods corresponding to the former type can be found in de Cheveigné’s excellent review

paper [28]. A learning-based method such like sparse coding [110], non-negative sparse coding

[109, 2, 97], and non-negative matrix factorization [94] models the signal or power spectrum

6
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as a weighted sum of basis functions and tries to estimate them such that each of them

is a waveform structure or a power spectrum structure that seems to recur many times in

the whole acoustic signals or spectrogram. This approach enables source separation without

estimating F0s and thus corresponds to the latter type.

However, since source separation and F0 estimation, as mentioned beforehand, are in

essence a “chicken and egg” problem, it is perhaps better if one could formulate these two

tasks as a joint optimization problem. In this chapter, we propose a new principle called

“Harmonic Clustering”, which iteratively performs two steps: source separation and F0

estimation, in which the common objective function is decreased/increased monotonically at

each iteration step.

2.2 Principle

2.2.1 Binary Masking of Power Spectrum Based on Sparseness

Let us assume here for simplicity that frequency components of a source signal are sparsely

distributed so that components rarely overlap with each other. More specifically, it is as-

sumed here that a frequency component at some frequency-bin originates completely from

only a single source (see, for example, [117, 91, 92, 8] for the justification for this assump-

tion). Similarly to the Yilmaz’s method, we shall consider to estimate an ideal binary mask

that extracts only the components that seem to originate from the same source. What differs

from Yilmaz’s is that we are dealing with an single sensory input and a guide to estimate

the ideal binary mask is the harmonic structure, that depends on F0 of speech.

First we will consider the single-tone case and introduce a very simple yet intuitive idea to

estimate the frequency from power spectrum in the next subsection. This idea is extended

to the single-voice case in Subsection 2.2.3 and is generalized to the multisource case in

Subsection 2.2.4.

2.2.2 Single-Tone Frequency Estimation

According to the Rife’s paper [83], the peak frequency of the power spectrum of a single

tone is said to be the unbiased maximum likelihood estimator, when noise is assumed to

be a Gaussian white noise. Using this result, we introduce a simple yet intuitive objective
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Figure 2.1 The objective function (Eq. (2.1)) is minimized when

µ coincides to the peak frequency of ‖Y (ω)‖2

function to obtain the frequency estimate. This concept will be applied also in the following

extended versions.

Let ‖Y (ω)‖2 be the observed short-time power spectrum of a single tone signal (complex

sinusoid). The shape of this distribution depends on the shape of the window function we

choose to use. Assuming the particular case where the peak and the mean frequencies of

this distribution coincide (where the distribution is symmetric about the peak), then one

can obtain the frequency estimate by finding µ that minimizes

∫ ∞

−∞

(
ω − µ

)2∥∥Y (ω)
∥∥2

dω. (2.1)

Consequently, the frequency estimate is derived as the mean of the distribution:

µ =

∫ ∞

−∞
ω
∥∥Y (ω)

∥∥2
dω

∫ ∞

−∞

∥∥Y (ω)
∥∥2

dω

. (2.2)

2.2.3 Single-Voice F0 Estimation and Overtone Separation

If one thinks of applying the above method to the single voice case, one may want to

separate overtones as if one is dealing with the single tone case problems separately. For this
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Figure 2.2 The objective function (Eq. (2.12)) can be monotonically decreased by

iteratively updating Cn and µ while keeping the other fixed.

purpose, we introduce a binary mask function defined by

1Cn(ω) =





1, ω ∈ Cn

0, ω /∈ Cn

, (2.3)

where Cn is the set of the frequencies dominated by the nth overtone, which satisfies, for any

i and j such that i 6= j,

Ci

⋂
Cj = ∅. (2.4)

If we decide not to discard any of the power spectrum portions, then

N⋃

n=1

Cn = R(−∞,∞), (2.5)

and thus for all ω ∈ R,
N∑

n=1

1Cn(ω) = 1, (2.6)

because it is proved by the formula:

1SI
i=1 Ci

(ω) =
I∑

i=1

1Ci
(ω) −

∑

i,j:i<j

1Ci
T

Cj
(ω) +

∑

i,j,k:i<j<k

1Ci
T

Cj
T

Ck
(ω) − · · · . (2.7)

Using such a masking function, one is able to describe a masked power spectrum portion by

1Cn(ω)
∥∥Y (ω)

∥∥2
, (2.8)
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that correspond to the nth overtone. Therefore, we can apply the same method described in

Subsection 2.2.2 and ∫ ∞

−∞

(
ω − µn

)2
1Cn(ω)

∥∥Y (ω)
∥∥2

dω (2.9)

corresponds to the cost function for the frequency estimate of the nth overtone. As we want

to make the cost function as small as possible not only for the nth overtone but for all the

components at the same time, we should write as follows the objective function in the single

voice case:
N∑

n=1

∫ ∞

−∞

(
ω − µn

)2
1Cn(ω)

∥∥Y (ω)
∥∥2

dω. (2.10)

If we further assume that the overtone frequencies are integer multiplies of the fundamental

frequency µ such that

µn = nµ, (2.11)

then the objective function can be written further as

N∑

n=1

∫ ∞

−∞

(
ω − nµ

)2
1Cn(ω)

∥∥Y (ω)
∥∥2

dω. (2.12)

This objective function can be monotonically decreased by iteratively updating Cn and µ

while keeping the other fixed. In each iteration, Cn and µ should be updated to

Cn =
{

ω : n = argmin
n′

(ω − n′µ)2
}

, (2.13)

µ =

N∑

n=1

n

∫ ∞

−∞
ω 1Cn(ω)

∥∥Y (ω)
∥∥2

dω

N∑

n=1

n2

∫ ∞

−∞
1Cn(ω)

∥∥Y (ω)
∥∥2

dω

. (2.14)

The update of Cn separates the observed power spectrum ‖Y (ω)‖2 into clusters correspond-

ing to the overtones using the F0 estimated hypothetically at the previous step and the

update of µ reestimates F0 using these spectral clusters.

2.2.4 Multipitch Estimation and Source Separation

The method derived above is easily extendable to the multisource case. Let the binary

mask function, used to extract the nth partial component of the kth source, be defined by

1Ck,n
(ω) =





1, ω ∈ Ck,n

0, ω /∈ Ck,n

, (2.15)
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where Ck,n is the set of the frequencies dominated by the nth overtone of the kth source. It

is assumed here again that
K∑

k=1

N∑

n=1

1Ck,n
(ω) = 1. (2.16)

Using such a masking function, one is able to describe a masked power spectrum portion by

1Ck,n
(ω)

∥∥Y (ω)
∥∥2

, (2.17)

that correspond to the nth overtone of the kth source. Therefore, if we denote by µk the F0

estimate of the kth source, then
∫ ∞

−∞

(
ω − nµk

)2
1Ck,n

(ω)
∥∥Y (ω)

∥∥2
dω (2.18)

corresponds to the cost function for the frequency estimate of the nth overtone of the kth

source. As we want to make the cost function as small as possible not only for this component

but for all the components at the same time, we should write as follows the objective function:

K∑

k=1

N∑

n=1

∫ ∞

−∞

(
ω − nµk

)2
1Ck,n

(ω)
∥∥Y (ω)

∥∥2
dω. (2.19)

This objective function can be monotonically decreased in a similar way by iteratively up-

dating Ck,n and µk while keeping the other fixed. In each iteration, Ck,n and µk should be

updated to

Ck,n =
{

ω : (k, n) = argmin
k′,n′

(ω − n′µk′)2
}

, (2.20)

µk =

N∑

n=1

n

∫ ∞

−∞
ω 1Ck,n

(ω)
∥∥Y (ω)

∥∥2
dω

N∑

n=1

n2

∫ ∞

−∞
1Ck,n

(ω)
∥∥Y (ω)

∥∥2
dω

. (2.21)

The update of Ck,n separates the observed power spectrum ‖Y (ω)‖2 into clusters each of

which corresponds to an overtone of one particular source using the F0s estimated hypo-

thetically at the previous step and the update of µks reestimates F0s using these spectral

clusters.

This iterative algorithm therefore consists of the source separation step and the multipitch

estimation step, leading us to solve a joint optimization problem of source separation and

multipitch estimation. We call this method “Harmonic Clustering”. We reformulate this

idea in Chapter 3 and try to explain it from the Bayesian point of view, which enables

various extensions.
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Bayesian Harmonic Clustering

3.1 Introduction

In this chapter, we aim at extending the idea introduced in Chapter 2. The Harmonic

Clustering is extended to a principle based on the estimation of the optimal fuzzy masking

function for the clustering source by source of the power spectrum of the mixed sound of

interest. Whether each of the spectral clusters has a harmonic structure or not is considered

to be the criterion for this optimization problem. More specifically, we will consider a de-

composition of the power spectrum of the mixed sound in which every spectral clusters has

a harmonic structure as the optimal solution. We will show that this optimization problem

is equivalent to the problem of minimizing the distortion between the power spectrum of the

mixed sound and a mixture of spectral cluster models used as the clustering criterion. Mean-

while, from the viewpoint of statistical estimation, the distortion minimization procedure is

none other than the regression analysis. It follows from this that the method constitutes

in maximizing a likelihood function. Thus looking at the problem from the perspective of

statistical estimation, the empirical constraints which are necessary in any undetermined

problem can now be introduced, based on Bayes theorem, in the form of prior distributions.

Moreover, as many empirical constraints which at first looked irrelevant can now be ex-

pressed with the same measure (that is, probability), the problem becomes more organized,

and the perspective of a formulation and the intuitive meaning of the problem appear more

clearly. Furthermore, through model selection, estimation of the optimal number of clusters,

i.e. the number of sources, in the sense of posterior distribution is also performed.

As we explained in the preceding paragraph, this “extended” Harmonic Clustering can be

understood as the minimization of the distortion between the power spectrum of the mixed

12
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sound and a mixture of spectral cluster models, or as the optimal decomposition (clustering)

of the power spectrum using spectral cluster models. Consequently, after deriving in the

following section the specific form of a spectral cluster model from the ideal case of periodic

signal models, we formulate in section Section 3.3 the problem separately from these two

points of view and show that they eventually both lead to the same algorithm. Then,

in sections Section 3.4 and Section 3.5, we show that optimal estimation under empirical

constraints can be performed through Maximal A Posteriori estimation, and that a criterion

for the source number estimation can be obtained from the model selection criterion.

3.2 Spectral Cluster Model

3.2.1 Definition of Fourier Transform Pair

Denoting by Y (ω) the Fourier transform of y(t), the Fourier transform pair is defined by

F
[
y(t)

]
= Y (ω) =

1√
2π

∫ ∞

−∞
y(t)e−jωtdt (3.1)

F−1
[
Y (ω)

]
= y(t) =

1√
2π

∫ ∞

−∞
Y (ω)ejωtdω. (3.2)

3.2.2 Definition of Analytic Signal

We define the analytic signal of a real signal x(t) by

y(t) = x(t) + jz(t), (3.3)

where z(t) is the Hilbert transform of x(t), defined as

z(t) =
1

π

∫ ∞

−∞

x(τ)

t − τ
dτ. (3.4)

3.2.3 Gabor Transform Output of Periodic Signal Model

Assuming that all source signals are perfectly periodic in a short time range, we will

consider as the spectral cluster model the output of the Gabor transform (STFT) of a

periodic signal model around t = 0. Consider here as the kth source signal model the

analytic signal representation of a periodic signal given by

fk(t) ,
N∑

n=1

ãk,nej(nµkt+ϕk,n), t ∈ (−∞,∞), (3.5)
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where µk is the fundamental frequency, ϕk,n the starting phase and ãk,n the amplitude of the

nth partial, respectively. Denoting by w(t) a window function, let

gk(t) , w(t)fk(t) (3.6)

be the short-time signal enhanced by w(t) around t = 0. As the window function w(t) ≥ 0

can be chosen arbitrary, we choose to use a Gaussian window. This type of STFT is called

the Gabor transform. The Fourier transform of the left- and right-hand sides of Eq. (3.6)

is, by the convolution theorem, given by

Gk(ω) =
1√
2π

W (ω) ∗ Fk(ω) (3.7)

=
1√
2π

W (ω) ∗

(
√

2π
N∑

n=1

ãk,nejϕk,nδ (ω − nµk)

)
(3.8)

=
N∑

n=1

ãk,nejϕk,nW (ω − nµk), (3.9)

where Fk(ω) , F
[
fk(t)

]
and W (ω) , F

[
w(t)

]
. As w(t) is a Gaussian window, its Fourier

transform is again a Gaussian-type function such that

W (ω) = exp

(
− ω2

4σ2

)
. (3.10)

Hence, Eq. (3.9) can be written as

Gk(ω) =
N∑

n=1

ãk,nejϕk,n exp

(
−

(
ω − nµk

)2

4σ2

)
. (3.11)

The power spectrum of Eq. (3.11) can be written as

∥∥Gk(ω)
∥∥2

=

∥∥∥∥∥
N∑

n=1

ãk,nejϕk,n exp

(
−

(
ω − nµk

)2

4σ2

)∥∥∥∥∥

2

=
N∑

n=1

∥∥∥∥∥ãk,nejϕk,n exp

(
−

(
ω − nµk

)2

4σ2

)∥∥∥∥∥

2

+
∑

n6=n′

ãk,nãk′,n′ej(ϕk,n−ϕk′,n′) exp

(
−

(
ω − nµk

)2

4σ2

)
exp

(
−

(
ω − n′µk′

)2

4σ2

)
.

(3.12)

If we now assume that the time-frequency components are sparsely distributed so that the

partials rarely overlap, the second term could be negligibly smaller than the first term in
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the above equation. This assumption justifies the additivity of power spectra and the power

spectrum of the kth source signal model is then expressed as a Gaussian mixture model:

∥∥Gk(ω)
∥∥2 ≈

N∑

n=1

ãk,n
2 exp

(
−

(
ω − nµk

)2

2σ2

)
, (3.13)

whose maxima are centered over prospective harmonics ω = nµk. Putting ak,n ,
√

2πσãk,n
2,

one finally obtains

∥∥Gk(ω)
∥∥2 ≈

N∑

n=1

ak,n√
2πσ

exp

(
−

(
ω − nµk

)2

2σ2

)
. (3.14)

3.2.4 Constant Q Filterbank Output of Periodic Signal Model

Similarly, one can derive as well the constant Q filterbank output of a periodic signal

model. Let the wavelet basis function defined by

ψα,t(u) , 1√
2πα

ψ

(
u − t

α

)
, (3.15)

where α is the scale parameter, t the shift parameter and ψ(u) an arbitrary analyzing wavelet

that has the center frequency of 1 and satisfies the admissible condition. ψα,t(u) is used to

measure the component of period α at time t. Now letting

fk(u) ,
N∑

n=1

ãk,nej(nµku+ϕk,n), u ∈ (−∞,∞) (3.16)

be the kth source signal model, its continuous wavelet transform is defined by

Wk

(
log 1

α
, t

)
,

〈
fk(u), ψα,t(u)

〉
u∈(−∞,∞)

(3.17)

=
〈
Fk(ω), Ψα,t(ω)

〉
ω∈(−∞,∞)

, (3.18)

where Fk(ω) , F [fk(u)] and Ψα,t(ω) , F [ψα,t(u)] The equality in the second line follows

from the Parseval’s theorem. Defining by Ψ(ω) , F [ψ(u)], then the Fourier transform of

Eq. (3.15) can be written as

Ψα,t(ω) = Ψ(αω)e−jωt, (3.19)

and from Eq. (3.18), one obtains

Wk

(
log 1

α
, t

)
=

∫ ∞

−∞
Fk(ω)Ψ∗(αω)ejωtdω. (3.20)
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One immediately realizes that Eq. (3.20) amounts to the inverse Fourier transform of

Fk(ω)Ψ(αω). Wk(log 1
α
, t) could thus be interpreted as an output signal from the subband

filter with center frequency of 1/α and with frequency response Ψ(αω) with the input fk(t).

The Fourier transform of the kth source signal model is given as

Fk(ω) =
√

2π
N∑

n=1

ãk,nejϕk,nδ
(
ω − nµk

)
. (3.21)

By substituting this result into Eq. (3.20), one obtains

Wk

(
log 1

α
, t

)
=

N∑

n=1

ãk,nejϕk,nΨ∗(anµk)e
jnµkt. (3.22)

By changing the variable x = log 1
α

and by putting Ωk , log µk, Wk can be expressed in the

time-logfrequency domain:

Wk(x, t) =
N∑

n=1

ãk,nΨ∗
(
ne−x+Ωk

)
ej(ϕk,n+neΩk t). (3.23)

We will henceforth simply call Ωk the pitch frequency. As the frequency characteristic Ψ(ω)

of the analyzing wavelet can be chosen arbitrarily, we use here the following unimodal real

function whose maximum is taken at ω = 1 (see Fig. 3.1):

Ψ(ω) =





exp

(
−

(
log ω

)2

4σ2

)
(ω > 0)

0 (ω 5 0)

. (3.24)

Eq. (3.23) is then given as

Wk(x, t) =
N∑

n=1

ãk,n exp

(
−

(
x − Ωk − log n

)2

4σ2

)
ej(ϕk,n+neΩk t), (3.25)

and the resulting power spectrum of Eq. (3.22) can be written as

∥∥Wk(x, t)
∥∥2

=

∥∥∥∥∥
N∑

n=1

ãk,n exp

(
−

(
x − Ωk − log n

)2

4σ2

)
ej(ϕk,n+neΩk t)

∥∥∥∥∥

2

=
N∑

n=1

∥∥∥∥∥ãk,n exp

(
−

(
x − Ωk − log n

)2

4σ2

)
ej(ϕk,n+neΩk t)

∥∥∥∥∥

2

+
∑

n6=n′

ãk,nãk′,n′ exp

(
−

(
x − Ωk − log n

)2

4σ2

)

exp

(
−

(
x − Ωk′ − log n′)2

4σ2

)
ej(neΩk t+n′eΩk′ t+ϕk,n+ϕk′,n′). (3.26)
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Figure 3.1 Frequency response Ψ(ω) given by Eq. (3.24) for σ = 1
2
.

If we assume here again that the time-frequency components are sparsely distributed so

that the partials rarely overlap, the second term could be negligibly smaller than the first

term in the above equation. Putting ak,n ,
√

2πσ‖ãk,n‖2 for simplicity of notation, one

obtains a Gaussian mixture model whose maxima are centered over prospective harmonics

x = Ωk(t) + log n:

∥∥W (x, t)
∥∥2 ≈

K∑

k=1

N∑

n=1

ak,n√
2πσ

exp

(
−

(
x − Ωk − log n

)2

2σ2

)
, (3.27)

whose graphical representation can be seen in Fig. 4.1. Let us denote simply by ‖W (x)‖2

the power spectrum ‖W (x, 0)‖2 and consider it as the spectral cluster model. We are now

able to assess how clearly a harmonic structure appears in a spectral cluster by measuring

the distance between the cluster and this cluster model.

3.3 Principle

3.3.1 Optimal Separation of Power Spectrum

We will henceforth suppose the situation where we obtain the observed spectrum by con-

stant Q analysis. We formulate the problem of the decomposition of the observed power
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Figure 3.2 Graphical representation of Eq. (3.27).

spectrum into distinct clusters, which is said to be ‘optimal’ when all the clusters are har-

monically structured. Let Θ refers to {Ωk,{ak,n}N
n=1}K

k=1.

We define by ‖Y (x)‖2 the power spectrum of the signal of interest obtained by the constant

Q analysis. Let us introduce a spectral masking function mk(x) that extracts the components

associated with the kth source from ‖Y (x)‖2. For x ∈ R, mk(x) indicates the percentage of

the portion of ‖Y (x)‖2 shared to the kth source, such that satisfies

K∑

k=1

mk(x) = 1 (3.28)

0 < mk(x) < 1, k ∈ {1, · · · , K}. (3.29)

Assuming again additivity of power spectra, a portion of the observed power spectrum is

thus given arbitrarily by

mk(x)
∥∥Y (x)

∥∥2
, x ∈ (−∞,∞), (3.30)

which we call a “spectral cluster”. As we expect the spectral cluster to be associated with a

single harmonic structure, we need to introduce a measure function that specifies how clearly

a harmonic structure appears in this spectral cluster. One possible measure function may

be the I divergence [30] (The reason of this choice will be made clear in Subsection 3.3.2.)

between mk(x)‖Y (x)‖2 and the spectral cluster model ‖Wk(x)‖2 we derived in Subsection

3.2.4:
∫ ∞

−∞

(
mk(x)

∥∥Y (x)
∥∥2

log
mk(x)

∥∥Y (x)
∥∥2

‖Wk(x)‖2
−

(
mk(x)

∥∥Y (x)
∥∥2 − ‖Wk(x)‖2

))
dx. (3.31)

The more clearly the harmonic structure appears in mk(x)‖Y (x)‖2, the smaller this value

may be. The optimal clustering achieved by minimizing their sum with respect to mk(x)
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and Θ:

K∑

k=1

∫ ∞

−∞

(
mk(x)

∥∥Y (x)
∥∥2

log
mk(x)

∥∥Y (x)
∥∥2

‖Wk(x)‖2
−

(
mk(x)

∥∥Y (x)
∥∥2 − ‖Wk(x)‖2

))
dx, (3.32)

tries to make all separate clusters to be harmonically structured.

In the same way, let us introduce a spectral masking function mk,n(x) that extracts the

components associated with the nth partial of the kth source from ‖Y (x)‖2. For x ∈ R,

mk,n(x) indicates the percentage of the portion of ‖Y (x)‖2 shared to the nth partial of the

kth source, such that satisfies

K∑

k=1

N∑

n=1

mk,n(x) = 1 (3.33)

0 < mk,n(x) < 1, k ∈ {1, · · · , K}, n ∈ {1, · · · , N} (3.34)

a portion of the observed power spectrum is thus given arbitrarily by

mk,n(x)
∥∥Y (x)

∥∥2
, x ∈ (−∞,∞) (3.35)

which we call a “spectral cluster”. In the same way, the optimal clustering can be achieved

by minimizing

Φ(Θ,m) =
K∑

k=1

N∑

n=1

∫ ∞

−∞

(
mk,n(x)

∥∥Y (x)
∥∥2

log
mk,n(x)

∥∥Y (x)
∥∥2

Wk,n(x)

−
(
mk,n(x)

∥∥Y (x)
∥∥2 −Wk,n(x)

))
dx. (3.36)

with respect to Θ and mk,n(x). To do so, we shall find it most convenient to minimize this

objective function recursively with respect to mk,n(x) and Θ while keeping the other fixed.

As both steps necessarily decreases the objective function, which is bounded by below, the

convergence of this recursive algorithm is thus guaranteed.

We shall first derive the update equation for the spectral masking function mk,n(x) that

minimizes Φ(Θ, m) with fixed Θ. Adding to the objective function the Lagrange multiplier

term that ensures Eq. (3.33):

−
∫ ∞

−∞
λ(x)

(
K∑

k=1

N∑

n=1

mk,n(x) − 1

)
dx, (3.37)

its partial derivative with respect to mk,n(x) is given as

∂Φ(Θ,m)

∂m
=

∥∥Y (x)
∥∥2

(
log

Wk,n(x)

mk,n(x)
− 1

)
− λ(x). (3.38)
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Setting this to 0, one obtains

mk,n(x) = Wk,n(x) exp

(∥∥Y (x)
∥∥2

λ(x)
− 1

)
. (3.39)

From Eq. (3.33), the Lagrange multiplier λ(x) is given as

K∑

k=1

N∑

n=1

Wk,n(x) exp

(∥∥Y (x)
∥∥2

λ(x)
− 1

)
= 1, (3.40)

which yields

m̂k,n(x) =
Wk,n(x)∑

k

∑

n

Wk,n(x)
. (3.41)

Substituting this result into Eq. (4.31), we obtain

Φ(Θ, m̂) =

∫ ∞

−∞




∥∥Y (x)
∥∥2

log

∥∥Y (x)
∥∥2

∑

k

∑

n

Wk,n(x)
−

(
∥∥Y (x)

∥∥2 −
∑

k

∑

n

Wk,n(x)

)

 dx,

(3.42)

from which we see that what we are trying to minimize w.r.t Θ is the I divergence between

the whole observed power spectrum and the sum of all the spectral cluster models.

3.3.2 Minimization of Distortion Measure

Optimally fitting a parametric function with respect to observed values corresponds, from

the viewpoint of statistical estimation, to regression analysis. That is, if we consider that

the observations ‖Y (xi)‖2 at the discrete points xi are generated from the regression model

‖W (x)‖2 with a randomly oscillating noise, one can come back naturally to a maximum

likelihood estimation problem. Denoting by

P
(
‖Y (xi)‖2

∣∣Θ
)

(3.43)

the output probability of observation ‖Y (xi)‖2 from the regression model ‖W (x)‖2 with

parameter Θ (in other words, the likelihood of the parameter Θ of the regression model

with respect to the observation ‖Y (xi)‖2), our goal is to maximize the joint probability that

all the observations Y = (‖Y (x1)‖2, · · · , ‖Y (xI)‖2)T were generated independently by the

regression model,

P (Y |Θ) =
I∏

i=1

P
(
‖Y (xi)‖2

∣∣Θ
)
, (3.44)
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or its logarithm (hereafter mentioned as log-likelihood)

log P (Y |Θ) =
I∑

i=1

log P
(
‖Y (xi)‖2

∣∣Θ
)
. (3.45)

For example, if we now consider the relation

∥∥Y (xi)
∥∥2

=
∥∥W (xi)

∥∥2
+ εi, (3.46)

it is often assumed that εi is a Gaussian white noise, i.e. εi ∼ N (0, ν2), and in this case

expression (3.43) is defined as

P
(
‖Y (xi)‖2

∣∣Θ
)

=
1√
2πν

exp


−

(∥∥Y (xi)
∥∥2 −

∥∥W (xi)
∥∥2

)2

2ν2


 . (3.47)

Substituting it into (3.45), the quantity to maximize becomes

I∑

i=1


log

1√
2πν

−

(∥∥Y (xi)
∥∥2 −

∥∥W (xi)
∥∥2

)2

2ν2


 , (3.48)

and we thus see that this is equivalent to the least mean square estimation problem be-

tween ‖Y (x)‖2 and ‖W (x)‖2. However, despite the fact that ‖Y (x)‖2 is a power spectrum

distribution density, the above likelihood function P (‖Y (xi)‖2|Θ) is non-zero even when

‖W (xi)‖2 < 0. Of course, P
(
‖Y (xi)‖2

∣∣Θ
)

does not need to be a Gaussian distribution, and

for other distribution shapes the essential interpretation as a regression analysis problem is

not lost. Here, it is desirable that P (‖Y (xi)‖2|Θ) is only defined for ‖W (xi)‖2 = 0, and

the Poisson distribution is a representative example of such a probability density function.

Poisson distribution is usually defined as a probability density function of random variables

on non-negative integers, but it can be extended to a probability density function of random

variables on all non-negative real numbers. Distinguishing it from the usual Poisson distri-

bution, we will call it continuous Poisson distribution. The continuous Poisson distribution

of ‖Y (xi)‖2 with parameter ‖W (x)‖2 is given by

P
(
‖Y (xi)‖2

∣∣Θ
)

=
e−

∥∥W (xi)

∥∥2(∥∥W (xi)
∥∥2

)∥∥Y (xi)

∥∥2

Γ
(∥∥Y (xi)

∥∥2
+ 1

) , (3.49)

where Γ(·) is the Gamma function

Γ(z) ,
∫ ∞

0

e−ttz−1dt, (3.50)
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and the likelihood is defined as 0 when ‖W (x)‖2 is negative. The shape of the distribution

of the likelihood of Θ with respect to ‖W (xi)‖2 is shown in Fig. 3.3.2. Substituting this

expression into (3.45), we obtain the log-likelihood to maximize:

L(Θ) ,
I∑

i=1

log P
(
‖Y (xi)‖2

∣∣Θ
)

(3.51)

=
I∑

i=1

(∥∥Y (xi)
∥∥2

log
∥∥W (xi)

∥∥2 −
∥∥W (xi)

∥∥2 − log Γ
(∥∥Y (xi)

∥∥2
+ 1

))
. (3.52)

As shown in Fig. 3.3.2, the above distribution is a unimodal distribution reaching its max-

imum only when ‖Y (x)‖2 = ‖W (x)‖2, which implies as expected that this maximum like-

lihood problem amounts to a model fitting one. In the same way as we have shown that

when the likelihood function is considered to be a Gaussian distribution the maximum like-

lihood problem becomes equivalent to a least-mean square estimation, the maximum like-

lihood problem under the above continuous Poisson distribution type likelihood function is

equivalent to the minimization with respect to
∥∥W (x)

∥∥2
of a distortion measure between

distributions called I-divergence:

I∑

i=1

(
∥∥Y (xi)

∥∥2
log

∥∥Y (xi)
∥∥2

∥∥W (xi)
∥∥2 −

(∥∥Y (xi)
∥∥2 −

∥∥W (xi)
∥∥2

))
. (3.53)

This is clear if we compare this expression to Eq. (3.52). As shown in Fig. 3.3.2, the

distortion measure inside the parentheses in Eq. (3.53) is a non-symmetrical measure giving

more penalty to positive errors, and thus emphasizes the goodness of fitting between spectral

peaks. In that regard, it is similar to the Itakura-Saito distance [54] derived in Linear

Predictive Coding (LPC).

We have explained the model fitting from a statistical estimation point of view. From

the above perspective, we can redefine the problem as a Maximum A Posteriori estimation

problem by introducing very naturally a prior distribution P (Θ), which we will explain in

more details later. In the next subsection, we show how one can derive an efficient iterative

estimation algorithm.

3.3.3 Iterative Maximum Likelihood Estimation

Goto [45], by considering hypothetically the frequencies as observation data and the nor-

malized power spectrum as the probability distribution of the observation data, uses the EM
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Figure 3.3 Graphical representation of the likelihood function (3.49) for ‖Y (x)‖2 = 5.

algorithm to maximize the probability that the whole observation data have been generated

by a statistical model represented by a GMM. However, from a statistical signal processing

viewpoint, it is not obvious whether the assumption that the frequencies behave stochasti-

cally is appropriate or not. As the power spectrum ‖Y (x)‖2 is actually not a probability

distribution and the mixed sound model ‖W (x)‖2 is also not a statistical model, formulas

from the probability theory (Bayes theorem, marginalization operations, etc.) cannot be

applied in a rigorous manner to their distributions, and the fact that the EM algorithm

derived using Bayes’ rule could be used to perform approximation between them is thus def-

initely non-trivial. The goal of this subsection is to derive an iterative estimation algorithm

formally equivalent to the EM algorithm without making use of Bayes’ rule. This derivation

justifies of course our method, but eventually also supports simultaneously the validity of

Goto’s method.

The goal of the problem (maximum likelihood estimation) is now

Θ̂ = argmax
Θ

L(Θ). (3.54)

Looking back at Eq. (3.14),
∥∥W (x)‖2 can be written as a sum over k and n of terms of the

form

Wk,n(x) , ak,n√
2πσ

exp

(
−

(
x − Ωk − log n

)2

σ2

)
,
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Figure 3.4 The distortion measure inside the parentheses in (3.53) for ‖W (x)‖2 = 5.

and one can thus write L(Θ) as

L(Θ) =
I∑

i=1

(
∥∥Y (xi)

∥∥2
log

K∑

k=1

N∑

n=1

Wk,n(xi) −
K∑

k=1

N∑

n=1

Wk,n(xi) − log Γ
(∥∥Y (xi)

∥∥2
+ 1

))
.

(3.55)

Approximating the second term in the parentheses above by a Gaussian integral, we get

I∑

i=1

Wk,n(xi) ≈
∫ ∞

−∞
Wk,n(x)dx = ak,n, (3.56)

and thus
∑

i

∑
k,n Wk,n(xi) ≈

∑
k,n ak,n. However, one cannot obtain analytically Θ max-

imizing the above L(Θ). The specific reason for this is that L(Θ) has a nonlinear term

expressed as the logarithm of a sum of several exponential terms.

If we now notice that the logarithm function is convex, introducing arbitrary weight func-

tions mk,n(x) such that ∀x,

K∑

k=1

N∑

n=1

mk,n(x) = 1, ∀k, n : 0 < mk,n(x) < 1, (3.57)
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we obtain the following inequality:

L(Θ) =
I∑

i=1

(
∥∥Y (xi)

∥∥2
log

K∑

k=1

N∑

n=1

mk,n(xi)
Wk,n(xi)

mk,n(xi)
− log Γ

(∥∥Y (xi)
∥∥2

+ 1
))

−
K∑

k=1

N∑

n=1

ak,n

=
I∑

i=1

(
K∑

k=1

N∑

n=1

∥∥Y (xi)
∥∥2

mk,n(xi) log
Wk,n(x)

mk,n(xi)
− log Γ

(∥∥Y (xi)
∥∥2

+ 1
))

−
K∑

k=1

N∑

n=1

ak,n.

(3.58)

Let us denote the right-hand side of this inequality by L−[Θ,m]:

L−[Θ, m]

,
I∑

i=1

(
K∑

k=1

N∑

n=1

∥∥Y (xi)
∥∥2

mk,n(xi) log
Wk,n(xi)

mk,n(xi)
− log Γ

(∥∥Y (xi)
∥∥2

+ 1
))

−
K∑

k=1

N∑

n=1

ak,n.

(3.59)

What must be noticed in the above inequality is not only that a lower bound function (right-

hand side) has been obtained for L(Θ), but that in this lower bound function L−(Θ,m) the

exponential inside Wk,n(x) has disappeared and become a second-order function in Ωk, thus

suggesting that it should be possible to obtain analytically Ωk maximizing L−(Θ,m). Using

this fact, we develop hereafter a method to increase L(Θ) indirectly using L−(Θ,m).

L−(Θ,m) contains a new variable mk,n(x) which did not appear in L(Θ). For any fixed

Θ, if we maximize the lower bound function with respect to mk,n(x), equality is reached

in the inequality, with L−(Θ,m) always staying smaller than L(Θ). The latter is a direct

consequence of the inequality while the former can be verified by looking for mk,n(x) maxi-

mizing L−(Θ,m). Let us first differentiate with respect to mk,n(xi) the lower bound function

to which the Lagrange multiplier term

−
I∑

i=1

λi

(
K∑

k=1

N∑

n=1

mk,n(xi) − 1

)
(3.60)

has been added. We obtain

∂L−

∂m
=

∥∥Y (xi)
∥∥2

(
log

Wk,n(xi)

mk,n(xi)
− 1

)
− λi, (3.61)

and putting this to 0, we get

mk,n(xi) = Wk,n(xi) exp

(∥∥Y (xi)
∥∥2

λi

− 1

)
. (3.62)
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According to condition (3.57),

K∑

k=1

N∑

n=1

Wk,n(xi) exp

(∥∥Y (xi)
∥∥2

λi

− 1

)
= 1, (3.63)

and the Lagrange multipliers λi can thus be obtained. We eventually get

mk,n(xi) =
Wk,n(xi)∑

k

∑

n

Wk,n(xi)
. (3.64)

Introducing this result into Eq. (3.59), we can verify that indeed L−(Θ,m) = L(Θ).

From this state of equality, if we now increase L−(Θ, m) with respect to Θ, automatically

L(Θ) shall also increase. This is due to the fact that the convex inequality ensures that

L(Θ) is necessarily larger than the increased L−(Θ, m). From the above, we can see that

performing alternately the maximization of L−(Θ,m) with respect to mk,n(x) and an increase

of L−(Θ,m) with respect to Θ, L(Θ) will monotonically increase. The parameter estimation

algorithm is thus composed of the two following steps:

Step 0 Set the initial parameters Θ0, put ` = 1.

Step 1 m(`) = argmax
m

L−(Θ(`−1),m).

Step 2 Set Θ(`) as Θ such that L−(Θ, m(`)) = L−(Θ(`−1),m(`)), put ` ← ` + 1

and go back to Step 1.

As L(Θ) is bounded above, from the preceding discussion, we can see that the convergence

of the iterative estimation algorithm is guaranteed.

A point which should particularly be noticed here is that the iterative estimation of the

pitch frequencies Ωk through the EM algorithm, which could not be obtained in the methods

of Chazan et al. [22] and Jinachitra et al. [57], can now be performed. We shall give the

details about the update equations of the model parameter set Θ later, but let us verify here

first that the update equation for Ωk can be obtained analytically. Putting to 0 the partial

derivative of L−(Θ,m) with respect to Ωk

∂L−

∂Ωk

=
I∑

i=1

N∑

n=1

∥∥Y (xi)
∥∥2

mk,n(xi)
xi − Ωk − log n

σ2
(3.65)

the update equation for Ωk

Ω̂k =

I∑

i=1

N∑

n=1

∥∥Y (xi)
∥∥2

mk,n(xi)
(
xi − log n

)

I∑

i=1

N∑

n=1

∥∥X(xi)
∥∥2

mk,n(xi)

(3.66)
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can be obtained analytically.

The iterative computation presented above eventually follows formally the same procedure

as the EM algorithm, but as we do not assume that ‖Y (x)‖2 and ‖W (x)‖2 are probability

distributions, its derivation method is slightly different from the original EM algorithm [33].

In that sense, the above derivation gives another interpretation of the EM algorithm.

3.4 Bayesian Harmonic Clustering

3.4.1 Maximum A Posteriori (MAP) Estimation

Based on the above preparatory work, from the viewpoint of statistical estimation as in

Subsection 3.3.2, the empirical constraints which are necessary in underdetermined problems

can be smoothly introduced through Bayes theorem, and many problems can be dealt with.

Moreover, as many empirical constraints which at first looked irrelevant can now be expressed

with the same measure (i.e., probability), the problem becomes more organized, and the

perspective of a formulation and the intuitive meaning of the problem appear more clearly.

First, from the Bayes theorem, the posterior probability of Θ is given by

P (Θ|Y ) =
P (Y |Θ)P (Θ)

P (Y )
. (3.67)

It is then through the prior probability P (Θ) that the relation to the empirical constraints

appears. Let us consider here the maximization of the posterior probability P (Θ|Y ):

argmax
Θ

P (Θ|Y ) = argmax
Θ

P (Y |Θ)P (Θ) (3.68)

= argmax
Θ

(
log P (Y |Θ) + log P (Θ)

)
(3.69)

= argmax
Θ

(
L(Θ) + log P (Θ)

)
. (3.70)

This is the Maximum A Posteriori estimation of the model parameters Θ. As can be seen

in Eq. (3.70), the objective function in this case is only the objective function L(Θ) used

in the discussion of Subsection 3.3.3, to which log P (Θ) has been added. As log P (Θ) does

not depend on mk,n(xi), the update equation of mk,n(xi) stays the same as (3.64). If we

can obtain update equations for Θ from L−(Θ,m) + log P (Θ), then in the same was as in

Subsection 3.3.3, we will be able to derive an iterative algorithm monotonically increasing

L(Θ) + log P (Θ).
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3.4.2 Smoothness of Spectral Envelope

In speech and music, the empirical constraint that “the spectral envelope is smooth” is

relatively largely accepted. The necessary condition such that the spectral envelope is smooth

is that the values of ak,n and ak,n−1 should be sufficiently close. Therefore, one strategy is

to define the prior distribution such that the probability should get larger as the values of

ak,n and ak,n−1 become closer.

For simplicity, let us first suppose that in Θ, {Ωk} and {ak,n} are independent, and

furthermore that the {ak,n} are independent across sources. One can then separate the

variables as follows:

P (Θ) = P (Ω1, · · · , ΩK)
∏

k

P (ak,1, · · · , ak,N). (3.71)

We can decompose furthermore P (ak,1, · · · , ak,N) in

P (ak,1, · · · , ak,N) = P (ak,1)P (ak,2, · · · , ak,N |ak,1)

= P (ak,1)P (ak,2|ak,1)P (ak,3, · · · , ak,N |ak,1, ak,2)

= · · ·

= P (ak,1)P (ak,2|ak,1)P (ak,3|ak,1, ak,2) · · ·P (ak,N |ak,1, · · · , ak,N). (3.72)

If we now suppose that the power ak,n of the n-th harmonic component only depends on

the power ak,n−1 of the neighboring component, P (ak,1, ak,2 · · · , ak,N) can be expressed as a

Markov chain probability:

P (ak,1, · · · , ak,N) ≈ P (ak,1)
N∏

n=2

P (ak,n|ak,n−1). (3.73)

The probability P (ak,n|ak,n−1) should become larger as the powers of the neighboring har-

monic components are closer. Moreover, as ak,n is a power (and thus non-negative), we

would like to consider a probability distribution for which the probability density function

is only defined for ak,n = 0. For example, let us assume it follows the Gamma distribution:

P (ak,n|ak,n−1) =
(γ − 1)γ

Γ(γ)

ak,n
γ−1e

−
(γ−1)ak,n

ak,n−1

ak,n−1
γ . (3.74)

This distribution’s probability density function is only defined for ak,n = 0, and is a uni-

modal distribution which takes its maximum at the parameter ak,n−1. γ > 0 is called shape

parameter, and as the peak of the distribution becomes sharper as γ becomes larger, it can
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Figure 3.5 Illustration of P (ak,n|ak,n−1) when ak,n−1 = 5 (shape parameter γ = 3, 6, 12).

be considered as a constant, that is used for adjusting the effect of the prior distribution.

An illustration of the Gamma distribution is shown in Fig. 3.4.2.

If we assume P (Ω1, · · · , ΩK) and P (ak,1) follow uniform distributions (all values can be

taken evenly), from the above we obtain that log P (Θ) can be written specifically as

log P (Θ) = η + K(N − 1) log
(γ − 1)γ

Γ(γ)

−
∑

k

(
N∑

n=2

(γ − 1)ak,n

ak,n−1

+
N−1∑

n=2

log ak,n + γ log ak,1 − (γ − 1) log ak,N

)
, (3.75)

where η = log P (Ω1, · · · , ΩK) +
∑

k log P (ak,1) = const.

3.4.3 Update Equations for the Model Parameters

We can now finally derive the update equations of the Step 2 of Subsection 3.3.3. As

explained earlier, we want to obtain Θ increasing or maximizing L−(θ,m) + log P (Θ).

As log P (Θ) does not depend on Ωk, the update equation of µk is already given as presented

in (3.66). The update equation of the ak,n is performed, for each k, by using sequentially

from n = 1 to n = N the following update equations (Coordinate Descent method), ensuring

that L−(θ,m) + log P (Θ) does not decrease. Hereafter, let us write

Φk,n =
I∑

i=1

∥∥X(xi)‖2mk,n(xi). (3.76)
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The update equation for ak,n can then be obtained as follows. We first put to 0 the partial

derivative of L−(θ,m) + log P (Θ) with respect to ak,1,

1

ak,1

Φk,1 − 1 +
(γ − 1)ak,2

ak,1
2

− γ

ak,1

,

and obtain

âk,1 =
Φk,1 − γ

2
+

(
(Φk,1 − γ)2

4
+ (γ − 1)ak,2

) 1
2

, (3.77)

where ak,2 in the above update equation is the value updated one step before. Then putting

to 0 the partial derivative of L−(θ,m) + log P (Θ) with respect to ak,n(n = 2, · · · , N − 1),

1

ak,n

Φk,n − 1 − γ − 1

ak,n−1

+
(γ − 1)ak,n+1

ak,n
2

− 1

ak,n

,

we obtain

âk,n =
ak,n−1

ak,n−1 + γ − 1

(
Φk,n − 1

2
+

(
(Φk,n − 1)2

4
+

(γ − 1)(ak,n−1 + γ − 1)ak,n+1

ak,n−1

) 1
2

)
, (3.78)

where ak,n−1 is the latest updated value and ak,n+1 is the value updated one step before.

Finally, putting to 0 the partial derivative with respect to ak,N ,

∂L−

∂ak,N

=
1

ak,N

Φk,N − 1 − γ − 1

ak,N−1

+
γ − 1

ak,N

,

we obtain

âk,N =
ak,N−1

(
Φk,N + γ − 1

)

ak,N−1 + γ − 1
, (3.79)

where ak,N−1 is the latest updated value.

3.5 A Criterion for Source Number Estimation

3.5.1 Model Selection using Bayesian Information Criterion

Another important characteristic of Bayesian statistical inference is that a model structure

selection criterion can be derived. Model structure specifies the model function class and the

number of free parameters, but as here the function class is fixed, it indicates the number of

free parameters. Model selection criterion is a criterion to determine comparatively which

kind of model structure shall have a model which would be likely to generate a given ob-

servation data. Up to now, the discussion was done under the assumption that the number

of sources K and the number of harmonic components N of the mixed sound model were
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already known, but in general the number of sources mixed in the input mixed sound signal

is unknown. Therefore, if one could derive a model selection criterion, it would lead a new

criterion to estimate the number of sources K and the number of harmonic components N .

Meanwhile, as compared to the estimation of the number of sources K, estimating the

number of harmonic components is not engineeringly such an important problem, hereafter

for the sake of simplicity we shall assume that N is an experimentally fixed constant. Then,

through comparison of all the mixed sound models for K varying from K = 1 to K = K̃,

where K̃ is the maximum source number, and selection of the best model structure, the

number of sources can be estimated.

We first express the model structure index as M (K), where the superscript refers to the

number of sources, which is related to the number of free parameters. Similarly, denoting by

Θ(K) the number of model parameters of a mixed sound model for which the number sources

is K, the problem considered here is to find the model structure M (K) that maximizes the

posterior probability of M (K),

P
(
M (K)|Y

)
=

P
(
Y |M (K)

)
P

(
M (K)

)

P
(
Y

) , (3.80)

where Y refers to the set of observations ‖Y (x1)‖2, · · · , ‖Y (xI)‖2. Assuming that the prior

probability P (M (K)) of the model structure is a uniform distribution, the problem amounts

to performing the maximum likelihood estimation of the model structure:

M̂ (K) = argmax
M(K)

P
(
Y |M (K)

)
. (3.81)

In Subsection 3.3.2, as we assumed implicitly that K was fixed, the model structure index

was actually omitted in the right-hand side of Eq. (3.44). If we now consider that K is an

unknown variable, P (Y |Θ) should be written more exactly P (Y |Θ(K),M (K)). Then, as

P
(
Y ,Θ(K)|M (K)

)
= P

(
Y |Θ(K), M (K)

)
P

(
Θ(K)|M (K)

)
, (3.82)

if we marginalize both sides with respect to Θ(K), from

P
(
Y |M (K)

)
=

∫
P

(
Y |Θ(K),M (K)

)
P

(
Θ(K)|M (K)

)
dΘ(K) (3.83)

=

∫
exp

{
L(Θ(K))

}
P

(
Θ(K)|M (K)

)
dΘ(K), (3.84)

where, L(Θ(K)) = log P (Y |Θ(K), M (K)), we can obtain the desired model selection criterion.

This is actually none other than the denominator of the right-hand side of Eq. (3.67). The
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criterion for estimation of the model structure is thus the “marginal probability of the obser-

vation data”, which tends to be disregarded in the context of maximum likelihood estimation

and Maximum A Posteriori estimation of model parameters.

The next point that we have to discuss is how to obtain the marginal distribution of the

above equation. One could think of computing numerically the integral with respect to Θ(K),

but this would require considerable computational cost and is thus not realistic. Here we

can use the well-known Bayesian Information Criterion (BIC)[7, 93], model evaluation crite-

rion derived by approximating the marginal probability of the above equation. Its principle

is based on the assumption that when the data number I (here referring to the number of

discrete frequency points) is sufficiently large, as the integrand in the above equation concen-

trates in the vicinity of the value of the maximal likelihood estimator (or of the Maximum A

Posteriori estimator) Θ̂, the integration value depends on the behavior in the neighborhood

of Θ̂, and L(Θ(K)) and log P (Θ(K)|M (K)) can be approximated around Θ̂
(K)

respectively

by their 2nd order and 0th order Taylor expansion [93]. This corresponds to approximating

the posterior distribution of Θ by a multidimensional Gaussian distribution centered on the

value Θ̂ of the maximum likelihood estimator (or of the Maximum A Posteriori estimator),

and in case the maximum likelihood estimator is asymptotically normal, this approximation

is justified. The marginalization operation of (3.84) can then be easily performed. The above

question can thus be approximated in the following way:

P
(
Y |M (K)

)
≈ exp

{
L

(
Θ̂(K)

)}
P

(
Θ̂(K)|M (K)

)(
2π

)D(K)/2
I−D(K)/2

∣∣∣J
(
Θ̂(K)

)∣∣∣
−1/2

, (3.85)

where I is the number of elements of the observation time series Y , D(K) is the number of

free parameters in the mixed sound model ‖Y(x)‖2 when the number of sources is K, and

J(Θ̂(K)) is the Fisher information matrix. Taking the logarithm of this equation, multiplying

by −2 and approximating further, we obtain the BIC:

− 2 log P
(
Y |M (K)

)

≈ −2L
(
Θ̂(K)

)
+ D(K) log I + log

∣∣J
(
Θ̂(K)

)∣∣ − D(K) log
(
2π

)
− 2 log P

(
Θ̂(K)|M (K)

)

≈ −2L
(
Θ̂(K)

)
+ D(K) log I. (3.86)

For more details on the above derivation, we shall refer to [7, 93].
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3.5.2 Model Selection Algorithm

In this subsection, we present the global structure of the Bayesian Harmonic Clustering

algorithm, including the Maximum A Posteriori estimation of the parameters and the model

selection of the spectral cluster models.

1. Set the initial value K̃ of the number of sources K.

2. Estimate the Maximum A Posteriori parameter Θ̂
(K)

using the iterative algorithm

presented in Subsection 3.3.3.

(a) Set the initial parameters Θ K̃ of the spectral cluster models. Detect the top K̃

peaks of the power spectrum ‖Y (x)‖2 and use them as initial parameters Ωk.

(b) Update mk,n(x) through Eq. (3.64).

(c) Update Ωk through Eq. (3.66).

(d) After updating ak,n through Eq. (3.77), Eq. (3.78) and Eq. (3.79), return to (b).

After convergence, proceed to 3.

3. Compute BIC(K) through Eq. (3.86). If K 6= 1, proceed to 4. If K = 1, proceed to 5.

4. Find the spectral cluster model with smallest power,

ǩ = argmin
k

N∑

n=1

ak,n, (3.87)

and eliminate it. Set K = K − 1 and return to 2.

5. Find K minimizing BIC. For this model structure, look for the Maximum A Posteriori

estimation Parameter

K̂ = argmin
K

BIC(K) ⇒ Θ̂
( bK)

(3.88)

as the final solution.

3.6 Experimental Evaluation

3.6.1 Condition

Considering music is the typical example of multipitch audio signal, the proposed method

was tested on a framewise musical note estimation task using 8 pieces of real music perfor-

mance data excerpted from RWC music database (the list of the experimental data is shown
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Table 3.1 Experimental conditions

frequency analysis Sampling rate 16 kHz

frame shift 32 msec

mother wavelet Gabor function

frequency resolution 12.0 cent

frequency range 60–3000 Hz

proposed algorithm initial # of harmonic kernels 10

# of partials 8

σ 3.0 × 10−3

r̄n 0.6547 × n−2

d̄ 3.0

ρn 0.01 × 1
n

PreFEst-core[45] pitch resolution 20 cent

# of partials 8

# of harmonic models 200

standard deviation of Gaussian 3.0

r̄n 0.6547 × n−2

d̄ 3.0

in table 3.2). Time series of power spectrum was analyzed using Gabor wavelet transform

with frame shift of 16ms for input digital signals of 16kHz sampling rate. The lower bound

of the frequency range and the frequency resolution were 60Hz and 12cent, respectively. The

experimental conditions are shown in detail in table 3.1.

The purpose of this experiment is to clarify the effect of using BIC, and the multipitch

estimation accuracy of the Bayesian Harmonic Clustering. As the first task, we compare the

performance of the source number estimation method using BIC with that of a simple inten-

sity thresholding for F0 candidate truncation. As the second task, we chose as a comparison

∗‘PreFEst-core’[45]. Since PreFEst-core is actually designed to be an extraction of the most

∗Note that we have only implemented the ‘PreFEst-core’, i.e., a framewise pitch likelihood estimation,

for the evaluation and not included the ‘PreFEst-back-end’, i.e., multi-agent based pitch tracking algorithm.
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dominant F0 trajectory from multipitch signals and does not include a specific procedure

for source number determination, we decided to include the same intensity thresholding for

decision making under the same condition to make a proper comparison. The specific way

of intensity thresholding we have implemented is to regard the harmonic kernels, or the

tone models as referred in [45], as silence, whose integral, i.e., wk

∑
∀nrk,n is smaller than a

particular value.

Let us refer to these three types of methods as following:

• proposed A: Bayesian Harmonic Clustering and minimum BIC model selection for

source number estimation,

• proposed B: Bayesian Harmonic Clustering and intensity thresholding for F0 candidate

truncation.

• conventional: PreFEst-core[45] and intensity thresholding for F0 candidate truncation.

We expect that the effectiveness of the source number estimation method using BIC can be

confirmed through comparison between proposed A & B, and as well the effectiveness of the

Bayesian Harmonic Clustering-based multipitch estimation estimation through comparison

between proposed B & conventional.

3.6.2 Results

A typical example of the F0 estimates obtained by proposed A together with the corre-

sponding handcrafted reference MIDI data is demonstrated in Fig. 4.6.

The average accuracy rates over all experimental data of the proposed A and the rest of

the two methods with different thresholds are shown in Fig. 3.7. One sees from the result

that proposed A obviously outperforms proposed B, and as well proposed B significantly

outperforms conventional. Therefore, both elements in our proposed method, i.e., applying

information criterion to source number estimation and Bayesian Harmonic Clustering-based

multipitch estimation was proved to be effective.

For more detail, see table 3.4 showing accuracy rate for each experimental data. From the

results of proposed B and conventional, the proper threshold that gives the best accuracy

rate, tends to depend highly on test data, obviously because if the relative power level differs

among several data, a proper threshold for a particular data is not always proper also for
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Table 3.2 List of the experimental data excerpted from the RWC music database [44]

Symbol Title (Genre) Composer/Player Instruments # of frames

data(1) Crescent Serenade (Jazz) S. Yamamoto Guitar 4427

data(2) For Two (Jazz) H. Chubachi Guitar 6555

data(3) Jive (Jazz) M. Nakamura Piano 5179

data(4) Lounge Away (Jazz) S. Yamamoto Guitar 9583

data(5) For Two (Jazz) M. Nakamura Piano 9091

data(6) Jive (Jazz) H. Chubachi Guitar 3690

data(7) Three Gimnopedies no. 1 (Classic) E. Satie Piano 6571

data(8) Nocturne no.2, op.9-2(Classic) F. F. Chopin Piano 7258

others. When considering a practical use, it is, however, inconvenient to tune thresholds

carefully every time we test on different data. It should be emphasized that the proposed A

works reliably even without such exhausting tuning.

3.7 Summary of Chapter 3

In this chapter, we have proposed the principle of Harmonic Clustering estimating the

optimal spectral masking functions clustering source by source the power spectrum of the

mixed sound signal of interest. We have shown that Harmonic Clustering can be under-

stood as the minimization of the distortion between the power spectrum of the mixed sound

and a mixture of spectral cluster models, or as the optimal decomposition (clustering) of

the power spectrum using spectral cluster models, and we presented the formulation of the

problem in these two points of view. Moreover, starting from the fact that the minimization

of the distortion measure can be understood as a maximum likelihood problem with the

continuous Poisson distribution as likelihood function, we showed that, by introducing prior

distributions, optimal estimation under empirical constraints can performed through Maxi-

mum A Posteriori estimation. Furthermore, we showed that a criterion for source number

selection could simultaneously be obtained through model selection criterion. Experimen-

tal evaluations proved the effectiveness of the two elemental techniques introduced in this
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Table 3.3 Results obtained by PreFEst-core [45]. Columns (A)∼(J) and (K)∼(R) show the

accuracies with different thresholds: (A)2.0×108, (B)2.5×108, (C)5.0×108, (D)7.5×108, (E)10×

108, (F)15×8, (G)17.5×108, (H)20×108, (I)25×108, (J)27.5×108, (K)7.5×109, (L)1.0×

1010, (M)2.0×1010, (N)3.0×1010, (O)4.0×1010, (P)5.0×1010, (Q)6.0×1010, (R)7.0×1010.

Accuracy(%)

conventional [45]

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J)

data(1) 56.6 62.49 75.9 81.6 83.3 84.6 83.0 81.5 78.4 75.8

data(2) 68.7 69.6 66.3 59.0 53.7 36.3 32.4 30.3 26.8 26.5

data(3) -20.8 -7.3 31.7 47.8 56.9 65.1 69.5 71.9 75.5 71.8

data(4) 55.1 56.8 60.7 63.3 63.1 63.6 64.1 62.3 60.6 60.2

data(5) 50.7 53.2 61.0 60.0 58.8 59.3 57.6 58.0 57.5 49.7

data(6) -7.2 6.6 37.9 51.1 57.7 65.9 65.6 66.7 66.3 65.7

data(7) 51.6 54.1 62.7 52.4 47.0 45.9 42.7 41.1 42.2 42.7

data(8) 20.8 22.9 36.6 42.5 38.5 39.1 38.8 37.7 32.7 30.6

Average 39.1 43.3 55.2 57.1 56.5 55.9 55.0 54.4 53.0 50.7

chapter, multipitch estimation and automatic source number estimation based on Harmonic

Clustering.

We discussed here multipitch estimation for short-time frames of mixed signals. In the next

chapter, assuming the continuity in the time direction of the F0 and of the power, we extend

this method to a global spectral structure estimation method on the whole time-frequency

domain.
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Table 3.4 Results obtained by the proposed method (proposed A and proposed B). Columns

(A)∼(J) and (K)∼(R) show the accuracies with different thresholds: (A)2.0×108, (B)2.5×

108, (C)5.0×108, (D)7.5×108, (E)10×108, (F)15× 8, (G)17.5×108, (H)20×108, (I)25×

108, (J)27.5×108, (K)7.5×109, (L)1.0×1010, (M)2.0×1010, (N)3.0×1010, (O)4.0×1010, (P)5.0×

1010, (Q)6.0×1010, (R)7.0×1010.

Accuracy(%)

proposed B proposed A

(K) (L) (M) (N) (O) (P) (Q) (R)

data(1) 42.4 72.1 76.8 79.4 85.9 87.2 86.8 82.7 76.3

data(2) 76.4 85.3 86.3 86.4 69.7 65.6 59.9 57.9 84.8

data(3) 37.3 52.4 57.5 61.0 69.0 70.2 70.5 71.6 72.6

data(4) 64.5 66.3 66.5 67.0 69.0 69.7 69.1 67.8 76.7

data(5) 62.6 65.3 66.3 66.9 66.8 64.1 63.3 62.7 72.1

data(6) 27.1 54.4 61.8 66.3 76.7 78.6 80.8 82.0 57.4

data(7) 64.5 74.4 77.7 79.2 76.6 75.1 70.9 69.9 76.5

data(8) 63.7 76.5 78.2 78.7 74.9 66.4 56.6 50.6 75.5

Average 58.4 69.2 71.6 73.0 72.4 70.6 67.9 66.2 74.9
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Figure 3.6 A multipitch estimation result(top) by the proposed method and the hand-labeled

MIDI reference data displayed in piano-roll form (bottom).
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Figure 3.7 Average accuracy rates over all test data of ‘proposed A’ (Bayesian Harmonic

Clustering multipitch estimation & minimum BIC model selection), ‘proposed B’ (Bayesian

Harmonic Clustering multipitch estimation & thresholding) and ‘conventional’ with different

thresholds.



Chapter 4

Harmonic-Temporal Clustering

4.1 Introduction

Human listeners are able to concentrate on listening to a target sound without difficulty

even in the situation where many speakers are talking at the same time. This fact has

persuaded many scientists that the auditory system of human has a significant ability to

recognize the external environment actively. This nature is referred to as the “auditory scene

analysis (ASA)” and has been attracting interest since Bregman’s book was published [16].

In [16], Bregman has shown through experiments the psychological evidences concerning the

ability of the auditory system, such that:

1. Acoustic signal is “segregated” into spectrogram-like pieces, which is called the “audi-

tory elements”.

2. Auditory elements that originate from the same source are likely to be “grouped” to

form the “auditory stream”.

3. The grouping cues are said to be related to:

(a) harmonicity,

(b) common onset and offset,

(c) coherent amplitude and frequency modulation,

(d) continuity of amplitude and frequency,

(e) proximity of time-frequency components,

(f) common spatial location.

41
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Recent efforts are being directed toward the attempt to implement this ability of the auditory

system. Such a framework is called the “Computational Auditory Scene Analysis (CASA)”.

The main focus of today’s CASA research is to develop a source separation method based

upon the grouping cues suggested by Bregman. More specifically, the main purpose is

to extract useful features (for example, F0) or to restore the target signal of interest by

performing the segregation process and grouping process through a computational algorithm.

Cooke [29], Brown et al. [18], Ellis [37], Fishbach [40], Nakatani et al. [75] developed

source separation methods utilizing the grouping cues. As most of these methods use

artificial-intelligence-based or rule-based approaches, they enable the introduction of var-

ious constraints in a top-down manner, but the algorithms tend to have many thresholding

steps, that often make systems too complicated to handle. Nishi et al. [76], Unoki et al.

[106], Abe et al. [3, 4], Wu et al. [115] tried to formulate the CASA problem as an optimiza-

tion problem using the grouping cues as mathematically formalized constraints. Kashino

et al. [60] presented a CASA algorithm designed specifically for an automatic transcription

use. Goto’s PreFEst [45] is in some sense a CASA method.

In most of these conventional methods, they usually implement the grouping process in

the following way: first extract instantaneous feature at each discrete time point and then

estimate the whole tracks of those features by exploiting hidden Markov model (HMM),

multiple agents, or some dynamical system such as Kalman filtering. The first half of this

procedure is for finding the set of frequency components that seem to originate from the

same source using only the “harmonicity” constraint. This step corresponds to the grouping

process in the frequency direction. The second half, on the other hand, is for interpolating

over incorrect values of the features possibly taken at the previous step using the rest of the

cues. This step corresponds to the grouping process in the time direction.

From the engineering point of view, however, one cannot necessarily conclude that this

is the optimal way of performing the grouping process. It is quite obvious that the more

accurate the grouping process in the frequency direction, the more reliable the result of

that in the time direction. On the other hand, we hope to know, if possible, the features

at preceding and succeeding time points to estimate a high precision result of the feature

extraction at the current time assuming they change gradually over time. Therefore, these

two processes should be done essentially in a cooperative way and not independently in suc-

cession for even more reliable results. This belief has led us to formulate a unified estimation

framework for the two dimensional structure of time-frequency power spectra, in contrast to
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the conventional strategy. We will call this method “Harmonic-Temporal Clustering”.

4.2 Abstract and Organization of Chapter 4

we aim at developing a computational algorithm enabling the decomposition of the time-

frequency components of the signal of interest into distinct clusters such that each of them

is associated with a single auditory stream. To do so, we directly model a spectro-temporal

model whose shape can be taken freely within the Bregman’s constraint, and then try to fit

the mixture of this model to the observed spectrogram as well as possible.

As constant Q filterbank is known to be a good model for the auditory periphery system, we

will first derive in Subsection 4.3.1 the constant Q filterbank output of a pseudoperiodic signal

model and then give a specific form for the spectro-temporal structure that is associated

with the auditory stream in the succeeding subsections. In Subsection 4.4, we present the

optimization algorithm, that performs segregation of the observed spectrogram and the

parameter estimation of the auditory stream model at the same time.

4.3 Spectro-Temporal Cluster Model

4.3.1 Constant Q Filterbank Output of Pseudoperiodic Signal

Consider as the kth source signal model the analytic signal representation of a pseudo-

periodic signal given by

fk(u) =
N∑

n=1

w̃k,n(u)ej(nθk(u)+ϕk,n), u ∈ (−∞,∞), (4.1)

where u is the time, nθk(u) + ϕk,n is the instantaneous phase of the nth partial and w̃k,n(u)

the instantaneous amplitude. This signal model implies that it satisfies the ‘harmonicity’,

out of the Bregman’s grouping cues. We will first derive its constant Q filterbank output.

Let us define the wavelet basis function by

ψα,t(u) , 1√
2πα

ψ

(
u − t

α

)
, (4.2)

where α is the scale parameter such that α > 0, t the shift parameter and ψ(u) an arbitrary

analyzing wavelet that has the center frequency of 1 and satisfies the admissible condition.



44 Chapter 4 Harmonic-Temporal Clustering

ψα,t(u) is used to measure the component of period α at time t. The continuous wavelet

transform of fk(u) is then defined by

Wk

(
log 1

a
, b

)
,

〈
fk(u), ψα,t(u)

〉
u∈R

(4.3)

=

∫ ∞

−∞

N∑

n=1

w̃k,n(u)ej(nθk(u)+ϕk,n)ψ∗
α,t(u)du. (4.4)

As the dominant part of ψ∗
α,t(u) is generally localized only around time t, the result of the

integral in Eq. (4.4) depends heavily on the portion of θk(t) and w̃k,n(t) near t. Taking into

account that the instantaneous phase θk(t) and the instantaneous amplitude w̃k,n(t) of the

signal of interest often change gradually over time, approximating θk(t) and w̃k,n(t) by zero

and first order Taylor series expansions around time t:

w̃k,n(u) = w̃k,n(t) +
dw̃k,n(u)

du

∣∣∣∣
u=t

(
u − t

)
+

1

2

d2w̃k,n(u)

du2

∣∣∣∣
u=t

(
u − t

)2
+ · · ·

≈ w̃k,n(t), (4.5)

θk(u) = θk(t) +
dθk(u)

du

∣∣∣∣
u=t

(
u − t

)
+

1

2

d2θk(u)

du2

∣∣∣∣
u=t

(
u − t

)2
+ · · ·

≈ θk(t) + θ′k(t)
(
u − t

)
, (4.6)

may not affect significantly the result of Eq. (4.4). As the instantaneous frequency is

defined as the first order derivative of the instantaneous phase, θ′k(u) is the instantaneous

F0 frequency (a F0 trajectory function) of the kth source, which we will henceforth denote

by µk(u). From these approximations, Eq. (4.5) and Eq. (4.6), Eq. (4.4) can be written as

Wk

(
log 1

α
, t

)
≈

N∑

n=1

w̃k,n(t)ej(nθk(t)+ϕk,n)
∫ ∞

−∞
ejnµk(t)(u−t)ψ∗

α,t(u)du. (4.7)

Using the Parseval’s theorem, the integral part is given explicitly as
∫ ∞

−∞
ejnµk(t)(u−t)ψ∗

α,t(u)du =

〈
ejnµk(t)(u−t),

1√
2πα

ψ

(
u − t

α

)〉

u∈R(−∞,∞)

(4.8)

=

〈
ejnµk(t)u,

1√
2πα

ψ

(
t

α

)〉

u∈R(−∞,∞)

(4.9)

=

〈√
2πδ

(
ω − nµk(t)

)
,

1√
2π

Ψ(αω)

〉

ω∈R(−∞,∞)

(4.10)

= Ψ∗(αnµk(t)
)
, (4.11)

which yields

Wk

(
log 1

α
, t

)
≈

N∑

n=1

w̃k,n(t)Ψ∗(anµk(t)
)
ej(nθk(t)+ϕk,n). (4.12)
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By changing the variable x = log 1
α

and by putting Ωk(t) , log µk(t), Wk can be expressed

in the time-logfrequency domain:

Wk(x, t) =
N∑

n=1

w̃k,n(t)Ψ∗
(
ne−x+Ωk(t)

)
ej(nθk(t)+ϕk,n). (4.13)

As the frequency characteristic Ψ(ω) of the analyzing wavelet can be chosen arbitrarily, we

use here again the following unimodal real function whose maximum is taken at ω = 1 (see

Fig. 3.1):

Ψ(ω) = Ψ∗(ω) =





exp

(
−

(
log ω

)2

4σ2

)
(ω > 0)

0 (ω 5 0)

. (4.14)

Eq. (4.13) is then given as

Wk(x, t) =
N∑

n=1

w̃k,n(t) exp

(
−

(
x − Ωk(t) − log n

)2

4σ2

)
ej(nθk(t)+ϕk,n), (4.15)

and the resulting power spectrum of Eq. (4.15) can be written as

∥∥Wk(x, t)
∥∥2

=
N∑

n=1

∥∥∥∥∥w̃k,n(t) exp

(
−

(
x − Ωk(t) − log n

)2

4σ2

)
ej(nθk(t)+ϕk,n)

∥∥∥∥∥

2

+
∑

n6=n′

w̃k,n(t)w̃k,n′(t) exp

(
−

(
x − Ωk(t) − log n

)2

4σ2

)

exp

(
−

(
x − Ωk(t) − log n′)2

4σ2

)
ej(nθk(t)+n′θk(t)+ϕk,n+ϕk,n′ ). (4.16)

If we now assume that the time-frequency components are sparsely distributed so that the

partials rarely overlap, the second term could be negligibly smaller than the first term

in the above equation. This assumption justifies the additivity of power spectra and the

power spectrum of the kth source signal model is then expressed as a Gaussian mixture

model whose maxima are centered over prospective harmonics x = Ωk(t) + log n. Putting

wk,n(t) ,
√

2πσ‖w̃k,n(t)‖2 (instantaneous power), one obtains

∥∥Wk(x, t)
∥∥2 ≈

N∑

n=1

wk,n(t)√
2πσ

exp

(
−

(
x − Ωk(t) − log n

)2

2σ2

)
. (4.17)

The graphical representation of its cutting plane at time t can be seen in Fig. 4.1.

4.3.2 Nonparametric and Parametric Modeling

There may be two possible ways to enforce ‘continuity’ constraints on the temporal tra-

jectories of the instantaneous power of each partial and the instantaneous F0 frequency. One
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Figure 4.1 Graphical representation of Eq. (4.17).

is to adopt particular classes of parametric function for wk,n(t) and Ωk(t). In this case, the

smoothness of the functions can often be controlled by the degree-of-freedom of the models

we choose to apply. Second is to consider both wk,n(t) and Ωk(t) as nonparametric functions

and to try to estimate them directly. In this case, the smoothness of the functions can be

controlled by a gradient penalizing term added to the cost function. This kind of penalizer

is often called a ‘regularization term’ in the image processing area. In the Bayesian point of

view, essentially the same role is played by the prior distribution. Details will be presented

in Subsection 4.4.1. In order to distinguish between these two ways of modeling wk,n(t) and

Ωk(t), we will call the spectro-temporal source model in the former way the “parametric

spectro-temporal model”, and that in the latter way the “nonparametric spectro-temporal

model”.

Formulation of the parameter estimation algorithm depends on the choice of the parametric

model or the nonparametric model. After we show a thinkable class of parametric function

for wk,n(t) and Ωk(t) in Subsection 4.3.3, we formulate the optimal clustering algorithms,

“nonparametric HTC” in Subsection 4.4.1 and “parametric HTC” in Subsection 4.4.2.

4.3.3 Parametric Spectro-Temporal Cluster Model

Assuming the ‘common onset’ and the ‘common amplitude’ of the partial components for

the source model, the instantaneous power should be of a variable separable form of the

partial index n and the time t:

wk,n(t) = ṽk,nuk(t). (4.18)
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Figure 4.2 Graphical representation of Eq. (4.21).

Letting uk(t) satisfy

∀k,

∫ ∞

−∞
uk(t)dt = 1, (4.19)

then the parameter ṽk,n corresponds to the total energy of the nth partial of the kth source

such that ṽk,n =
∫ ∞
−∞ wk,n(t)dt. Let further be ṽk,n , wkvk,n, hence

wk,n(t) = wkvk,nuk(t), (4.20)

and let vk,n satisfy
∑

n vk,n = 1 for convenience. The normalized common power envelope

uk(t) should be a smooth and non-negative function that has a time spread from minus to

plus infinity, which can be modeled by a following type of constrained Gaussian mixture

model (see Fig. 4.2):

uk(t) =
Y −1∑

y=0

uk,y√
2πφk

exp

(
−(t − τk − κyφk)

2

2φk
2

)
. (4.21)

τk is the center of the forefront Gaussian, that could be considered as an onset time estimate,

uk,y the weight parameter for each kernel, that allows the function to have variable shapes.

To satisfy Eq. (4.19), uk,y must only be normalized to unity:

∀k,
∑

y

uk,y = 1. (4.22)

The particularity of this function is that the centers of the Gaussian function kernels are

spaced by a distance proportional to the common diffusion parameter φk with a proportion-

ality coefficient κ, which we henceforth set to 1 (see Fig. Fig. 4.2). This tying ensures

the smoothness of the curve by preventing adjacent kernels from being separated from each
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Figure 4.3 The spectro-temporal model associated with an audio stream.

Figure 4.4 Cubic spline F0 track function (Eq. (4.25))

other. φk also works as a parameter to make a linear stretch of uk(t) in the time direction

allowing to express various durations of sources. Moreover, by forbidding switches in the

position of the kernels, it reduces the singularity of the system, improving the optimization

perspectives. Substituting Eq. (4.20) and Eq. (4.21) into Eq. (4.17), one obtains

N∑

n=1

Y −1∑

y=0

wkvk,nuk,y

2πσφk

e
− (x−Ωk(t)−log n)2

2σ2 − (t−τk−yφk)2

2φ2
k . (4.23)

Its graphical representation can be seen in Fig. 4.23.

We choose two types of models for the F0 trajectory function Ωk(t), a polynomial of time

t:

Ωk(t) , Ωk,0 + Ωk,1t + Ωk,2t
2 + Ωk,3t

3 + · · · , (4.24)

and a cubic spline function (see Fig. 4.4):

Ωk(t) , 1

ti+1 − ti

(
Ωk,i(ti+1 − t) + Ωk,i+1(t − ti)

− 1

6
(t − ti)(ti+1 − t)

[
(ti+2 − t)Ω′′

k,i + (t − ti−1)Ω
′′
k,i+1

])
, t ∈ [ti, ti+1). (4.25)
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In the cubic spline F0 contour function, the analysis interval is divided into subintervals

[ti, ti+1) which are assumed of equal length. The parameters of the spline contour model

are then the values Ωk,i of the F0 at each bounding point ti. The values Ω′′
k,i of the second

derivative at those points are given by the expression Ω′′ = MΩ for a certain matrix M

which can be explicitly computed offline if we consider t1, · · · , tI are constant parameters,

under the hypothesis that the first-order derivative is 0 at the bounds of the analysis interval.

If we are able to estimate {Ωk,i}I
i=1, {vk,n}N

n=1, {uk,y}Y −1
y=0 , wk, τk, φk, then the kth source

signal can be reconstructed by Eq. (4.1) whose starting phase is chosen arbitrarily. The

parameter estimation algorithm will be discussed in Subsection 4.4.

4.4 Optimal Clustering Algorithm

We consider here the problem of decomposing the observed time-frequency spectrum into

distinct clusters that correspond to the auditory stream. Two ways of solution to this

problem is presented in the following subsections.

4.4.1 Nonparametric HTC

We will consider here the nonparametric case. Let Θ refers to {Ωk(t),{wk,n(t)}N
n=1}K

k=1.

We define by ‖Y (x, t)‖2 the time-logfrequency power spectrum of the signal of interest

obtained by the constant Q analysis. Let us introduce a masking function mk,n(x, t) that ex-

tracts the spectro-temporal components associated with the nth partial of the kth source from

‖Y (x, t)‖2. For (x, t) ∈ R2, mk,n(x, t) indicates the percentage of the portion of ‖Y (x, t)‖2

shared to the nth partial of the kth source, such that satisfies

K∑

k=1

N∑

n=1

mk,n(x, t) = 1 (4.26)

0 < mk,n(x, t) < 1, k ∈ {1, · · · , K}, n ∈ {1, · · · , N}. (4.27)

A portion of the observed power spectrum is thus given arbitrarily by

mk,n(x, t)
∥∥Y (x, t)

∥∥2
, (x, t) ∈ R2, (4.28)

which we call a “spectral cluster”. As we expect the spectral cluster to be associated with

the auditory stream, we need to introduce a measure function that specifies how well the
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spectral cluster fits all the Bregman’s grouping cues. One possible measure function may be

the I divergence between mk,n(x, t)‖Y (x, t)‖2 and the spectro-temporal model we derived in

Section 3.2:

Wk,n(x) , wk,n(t)√
2πσ

exp

(
−

(
x − Ωk(t) − log n

)2

2σ2

)
, (4.29)

which is written as

∫ ∞

−∞

∫ ∞

−∞

(
mk,n(x, t)

∥∥Y (x, t)
∥∥2

log
mk,n(x, t)

∥∥Y (x, t)
∥∥2

Wk,n(x, t)

−
(
mk,n(x, t)

∥∥Y (x, t)
∥∥2 −Wk,n(x, t)

))
dxdt. (4.30)

The optimal clustering can thus be achieved by minimizing their sum:

Φ(Θ,m) =
K∑

k=1

N∑

n=1

∫ ∞

−∞

∫ ∞

−∞

(
mk,n(x, t)

∥∥Y (x, t)
∥∥2

log
mk,n(x, t)

∥∥Y (x, t)
∥∥2

Wk,n(x, t)

−
(
mk,n(x, t)

∥∥Y (x, t)
∥∥2 −Wk,n(x, t)

))
dxdt (4.31)

with respect to Θ and mk,n(x, t). To do so, we shall find it most convenient to minimize

this objective function recursively with respect to mk,n(x, t) and Θ while keeping the other

fixed. The minimization with respect to mk,n(x, t) decomposes the observed power spectrum

using the auditory stream models estimated hypothetically at the previous step and the

minimization with respect to Θ, on the other hand, updates the auditory stream models to

a more convincing one using these separate clusters. Both steps necessarily decreases the

objective function, which is bounded below, and the convergence of this recursive algorithm

is thus guaranteed.

The update equation for the spectral masking function mk,n(x, t) that minimizes Φ(Θ,m)

when Θ is fixed is obtained analytically as

m̂k,n(x, t) =
Wk,n(x, t)∑

k

∑

n

Wk,n(x, t)
. (4.32)

Substituting this result into Eq. (4.31), we obtain

Φ(Θ, m̂) =

∫ ∞

−∞

∫ ∞

−∞

(
∥∥Y (x, t)

∥∥2
log

∥∥Y (x, t)
∥∥2

∑

k

∑

n

Wk,n(x, t)

−
(∥∥Y (x, t)

∥∥2 −
∑

k

∑

n

Wk,n(x, t)

))
dxdt, (4.33)
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from which we realize that what we are trying to minimize w.r.t Θ is the I divergence

between the whole observed power spectrum and the mixture of all the spectro-temporal

source models. From the statistical point of view, this minimization is understood as a

maximum likelihood (regression analysis) where its log-likelihood is given explicitly by

L(Θ) ,
∫ ∞

−∞

∫ ∞

−∞
log P

(
‖Y (x)‖2

∣∣Θ
)
dxdt

=

∫ ∞

−∞

∫ ∞

−∞

(∥∥Y (x, t)
∥∥2

log
∥∥W (x, t)

∥∥2 −
∥∥W (x, t)

∥∥2 − log Γ
(∥∥Y (x, t)

∥∥2
+ 1

))
dxdt.

(4.34)

See Chapter 3 for more detailed discussion.

Now we shall derive the update equation for Θ that minimizes Φ(Θ, m) when mk,n(x, t) is

fixed. The optimal Ωk(t) and wk,n(t) that minimizes the functional Φ(Θ,m) can be obtained

by the variational method. The variation of Φ(Θ,m) with respect to Ωk(t) and wk,n(t) given

as

δΦ(Θ,m) =

∫ ∞

−∞

∫ ∞

−∞

( (
∂Φ(Θ, m)

∂Ωk

)
δΩk +

(
∂Φ(Θ,m)

∂wk,n

)
δwk,n

)
dxdt, (4.35)

is identically 0 if ∂Φ(Θ,m)
∂Ωk

= 0 and ∂Φ(Θ,m)
∂wk,n

= 0. Hence, setting

∂Φ(Θ,m)

∂Ωk

=
N∑

n=1

∫ ∞

−∞
mk,n(x, t)

∥∥Y (x, t)
∥∥2−

(
x − Ωk(t) − log n

)

σ2
dx, (4.36)

to 0, one obtains

Ωk(t) =

N∑

n=1

∫ ∞

−∞
mk,n(x, t)

∥∥Y (x, t)
∥∥2(

x − log n
)
dx

N∑

n=1

∫ ∞

−∞
mk,n(x, t)

∥∥Y (x, t)
∥∥2

dx

. (4.37)

Eq. (4.37) implies a frame-by-frame F0 parameter update. Similarly, setting

∂Φ(Θ,m)

∂wk,n

= 1 −
∫ ∞

−∞
mk,n(x, t)

∥∥Y (x, t)
∥∥2 1

wk,n(t)
dx, (4.38)

to 0, one obtains

wk,n(t) =

∫ ∞

−∞
mk,n(x, t)

∥∥Y (x, t)
∥∥2

dx. (4.39)

This also implies a frame-by-frame partial power parameter update. Therefore, the HTC

method essentially amounts to the BHC, if Ωk(t) and wk,n(t) are both represented in a

nonparametric way and if no constraints are assumed on their smoothness.
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Next we shall introduce a penalizing term into the objective function Φ(Θ,m) in order

to enforce the smoothness constraints on Ωk(t) and wk,n(t). In a Bayesian point of view,

this penalizing term corresponds to the prior distribution term log P (Θ) when thinking of

maximizing the posterior probability L(Θ) + log P (Θ). Following the same way adopted in

the regularization theory, which is often used in the image processing area, we can use the

square integral of the first order partial derivative of Ωk(t):

∫ ∞

−∞

(
∂Ωk(t)

∂t

)2

dt. (4.40)

The smoother Ωk(t) is, the smaller this value. Hence, when thinking of minimizing

Φ(Θ,m) + η

K∑

k=1

∫ ∞

−∞

(
∂Ωk(t)

∂t

)2

dt, (4.41)

one must try to make as small as possible not only Φ(Θ,m) but also the second term as

well. η is a constant parameter that should be chosen experimentally to control the effect of

the two terms. The larger this value, the flatter the contour tends to be estimated.

Let us consider the discrete-time case where the first order derivative of Ωk(t) is approxi-

mated by the difference between the values taken at adjacent time points. Hence, Eq. (4.41)

is written as

K∑

k=1

N∑

n=1

I∑

i=1

∫ ∞

−∞
∆t

(
mk,n(x, ti)

∥∥Y (x, ti)
∥∥2

log
mk,n(x, ti)

∥∥Y (x, ti)
∥∥2

Wk,n(x, ti)

−
(
mk,n(x, ti)

∥∥Y (x, ti)
∥∥2 −Wk,n(x, ti)

))
dx + η

K∑

k=1

I∑

i=2

∆t

(
Ωk(ti−1) − Ωk(ti)

∆t

)2

. (4.42)

Similarly, we shall include a penalizing term also for wk,n(t). The update equations for Ωk(t)

and wk,n(t) can then be derived using Eq. (4.42) and the maximum posterior estimation

algorithm is thus formalized. The rest of the formulation shall be omitted.

4.4.2 Parametric HTC

We will consider here, on the other hand, the parametric case where wk,n(t) and Ωk(t)

are represented by the parametric models shown in Subsection 4.3.3. Let Θ refers to

{{Ωk,i}I
i=1, {vk,n}N

n=1, {uk,y}Y −1
y=0 , wk, τk, φk}K

k=1.

We define by ‖Y (x, t)‖2 the time-logfrequency power spectrum of the signal of interest

obtained by the constant Q analysis. Let us introduce a masking function mk,n,y(x, t) that
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extracts the spectro-temporal components associated with the yth temporal element of the

nth partial of the kth source from ‖Y (x, t)‖2. For (x, t) ∈ R2, mk,n,y(x, t) indicates the

percentage of the portion of ‖Y (x, t)‖2 shared to the yth temporal element of the nth partial

of the kth source, such that satisfies

K∑

k=1

N∑

n=1

Y −1∑

y=0

mk,n(x, t) = 1 (4.43)

0 < mk,n,y(x, t) < 1, k ∈ {1, · · · , K}, n ∈ {1, · · · , N}, y ∈ {0, · · · , Y − 1}. (4.44)

Binary mask technique is often used in the research area of CASA and multichannel blind

source separation to separate sources by allocating all the component in each time-frequency

bin to a single source. On the contrary, the spectral masking function mk,n,y(x, t) is similar

in some sense to this technique but could be understood as a masking function that has a

fuzzy membership to every source. A portion of the observed power spectrum is thus given

arbitrarily by

mk,n,y(x, t)
∥∥Y (x, t)

∥∥2
, (x, t) ∈ R2 (4.45)

which we call again as a “spectral cluster”. As we expect the spectral cluster to be associated

with the auditory stream, we need to introduce a measure function that specifies how well

the spectral cluster fits all the Bregman’s grouping cues. We shall use again the I divergence

between mk,n,y(x, t)‖Y (x, t)‖2 and the spectro-temporal model we derived in Section 3.2:

Wk,n,y(x) , wkvk,nuk,y

2πσφk

e
− (x−Ωk(b)−log n)2

2σ2 − (b−τk−yφk)2

2φ2
k , (4.46)

which is written as

∫ ∞

−∞

∫ ∞

−∞

(
mk,n,y(x, t)

∥∥Y (x, t)
∥∥2

log
mk,n,y(x, t)

∥∥Y (x, t)
∥∥2

Wk,n,y(x, t)

−
(
mk,n,y(x, t)

∥∥Y (x, t)
∥∥2 −Wk,n(x, t)

))
dxdt. (4.47)

The optimal clustering can thus be achieved by minimizing their sum:

Φ(Θ,m) =
K∑

k=1

N∑

n=1

Y −1∑

y=0

∫ ∞

−∞

∫ ∞

−∞

(
mk,n,y(x, t)

∥∥Y (x, t)
∥∥2

log
mk,n,y(x, t)

∥∥Y (x, t)
∥∥2

Wk,n,y(x, t)

−
(
mk,n,y(x, t)

∥∥Y (x, t)
∥∥2 −Wk,n(x, t)

))
dxdt (4.48)

with respect to Θ and mk,n(x, t). To do so, we shall find it most convenient to minimize

this objective function recursively with respect to mk,n(x, t) and Θ while keeping the other
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fixed. The minimization with respect to mk,n(x, t) decomposes the observed power spectrum

using the auditory stream models estimated hypothetically at the previous step and the

minimization with respect to Θ, on the other hand, updates the auditory stream models to

a more convincing one using these separate clusters. Both steps necessarily decreases the

objective function, which is bounded below, and the convergence of this recursive algorithm

is thus guaranteed.

The update equation for the spectral masking function mk,n(x, t) such that minimizes

Φ(Θ, m) when Θ is fixed is obtained analytically as

m̂k,n,y(x, t) =
Wk,n,y(x, t)∑

k

∑

n

∑

y

Wk,n,y(x, t)
. (4.49)

Substituting this result into Eq. (4.48), one obtains again the I divergence between the

whole observed power spectrum and the mixture of all the spectro-temporal source models:

Φ(Θ, m̂) =

∫ ∞

−∞

∫ ∞

−∞

(
∥∥Y (x, t)

∥∥2
log

∥∥Y (x, t)
∥∥2

∑

k

∑

n

∑

y

Wk,n,y(x, t)

−
(∥∥Y (x, t)

∥∥2 −
∑

k

∑

n

∑

y

Wk,n,y(x, t)

))
dxdt. (4.50)

As mentioned beforehand, this clustering objective Φ(Θ, m̂) can be monotonically de-

creased by the following 2-step iteration:

Step 0 Set initially Θ0 and put ` = 1.

Step 1 Update the spectral masking function: m(`) = argmin
m

Φ(Θ(`−1),m)

Step 2 Update Θ to Θ(`) such that Φ(Θ, m(`)) 5 Φ(Θ(`−1),m(`)) and set ` ←

` + 1 and then return to Step 1.

Setting to zero the partial derivative of Eq. (4.50), the update equation of each parameter
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at Step 2 of the `-th iteration is derived analytically as follows:

w
(`)
k =

N∑

n=1

Y −1∑

y=0

∫ ∞

−∞

∫ ∞

−∞
m

(`)
k,n,y(x, t)

∥∥Y (x, t)
∥∥2

dxdt, (4.51)

Ω
(`)
k,0 =

1

w
(`)
k

N∑

n=1

∫ ∞

−∞

∫ ∞

−∞
m

(`)
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∥∥Y (x, t)
∥∥2

(x − log n)dxdt, (4.52)

τ
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k )dxdt, (4.53)
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∫ ∞

−∞
m
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dxdt, (4.54)

u
(`)
k,y =

1

w
(`)
k

N∑

n=1

∫ ∞

−∞

∫ ∞

−∞
m

(`)
k,n,y(x, t)

∥∥Y (x, t)
∥∥2

, (4.55)
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)1
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)
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(t − τ
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k )2dxdt

.

We showed in the above only the update equation for Ωk,0, which is the coefficient of the 0th

order term in the polynomial-type F0 trajectory function given by Eq. (4.24). Note that the

update equations for the coefficients of the other terms can be derived analytically as well.

On the other hand, the update equation for each term in the cubic-spline-type F0 trajectory

function given by Eq. (4.25) is derived as follow:

Ω
(`)
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N∑
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Y −1∑
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−∞

∫ ∞
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. (4.57)

where Ω
(`)
k,i = (Ω

(`)
k,1, . . . , Ω

(`)
k,i−1, Ω

(`−1)
k,i , Ω

(`−1)
k,i+1, . . . , Ω

(`−1)
k,I ) and Ω̃

(`)
k,n,i(t;Ω

(`)
k,i) = Ωk(t;Ω

(`)
k,i) −

∂Ωk(t)
∂Ωk,i

Ω
(`)
k,i + log n does not depend on Ωk,i and ∂Ωk(t)

∂Ωk,i
only depends on t and the fixed matrix

M .

The so far constant σ, which depends on which value we set in the front-end constant

Q analysis, can be regarded as a free variable σk for each k and its update equation can

be derived analytically. The ML estimate of σk itself is not what we really want to obtain

as its true value is already known, but by updating σk in parallel to the other parameters,
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we expect that it could avoid other variables to be trapped in local optima. As we know

empirically that in parameter learning of GMM, the update of the variance parameter of

each Gaussian component often helps other parameters getting out of local optima, this is

the reason why we treat σk as free parameters here. The update equation for σk is given as

σ
(`)
k =

(
1

w
(`)
k

N∑

n=1

Y −1∑

y=0

∫ ∞

−∞

∫ ∞
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(
x − Ω

(`)
k (t) − log n

)2

dxdt

) 1
2

. (4.58)

4.5 Bayesian HTC

4.5.1 Reformulation

We used in Subsection 4.4.2 the I-divergence [30] to measure the “distortion” between the

two distributions:

I(Θ) ,
∫ ∞

−∞

∫ ∞

−∞

(
‖Y (x, t)‖2 log

‖Y (x, t)‖2

W (x, t;Θ)
−

(
‖Y (x, t)‖2 − W (x, t;Θ)

))
dxdt, (4.59)

where

W (x, t;Θ) =
K∑

k=1

N∑

n=1

Y −1∑

y=0

Wk,n,y(x, t), (4.60)

is the sum of all the source models spread in the time-frequency plane, and we were looking

for Θopt = argminΘ I(Θ). Keeping only the terms depending on Θ and reversing the sign

of this expression, one defines the following function to maximize w.r.t. Θ:

J (Θ) =

∫ ∞

−∞

∫ ∞

−∞

(
‖Y (x, t)‖2 log W (x, t;Θ) − W (x, t;Θ)

)
dxdt. (4.61)

Using this function J , one can derive the likelihood of the parameter Θ:

P (Y |Θ) , e
J (Θ)−

R ∞
−∞

R ∞
−∞ log Γ

(
1+‖Y (x,t)‖2

)
dxdt

, (4.62)

where Γ(·) is the Gamma function and the second part of the exponent ensures that we

obtain a probability measure. One can indeed see this probability as the joint probability of

all the variables ‖Y (x, t)‖2 independently following Poisson-like distributions of parameter

W (x, t). This way of presenting the problem enables us to interpret it as a Maximum A

Posteriori (MAP) estimation problem and to introduce prior functions on the parameters as
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follows, using Bayes theorem:

Θ̂MAP = argmax
Θ

P (Θ|Y )

= argmax
Θ

(
log P (Y |Θ) + log P (Θ)

)

= argmax
Θ

(
J (Θ) + log P (Θ)

)
. (4.63)

Our goal is now equivalent to the maximization with respect to Θ of J (Θ)+ log P (Θ). The

problem is that in the term
∫ ∞
−∞

∫ ∞
−∞ ‖Y (x, t)‖2 log

∑
k,n,y Wk,n,y(x, t) dxdt, there is a sum

inside the logarithm, and that is why we cannot obtain an analytical solution. But if we

introduce non-negative membership degrees mk,n,y(x, t) summing to 1 for each (x, t), one can

write, using the concavity of the logarithm:

log
∑

k,n,y

Wk,n,y(x, t;Θ) = log
∑

k,n,y

mk,n,y(x, t)
Wk,n,y(x, t)

mk,n,y(x, t)
(4.64)

= log
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〉

m

(4.65)

≥

〈
log
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mk,n,y(x, t)

〉

m

=
∑

k,n,y

mk,n,y(x, t) log
Wk,n,y(x, t)

mk,n,y(x, t)
, (4.66)

where 〈·〉m denotes the convex combination with coefficients m. Moreover, the inequality

(4.64) becomes an equality for

m̂k,n,y(x, t) =
Wk,n,y(x, t)∑

k

∑

n

∑

y

Wk,n,y(x, t)
. (4.67)

We can thus iteratively maximize the likelihood by alternately updating Θ and the mem-

bership degrees m, which act as auxiliary parameters, while keeping the other fixed:

(E-step) Update the spectral masking function: m(`) = argmax
m

J +(Θ(`−1),m).

(M-step) Update Θ to Θ(`) such that J +(Θ, m(`))+log P (Θ) ≥ J +(Θ(`−1),m(`))+

log P (Θ`−1) and set ` ← ` + 1 and then return to E-step.

with

J +(Θ,m) ,
∫ ∞

−∞

∫ ∞

−∞

( ∑

k,n,y

mkny(x, t)‖Y (x, t)‖2 log
Wk,n,y(x, t)

mk,n,y(x, t)
−W (x, t;Θ)

)
dxdt. (4.68)

One must notice that this iterative procedure is called the EM algorithm [33]. For all m, we

indeed have from (4.64) that

J (Θ) + log P (Θ) ≥ J +(Θ,m) + log P (Θ), (4.69)
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J (Θ, m)

J (Θ, m̂)

J (Θ̂, m̂)

J (Θ)

J (Θ̂)

M-step

E-step

Figure 4.5 Optimization through the EM algorithm. During the E-

step, the auxiliary parameter m is updated to widem̂ so that J (Θ) =

J +(Θ, widem̂). Then, during the M-step, J +(Θ, m̂) is optimized w.r.t.

Θ, ensuring that J (Θ̂) ≥ J +(Θ̂, m̂) ≥ J +(Θ, m̂) = J (Θ). The local

maximization of J (Θ) can thus be performed through the maximization of

the auxiliary function J +(Θ,m) alternately w.r.t. m and Θ.

and J +(Θ, m̂) can be used as an auxiliary function to maximize, enabling us to obtain

analytical update equations. The optimization process is illustrated in Fig. 4.5.1. The

E-step is straightforward and is dealt with in exactly the same way as in Chapter 3.

4.5.2 Prior Distribution

As seen in Subsection 4.5.1, the optimization of our model can be naturally extended

to a Maximum A Posteriori (MAP) estimation by introducing prior distributions P (Θ) on

the parameters, which work as penalty functions that try to keep the parameters within a

specified range. The parameters which are the best compromise with empirical constraints

are then obtained through equation Eq. (4.63).

By introducing such a prior distribution on vkn, it becomes possible to prevent half-pitch

errors, as the resulting source model would usually have a harmonic structure with zero

power for all the odd order harmonics, which is abnormal for usual speech and instruments.

A prior distribution on uk,y, on the other hand, helps to avoid overfitting many source models
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to the observed power envelope of a single source, as the resulting individual source models

in this case would often have abnormal power envelopes. We apply the Dirichlet distribution,

which is explicitly given by:

p(vk) ,
Γ
( ∑

n(dvv̄n + 1)
)

∏
n Γ(dvv̄n + 1)

∏

n

vk,n
dv v̄n , (4.70)

p(uk) ,
Γ
( ∑

y(duūy + 1)
)

∏
y Γ(duūy + 1)

∏

y

uk,y
duūy , (4.71)

where v̄n and ūy is the most preferred ‘expected’ values of vk,n and uk,y such that
∑

n v̄n =1

and
∑

y ūy =1, dv and du the weighting constants of the priors and Γ(·) the Gamma function.

The maximum values for P (vk) and P (uk) are taken respectively when vk,n = v̄n for all n

and uk, y = ūy for all y. When dv and du are zero, P (vk) and P (uk) become uniform

distributions. The choice of this particular distribution allows us to give an analytical form

of the update equations of vk,n and uk,y:
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Although the spline model can be used as is, one can also introduce in the same way a prior

distribution on the parameters zj of the spline F0 contour, in order to avoid an overfitting

problem with the spline function. Indeed, spline functions have a tendency to take large

variations, which is not natural for the F0 contour of a speech utterance. Moreover, the F0

contour might also be hard to obtain on voiced parts with relatively lower power, or poor

harmonicity. The neighboring voiced portions with higher power help the estimation over

these intervals by providing a good prior distribution.

To build this prior distribution, we assume that the zj form a Markov chain, such that

K∏

k=1

P (Ωk,0, . . . , Ωk,n) =
K∏

k=1

P (Ωk,0)
I−1∏

j=1

P (Ωk,j|Ωk,j−1), (4.74)

and assume furthermore that Ωk,0 follows a uniform distribution and that, conditionally to

Ωk,j−1, Ωk,j follows a Gaussian distribution of center Ωk,j−1 and variance σ2
s corresponding

to the weighting constant of the prior distribution:

P (Ωk,j|Ωk,j−1) =
1√

2πσs

e
−

(Ωk,j−Ωk,j−1)2

2σ2
s . (4.75)
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In the derivative with respect to Ωk,j used above to obtain (Eq. (4.57)) add up two new

terms
∂ log P (Ωk,j |Ωk,j−1)

∂Ωk,j
+

∂ log P (Ωk,j+1|Ωk,j)

∂Ωk,j
, and the update equation Eq. (4.57) then becomes

Ω
(`)
k,j =

2

σ2
s

·
Ω

(`)
k,j−1 + Ω

(`−1)
k,j+1

2
+ A

(`)
j

2

σ2
s

+ B
(`)
j

, (4.76)

where A
(`)
j and B

(`)
j are respectively the numerator and denominator of the right term of

equation Eq. (4.57). The update equation for the boundary points is derived similarly.

The update equations for the rest of the parameters are given as is shown in Subsection

4.4.2.

4.6 Experimental Evaluation

A perceptual unit as defined in ASA does not necessarily coincide with a single physical

event, but we may be able to show by investigating in an engineering way through experimen-

tal evaluations the performance of our algorithm in a particular case how deeply Bregman’s

grouping cues are related to a physical phenomenon. In this subsection, to show the effec-

tiveness of the Harmonic Temporal Clustering (hereafter HTC), we perform F0 estimation

experiments on various kinds of acoustic signals and evaluate its performance.

4.6.1 Note Estimation from Acoustic Signals of Music

We first evaluated accuracies of note estimation using real-performed music acoustic signals

excerpted from RWC music database [44]. The experimental data used for the evaluation

can be seen in Table 4.1. The Power spectrum time series was analyzed by the wavelet

transform (constant Q analysis) using Gabor-wavelet basis functions with a time resolution

of 16 ms for the lowest frequency subband on an input signal digitalized at a 16 kHz sampling

rate. To speed up the computation time, we set the time resolution across all the subbands

equally to 16ms. The lower bound of the frequency range and the frequency resolution were

60 Hz and 12 cents, respectively. The initial parameters of (µk0, τk|k = 1, · · · , K) for the

HTC source models were automatically determined by picking the 60 largest peaks in the

observed spectrogram of 400 consecutive frames (6.4s). After the parameters converged, the
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Table 4.1 List of the experimental data excerpted from RWC music database [44].

Symbol Title (Genre) Composer/Player Instruments Ave. source#

data(1) Crescent Serenade (Jazz) S. Yamamoto Guitar 2.13

data(2) For Two (Jazz) H. Chubachi Guitar 2.67

data(3) Jive (Jazz) M. Nakamura Piano 1.86

data(4) Lounge Away (Jazz) S. Yamamoto Guitar 4.04

data(5) For Two (Jazz) M. Nakamura Piano 2.34

data(6) Jive (Jazz) H. Chubachi Guitar 1.78

data(7) Three Gimnopedies no. 1 (Classic) E. Satie Piano 2.96

data(8) Nocturne no.2, op.9-2(Classic) F. F. Chopin Piano 1.55

source model, whose energy per unit time given by wk

Y φk
was smaller than a threshold, was

considered to be silent. The experimental conditions are shown in detail in Table 4.2.

We chose ∗‘PreFEst’ [45] for comparison, as it is one of the most frequently cited works

which is dedicated to multipitch analysis. Since PreFEst extracts only the most dominant

F0 trajectory and does not include a specific procedure of estimating the number of sources,

we included intensity thresholding as well for the F0 candidate truncation.

As the HTC method generates F0, onset time and offset time with continuous values,

we quantize them to the closest note and the closest frame number in order to match with

the format of the reference. Using the hand-labeled ground truth data as references, F0

accuracies were computed by

X − D − I − S

X
× 100(%).

X : # of the total frames of the voiced parts

D : # of deletion errors

I : # of insertion errors

S : # of substitution errors

∗Note that we implemented for the evaluation only the module called ‘PreFEst-core’, a framewise F0

likelihood estimation, and not included the one called ‘PreFEst-back-end’, a multi-agent based F0 tracking

algorithm. Refer to [45] for their details.
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Table 4.2 Experimental Conditions

frequency Sampling rate 16 kHz

analysis frame shift 16 ms

frequency resolution 12.0 cent

frequency range 60–3000 Hz

HTC # of HTC source models: K 60

# of partials: N 6

# of kernels in Uk(t): Y 10

v̄n 0.6547 × n−2

ūy 0.2096 × e−0.2y

dv, du 0.04

time range of a spectrogram segment 400 frames (6.4 s)

# of the segments 4 (total time: 25.6 s)

PreFEst F0 resolution 20 cent

[45] # of partials 8

# of tone models 200

standard deviation of Gaussian 3.0

r̄n 0.6547 × n−2

d̄ (prior contribution factor) 3.0

A typical example of the F0, onset and offset estimates on a particular test data is shown

in Fig.4.6 together with the hand-labeled ground truth data. The optimized model and the

observed power spectrum time series are shown with 3D and grayscale displays in Fig.4.7.

To validate the performance of the proposed method, we compared the highest accuracy

of the HTC method with that of the PreFEst among all the thresholds that were tested,

which also shows the limit of the potential capability. The highest accuracies of PreFEst

and HTC among all the thresholds we tested are shown in table Table 4.3 together with

the number of insertion, deletion and substitution errors, respectively. Comparing these

accuracies between PreFEst and HTC, HTC outperforms PreFEst for most of the data,

which verifies its potential.
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Figure 4.6 Estimates of µk0, τk, Y φk (top) and piano-roll display of the reference MIDI (bot-

tom)

The workstation used to perform the experiments had a Pentium IV processor with 3.2

GHz clock speed and 2 GB memory. With our implementation with the conditions listed

in Table 4.2, the computational time for analyzing an acoustic signal of 25.6 seconds length
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Figure 4.7 Observed spectrogram (top) and estimated spectro-temporal model (bottom)

was about 2 minutes. In most cases, the parameters of the HTC source models converged

within less than 100 iteration cycles.

We also compared the HTC performances with different conditions: the time range of an

analyzing spectrogram segment of 100, 200 and 400 frames, and the number of the HTC

source models of 15, 30 and 60, respectively. Comparative results are shown in Table 4.4.
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Table 4.3 Accuracies of the PreFEst [45] and the HTC.

conventional ‘PreFEst’[45] proposed ‘HTC’

X Accuracy (%) I D S Accuracy (%) I D S

data(1) 3063 74.2 383 327 81 81.2 210 312 55

data(2) 3828 71.8 455 397 228 77.9 241 397 208

data(3) 2671 55.9 553 500 126 64.2 313 524 120

data(4) 5798 76.2 476 650 254 75.2 361 769 310

data(5) 3366 62.3 565 515 190 62.2 465 627 178

data(6) 2563 48.8 531 597 185 63.8 304 476 147

data(7) 4244 53.6 801 830 337 63.2 427 734 403

data(8) 2227 57.6 367 482 96 70.9 278 291 79

From the results, one can see that the larger the time range of a spectrogram segment, the

higher the accuracies. This shows that the domain of definition of t should be as large as

possible for a higher performance of the HTC.

4.6.2 F0 Determination of Single Speech in Clean Environment

We evaluated the accuracy of the F0 contour estimation of our model on a database of

speech recorded together with a laryngograph signal [11], consisting of one male and one

female speaker who each spoke 50 English sentences for a total of 0.12h of speech, for the

purpose of evaluation of F0-estimation algorithms.

The power spectrum ‖Y (x, t)‖2 was calculated from an input signal digitized at a 16kHz

sampling rate (the original data of the database was converted from 20kHz to 16 kHz) using

a Gabor wavelet transform with a time resolution of 16ms for the lowest frequency subband.

Higher subbands were downsampled to match the lowest subband resolution. The lower

bound of the frequency range and the frequency resolution were respectively 50Hz and 14

cent. The spline contour was initially flat and set to 132Hz for the male speaker and 296Hz
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Table 4.4 Comparison of the HTC performances with different ranges of a spectrogram seg-

ment and the number of source models.

Time range: 100 frames, K: 15 Time range: 200 frames, K: 30

X Accuracy (%) I D S Accuracy (%) I D S

data(1) 3063 68.5 130 677 159 79.4 188 368 76

data(2) 3828 75.1 142 720 93 74.2 218 538 233

data(3) 2671 58.7 271 671 160 61.8 332 549 139

data(4) 5798 60.7 175 1863 243 66.6 232 1376 327

data(5) 3366 55.3 427 926 153 59.6 385 774 201

data(6) 2563 57.7 229 617 239 61.2 270 519 206

data(7) 4244 54.4 309 1226 400 63.5 470 619 461

data(8) 2227 58.8 234 598 85 68.2 315 325 69

Time range: 400 frames, K: 60

X Accuracy (%) I D S

data(1) 3063 81.2 210 312 55

data(2) 3828 77.9 241 397 208

data(3) 2671 64.2 313 524 120

data(4) 5798 75.2 361 769 310

data(5) 3366 62.2 465 627 178

data(6) 2563 63.8 304 476 147

data(7) 4244 63.2 427 734 403

data(8) 2227 70.9 278 291 79
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Figure 4.8 A screenshot of the GUI editor we implemented to create the ground truth data

set of note pitches, onsets and durations. The note events of the supplement MIDI data

included in the RWC database, which are not temporally aligned with the corresponding real

performed signal data, are displayed as rectangular objects over the spectrogram of the real

performed signal. We are then able to edit the rectangular objects to align carefully the onset

and offset times according to the background spectrogram.

for the female speaker. The length of the interpolation intervals was fixed to 4 frames. For

HTC, we used K = 10 source models, each of them with N = 10 harmonics. This is enough

for F0 estimation. For a better modeling of the spectrogram, one can use 40 or 60 harmonics

for example. Temporal envelope functions were modeled using Y = 3 Gaussian kernels. The

initial values of wk, τk and φk were determined uniformly, and σk was fixed to 422 cents. For

the prior functions, σs was fixed to 0.4, dv to 0.04 and (v̄n)1≤n≤N = 1
N

(8, 8, 4, 2, 1, . . . , 1).

We used as ground truth the F0 estimates and the reliability mask derived by de Cheveigné

et al. [25] under the following criteria: (1) any estimate for which the F0 estimate was
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(a) Observed spectrogram and estimated F0 contour

(b) Modeled spectrogram and estimated F0 contour

Figure 4.9 Comparison of observed and modeled spectra (“Tsuuyaku denwa kokusai kaigi

jimukyoku desu”, female speaker). The estimated F0 contour is reproduced on both the ob-

served and modeled spectrograms to show the precision of the algorithm.
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obviously incorrect was excluded and (2) any remaining estimate for which there was evidence

of vocal fold vibration was included. Frames outside the reliability mask were not taken into

account during our computation of the accuracy, although our algorithm gives values for

every point of the analysis interval by construction. As the spline function gives an analytical

expression for the F0 contour, we compare our result with the reference values at a sampling

rate of 20kHz although all the analysis was performed with a time resolution of 16ms.

Deviations over 20% from the reference were deemed to be gross errors. The results can be

seen in Table Table 4.5, with for comparison the results obtained by de Cheveigné et al. [25]

for several other algorithms. Notations stand for the method used, as follows: ac: Boersma’s

autocorrelation method [14] [15], cc: cross-correlation [15], shs: spectral subharmonic sum-

mation [48] [15], pda: eSRPD algorithm [11] [120], fxac: autocorrelation function (ACF) of

the cubed waveform [121], fxcep: cepstrum [121], additive: probabilistic spectrum-based

method [35], acf: ACF [25], nacf: normalized ACF [25], TEMPO: the TEMPO algorithm

[64], YIN: the YIN algorithm [25]. More details concerning these algorithms can be found

in [25]. We can see that our model’s accuracy for clean speech is comparable to the best

existing single speaker F0 extraction algorithms designed for that purpose.

4.6.3 Multipitch Estimation of Concurrent Speech

We present here results on the estimation of the F0 contour of the co-channel speech of two

speakers speaking simultaneously with equal average power. We used again the database

mentioned above [11], and produced a total of 150 mixed utterances, 50 for each of the

“male-male”, “female-female” and “male-female” patterns, using each utterance only once

and mixing it with another such that two utterances of the same sentence were never mixed

together. We used our algorithm in the same experimental conditions as described in 4.6.2

for clean single-speaker speech, but using two spline F0 contours. The spline contours were

initially flat and set to 155Hz and 296Hz in the male-female case, 112Hz and 168Hz in the

male-male case, and 252Hz and 378Hz in the female-female case.

The evaluation was done in the following way: only times inside the reliability mask of

either of the two references were counted; for each reference point, if either one of the two

spline F0 contours lies within a criterion distance of the reference, we considered the estima-

tion correct. We present scores for two criterion thresholds: 10% and 20% For comparison,

tests using the WWB algorithm [115] introduced earlier were also performed, using the code
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Table 4.5 Gross error rates for several F0 estimation

algorithms on clean single speaker speech

Method Gross error (%)

pda 19.0

fxac 16.8

fxcep 15.8

ac 9.2

cc 6.8

shs 12.8

acf 1.9

nacf 1.7

additive 3.6

TEMPO 3.2

YIN 1.4

HTC (proposed) 3.5

made available by its authors. YIN could not be used as it does not perform multipitch es-

timation. Results summarized in Table 4.7 show that our algorithm outperforms the WWB

algorithm on this experiment. Fig. 4.6.3 shows the spectrogram of a signal obtained by

mixing the two Japanese utterances “oi wo ou” by a male speaker and “aoi” by a female

speaker, together with the F0 contours estimated by our method. One can see from Fig. 4.11

that the spectro-temporal cluster models are separately estimated such that each of them is

associated with a single speaker’s speech.
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Table 4.6 F0 estimation of concurrent speech by multiple speakers, gross

error for a difference with the reference higher than 20% and 10%

Gross error threshold 20% 10%

methods HTC WWB HTC WWB

Male-Female 93.3 81.8 86.8 81.5

Male-Male 96.1 83.4 87.9 69.0

Female-Female 98.9 95.8 95.6 90.8

Total 96.1 87.0 90.2 83.5

Figure 4.10 The observed spectrogram of concurrent speech signal of two speakers

talking at the same time and the estimated F0 contour.

4.7 Summary of Chapter 4

In this chapter, based on Bregman’s grouping cues, we proposed a new methodology to

estimate simultaneously the spectral structure of each source on the whole time-frequency
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(a) Modeled spectrogram, speaker 1

(b) Modeled spectrogram, speaker 2

Figure 4.11 Parametric representation of separated spectrograms. Fig. 4.6.3 shows the spec-

trogram of a signal obtained by mixing the two Japanese utterances “oi wo ou” by a male

speaker and “aoi” by a female speaker, together with the F0 contours estimated by our method.

Fig. (a) and Fig. (b) show the parametric representations of the spectrograms of the utter-

ances by the male and female speaker respectively, extracted from the mixed signal shown in

Fig. 4.6.3.
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Table 4.7 F0 estimation of concurrent speech by multiple speakers, gross

error for a difference with the reference higher than 20% and 10%

Gross error threshold 20% 10%

HTC WWB HTC WWB

Male-Female 93.3 81.8 86.8 81.5

Male-Male 96.1 83.4 87.9 69.0

Female-Female 98.9 95.8 95.6 90.8

Total 96.1 87.0 90.2 83.5

domain, which we called Harmonic-Temporal Clustering (HTC). Through evaluation exper-

iments on the F0 estimation of mixed speech signals and music signals, we showed that our

method’s accuracy outperforms the previous state-of-the-art methods of each of these areas.



Chapter 5

Joint Estimation of Spectral Envelope

and Fine Structure

5.1 Introduction

F0 determination and spectral envelope estimation both have a long history in speech

research as they play a very important role in a wide range of speech processing activities

such as speech compression, speech recognition and synthesis. Although many efforts have

been devoted to both of these topics of research, the problem of determining F0 and spectral

envelope seems to have been tackled independently. The aim of this chapter is to highlight the

importance of jointly determining the F0 and the spectral envelope. From this standpoint,

we will propose a new speech analyzer that jointly estimates F0 and spectral envelope using

a parametric speech source-filter model.

Up to now, a number of approaches to spectral envelope estimation have been investigated:

LPC (Linear Predictive Coding) [53], PARCOR (Partial Autocorrelation) [55], LSP (Line

Spectrum Pair) [56], pole-zero modeling techniques [68, 96, 58, 100], DAP (discrete all-pole)

modeling [36], MVDR (minimum variance distortionless response) modeling [73], IAP (itera-

tive all-pole) modeling [78], SEEVOC (spectral envelope estimation vocoder) [80], cepstrum

[77] approaches such as LPC cepstrum [9], discrete cepstrum method [42], regularized dis-

crete cepstrum method [20], discrete cepstrum method based on OLC (optimization of the

likelihood criterion) [19] and true envelope estimator [52], STRAIGHT (Speech Transfor-

mation and Representation using Adaptive Interpolation of weiGHTed spectrum) [63], and

others such like [74, 85]. LPC [53, 55, 56] estimates the vocal tract characteristics mod-

eled by an all-pole filter by assuming the excitation source signal of the vocal cords to be

74
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a Gaussian white process, and has been applied with great success in many problems of

speech processing. Cepstrum [77] is used to extract the spectral envelope by low-pass filter-

ing a log-amplitude spectrum interpreted as a signal. The fact that MFCC (Mel-Frequency

Cepstral Coefficients) [31] has become the most popular feature in speech recognition im-

plies how well the cepstrum-based spectral envelopes express the vocal tract characteristics

of speech. Furthermore, LPC cepstrum analyzer [9] is also a well-known and widely used

spectral envelope extractor. DAP modeling [36] is an improved method of LPC, that tries

to fit an all-pole transfer function to the discrete set of frequency points, and is known to

be slightly more accurate than the classical LPC. Discrete cepstrum first presented by Galas

and Rodet in [42] is an improved method of cepstrum, that estimates directly the cepstral

coefficients through the minimization of a frequency-domain least squares criterion using

discrete set of frequency points of the harmonic peaks. Regularized discrete cepstrum [20]

is based on the discrete cepstrum approach that makes use of a regularization technique in

order to enforce smoothness conditions on spectral envelope estimates. OLC cepstrum [19]

is a further improved method that optimizes the cepstral coefficients through a different like-

lihood criterion, which is considered to be one of today’s state-of-the-art methods. Another

state-of-the-art technique, called STRAIGHT [63], starts by estimating the F0 frequency,

and then, using an analysis window varying in time according to the F0 estimate precisely

estimates the spectral envelope in a non-parametric way.

Making explicit use of the F0 estimates via F0 extractor, as opposed to the classical LPC

and cepstrum, is certainly one of the reasons that discrete cepstrum methods [42, 20, 19] and

STRAIGHT have been such a high-quality spectral envelope extractor. Accordingly, we can

thus expect that the higher the accuracy of F0 determination the more accurate the spectral

envelope estimate.

However, although a huge number of F0 estimation algorithms have been proposed [49,

50, 25], the reliability of them are still limited. The ambiguity involved in the definition

of F0 makes its determination difficult. In particular, one of the most diffucult problems

is how to reduce subharmonic errors, or say, “octave errors”. In a mathematical sense,

the period of the signal s(t), the inverse of F0, is defined as the minimum of T such that

s(t) = s(t + T ). This definition, however, applies strictly only to a perfectly periodic signal

but as for speech, that departs from perfect periodicity, one must find the minimum of T

such that s(t) ≈ s(t + T ). The difficulty in F0 estimation of the acoustic signal in a real

environment, in general, stems from the fact that T that is ‘likely’ to be the smallest member
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Figure 5.1 The linear system approximation model in the power spectrum domain

of the infinite set of time shifts that leave the signal ‘almost’ invariant is not always unique,

since if T is the true pitch period one obtains s(t) ≈ s(t+nT ) for all n ∈ N, where nT (n 6= 1)

correspond to the periods of subharmonics. It thus sometimes become difficult to determine

which one is the true pitch period, and choosing nT (n 6= 1) instead of T is referred to as

the subharmonic error. Making a subharmonic error amounts to misinterpreting as the true

spectrum a harmonic structure with zero power for all the odd order harmonics, which is

abnormal for usual speech and instruments. Such an error could thus be corrected if we knew

in advance the true spectral envelope or at least by assuming that the spectral envelope are

usually relatively smooth. For this reason, the spectral smoothness assumption has indeed

been used to reduce subharmonic errors in F0 estimation [10, 67].

So far, we have discussed that the more reliable the F0 determination the more accurate the

spectral envelope estimation will be, and, on the other hand, the more accurate the spectral

envelope estimation the more reliable the F0 determination will be. The F0 determination

and the spectral envelope estimation, having such a chicken and egg relationship, should

thus be done jointly rather than independently in succession. This is the standpoint we

chose in this chapter to formulate a joint estimation model of the spectral envelope and the

fine structure.
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5.2 Formulation of the Proposed Method

5.2.1 Speech Spectrum Modeling

A short-time segment of speech signal y(t) can be modeled as an output of the linear

system of the vocal tract impulse response h(t) with the source excitation s(t) such that

y(t) =
(
s(t) ∗ h(t)

)
w(t), (5.1)

where t is time and w(t) a window function. In the Fourier domain, the above equation is

written as

Y (ω) =
(
S(ω)H(ω)

)
∗ W (ω), (5.2)

where ω is the frequency, Y (ω), S(ω), H(ω) and W (ω) are the Fourier transforms of y(t),

s(t), h(t) and w(t). Letting the excitation source signal s(t) be a pulse sequence with pitch

period T such that

s(t) =

√
T

2π

∞∑

n=−∞

δ(t − nT ), (5.3)

the Fourier transform of its analytic signal representation is again a pulse sequence given by

S(ω) =

√
T

2π

[
2π

T

∞∑

n=0

δ

(
ω − n

2π

T

)]

=
√

µ
∞∑

n=0

δ(ω − nµ), (5.4)

where µ , 2π
T

is the F0 parameter, δ(·) the Dirac delta function, and n runs over the

integers. Multiplying S(ω) by the vocal tract frequency response H(ω) and then taking the

convolution with the frequency response W (ω) of the window function yields the complex

spectrum of the short-time segment of voiced speech:

Y (ω) =
(
S(ω)H(ω)

)
∗ W (ω)

=

[
√

µ

∞∑

n=0

H(nµ)δ(ω − nµ)

]
∗ W (ω)

=
√

µ
∞∑

n=0

H(nµ)W (ω − nµ). (5.5)
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We will use as a model of the speech spectrum the approximation of its power spectrum

(Fig. 5.1):

∥∥Y (ω)
∥∥2

= µ

(
∞∑

n=0

∥∥H(nµ)
∥∥2∥∥W (ω − nµ)

∥∥2
+

∑

n6=n′

H∗(n′µ)H(nµ)W ∗(ω − n′µ)W (ω − nµ)

)

≈ µ

∞∑

n=0

∥∥H(nµ)
∥∥2∥∥W (ω − nµ)

∥∥2
. (5.6)

This approximation is justified under the sparseness assumption that the power spectrum of

the sum of multiple signal components is approximately equal to the sum of the power spectra

generated independently from the components. The smaller the interferences between the

harmonics, where the cross term W ∗(ω − n′µ)W (ω − nµ) such that n 6= n′ is sufficiently

smaller than
∥∥W (ω − nµ)

∥∥2
, the higher the accuracy of this approximation. If we now

suppose the analysis window w(t) to be a Gaussian window, |W (ω)|2 can then be as well

written as a Gaussian distribution function with the frequency spread σ:

∥∥W (ω)
∥∥2

=
1√
2πσ

exp

(
− ω2

2σ2

)
. (5.7)

From Eq. (5.6), one can see that with this model each frequency component power is not free

but determined at once through the spectral envelope function ‖H(ω)‖2, each component

power being dependent on the rest of the components. As we want ‖H(ω)‖2 to be a smooth

and non-negative function of ω and in order to enable a prompt application to the speech

synthesis method called “Composite Wavelet Model (CWM)” developed by our group [87],

we introduce the following Gaussian mixture function (see Fig. 5.2):

∥∥H(ω)
∥∥2 , η

M∑

m=1

θm√
2πνm

exp

(
−(ω − ρm)2

2ν2
m

)
, (5.8)

with
M∑

m=1

θm = 1. (5.9)

The scale parameter η determines the level of the spectrum model. From Eqs. (5.6)–(5.8),

the speech spectrum can now be written as:

∥∥Y (ω)
∥∥2

= µ

N∑

n=0

∥∥H(nµ)
∥∥2

√
2πσ

exp

(
−(ω − nµ2)

2σ2

)

=
µη

2πσ

N∑

n=0

[
M∑

m=1

θm

νm

exp

(
−(nµ − ρm)2

2ν2
m

)]
exp

(
−(ω − nµ)2

2σ2

)

=
N∑

n=0

M∑

m=1

ηµθm

2πσνm

exp

(
−(ω − nµ)2

2σ2
− (nµ − ρm)2

2ν2
m

)
. (5.10)
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Figure 5.2 Spectral envelope model ‖H(ω)‖2
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Figure 5.3 Compound model of spectral envelope and fine structure ‖Y (ω)‖2

One notices from Eq. (5.10) that the spectral model we present here is a compound model

of two Gaussian mixtures each of which represents the spectral envelope and the spectral

fine structure (see Fig. 5.3).

So far we have only discussed voiced speech with a harmonic structure, but by making

the up to now constant σ in Eq. (5.10) a free parameter, the model can also be used

to approximate reasonably an unvoiced speech spectrum. White noise is indeed generally

used as excitation source to synthesize unvoiced speech, but as its power spectrum is a

uniform distribution, if in Eq. (5.10) σ becomes large enough such that the tails of adjacent

Gaussians cover each other, the harmonic structure disappears and the model appears as a

white spectrum. However, as the approximation given in Eq. (5.6) in this case becomes less

accurate, a more careful modeling for unvoiced speech should be investigated in the future.

The free parameters of the model are Θ = (µ, σ, η, ρ1, · · · , ρM , ν1, · · · , νM , θ1, · · · , θM−1)
T ,



80 Chapter 5 Joint Estimation of Spectral Envelope and Fine Structure

and their optimal estimation from a real speech signal is the goal of the following subsection.

5.2.2 Parameter Optimization

Denoting by F (ω) the observed complex spectrum at a particular short-time segment of

speech, the problem we are solving is the minimization of some distortion measure between

nonnegative functions ‖Y (ω)‖2 and ‖F (ω)‖2. We will introduce here again as the distortion

measure the I divergence of ‖Y (ω)‖2 and ‖F (ω)‖2:

J ,
∫ ∞

−∞

(
∥∥F (ω)

∥∥2
log

∥∥F (ω)
∥∥2

∥∥Y (ω)
∥∥2 −

(∥∥F (ω)
∥∥2 −

∥∥Y (ω)
∥∥2

))
dω, (5.11)

which henceforth allows us to derive an elegant parameter optimization algorithm. Since

the model ‖Y (ω)‖2 is characterized by both the parameters for envelope and fine structures,

this optimization leads to a joint estimation of F0 and the spectral envelope.

Now as ‖Y (ω)‖2 is the sum over n and m of

Yn,m(ω) , ηµθm

2πσνm

exp

(
−(ω − nµ)2

2σ2
− (nµ − ρm)2

2ν2
m

)
, (5.12)

one must deal with a nonlinear simultaneous equation in order to find the global optimal

model parameters, which cannot be solved analytically. However, although any brute force

gradient search algorithms are always possible, the model parameters can be efficiently esti-

mated iteratively through the EM algorithm formulation as discussed in the following.

For any weight functions λn,m(ω) such that

∀n,m, ω : 0 < λn,m(ω) < 1, (5.13)

and

∀ω :
∑

n

∑

m

λn,m(ω) = 1, (5.14)

one obtains the following inequation:

J =

∫ ∞

−∞

(
∥∥F (ω)

∥∥2
log

∥∥F (ω)
∥∥2

∑
n

∑
m Yn,m(ω)

−

(
∥∥F (ω)

∥∥2 −
∑

n

∑

m

Yn,m(ω)

))
dω

=

∫ ∞

−∞

(
∥∥F (ω)

∥∥2
log

∥∥F (ω)
∥∥2

∑
n

∑
m λn,m(ω)Yn,m(ω)

λn,m(ω)

−

(
∥∥F (ω)

∥∥2 −
∑

n

∑

m

Yn,m(ω)

))
dω

5
∫ ∞

−∞

(
∥∥F (ω)

∥∥2
∑

n

∑

m

λn,m(ω) log
λn,m(ω)

∥∥F (ω)
∥∥2

Yn,m(ω)

−

(
∥∥F (ω)

∥∥2 −
∑

n

∑

m

Yn,m(ω)

))
dω, (5.15)
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using Jensen’s inequality based on the concavity of the logarithm function such that:

log
∑

i

yixi =
∑

i

yi log xi, (5.16)

where

∀i : 0 < yi < 1,
∑

i

yi = 1. (5.17)

Denoting by J+
λ the upper bound of J , i.e., the right-hand side of the inequation (5.15),

equality J+
λ = J holds if and only if

∀n, ∀m, ∀ω : λn,m(ω) =
Yn,m(ω)∑

n

∑

m

Yn,m(ω)
. (5.18)

Eq. (5.18) is obtained by setting to zero the variation of the functional J+
λ with respect to

λn,m(ω). By looking at J+
λ , one can see that, if λn,m(ω) is fixed, the minimization of J+

λ w.r.t

the each element Θ in Θ:

Θ̂ = argmin
Θ

J+
λ (5.19)

can be done analytically, which is impossible with J .

When λn,m(ω) is given by Eq. (5.18) with arbitrary Θ, the original objective function J

is equal to J+
λ . Then, the parameter Θ that decreases J+

λ with λn,m(ω) fixed necessarily

decreases J , since the original objective function is always guaranteed by the inequation

(5.15) to be even smaller than the minimized J+
λ . Therefore, by repeating the update of

λn,m(ω) by Eq. (5.18) and the update of Θ by Eq. (5.19), the objective function, bounded

below, decreases monotonically and converges to a stationary point.

One notices, however, that the parameter update equation for Θ cannot be obtained

analytically because of the second term in J+
λ :

−
∫ ∞

−∞

(
∥∥F (ω)

∥∥2 −
∑

n

∑

m

Yn,m(ω)

)
dω. (5.20)

More specifically, taking the integral of Yn,m(ω), one obtains

∫ ∞

−∞

∑

n

∑

m

Yn,m(ω)dω =
∑

n

∑

m

∫ ∞

−∞

ηµθm

2πσνm

exp

(
−(ω − nµ)2

2σ2
− (nµ − ρm)2

2ν2
m

)
dω (5.21)

=
∑

n

∑

m

ηµθm√
2πνm

exp

(
−(nµ − ρm)2

2ν2
m

)
, (5.22)

from which we find that J+
λ is nonlinear in µ, ρm and νm. Since this term essentially amounts

to the sum of the heights of the sampled points of ‖H(ω)‖2 with the interval of µ, we shall
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find it most convenient to approximate it with the intergral of ‖H(ω)‖2. Approximating the

Gaussian integral with the Riemann sums with subintervals of equal length of µ, that is,

∫ ∞

−∞

1√
2πνm

exp

(
−(ω − ρm)2

2ν2
m

)
dω ≈ µ

∑

n

1√
2πνm

exp

(
−(nµ − ρm)2

2ν2
m

)
, (5.23)

one obtains
∑

n

1√
2πνm

exp

(
−(nµ − ρm)2

2ν2
m

)
≈ 1

µ
(5.24)

since the left-hand side of Eq. (5.23) is 1. Substituting Eq. (5.24) into Eq. (5.22), it is

shown that ∫ ∞

−∞

∑

n

∑

m

Yn,m(ω)dω ≈
∑

m

ηµθm

µ
= η. (5.25)

Therefore, it became apparrent that the second term of the I divergence (and J+
λ ) depends

very weakly on µ, ρm and νm. The update equation for the parameters except for η can thus

be obtained approximately by simply minimizing

∫ ∞

−∞

∥∥F (ω)
∥∥2

∑

n

∑

m

λn,m(ω) log
λn,m(ω)

∥∥F (ω)
∥∥2

Yn,m(ω)
dω. (5.26)

Now the parameter update equations obtained through Eq. (5.19) for µ, ρm, θm, σ and

νm are derived as follows:




µ(i)

ρ
(i)
1

...

ρ
(i)
M




=




a b1 · · · bM

b1 c1 0
...

. . .

bM 0 cM




−1 


d

0

...

0




, (5.27)

a ,
N∑

n=0

n2

M∑

m=1

(
1

σ(i−1)2
+

1

ν
(i−1)
m

2

) ∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2

dω,

bm , − 1

ν
(i−1)
m

2

N∑

n=0

n

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2‖dω,

cm , 1

ν
(i−1)
m

2

N∑

n=0

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2

dω,

d , 1

σ(i−1)2

N∑

n=0

n
M∑

m=1

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2

ωdω,
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θ(i)
m =

N∑

n=0

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2

dω

N∑

n=0

M∑

m=1

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)‖2dω

(5.28)

σ(i) =




N∑

n=0

M∑

m=1

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2(

ω − nµ(i)
)2

dω

N∑

n=0

M∑

m=1

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∣∣2dω




1/2

(5.29)

ν(i)
m =




N∑

n=0

(
nµ(i) − ρ(i)

m

)2
∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2

dω

N∑

n=0

∫ ∞

−∞
λn,m(ω)

∥∥F (ω)
∥∥2

dω




1/2

(5.30)

η(i) =

√
2π

∫ ∞

−∞

∥∥F (ω)
∥∥2

dω

N∑

n=0

M∑

m=1

θ
(i)
m

ν
(i)
m

exp

(
− (nµ(i) − ρ

(i)
m )2

2ν
(i)
m

2

) . (5.31)

where the superscript i refers to the iteration cycle. Some examples of the estimated envelope

‖H(ω)‖2 with M =15 can be seen in Fig. 5.4.

5.3 Experimental Evaluations

5.3.1 Single Voice F0 Determination

To confirm its performance as a F0 extractor, we tested our method on 10 Japanese speech

data of male (‘myi’) and female (‘fym’) speakers from the ATR speech database and chose the

well-known F0 extractor “YIN”[25] for comparison. All power spectra were computed with

a sampling rate of 16kHz, a frame length of 32ms and a frame shift of 10ms. The spectral

model was made using N+1=60 Gaussians, and the envelope model was made using M =15

Gaussians. The number of free parameters is thus 3 + 15 × 3 = 48. The initial values of µ

were set to 47Hz, 94Hz and 141Hz, respectively, and among these conditions, the converged

parameter set that gave the minimum of J was considered as the global optimum. The

initial values of θm were determined uniformly, and σ and νm were initialized to 31Hz and

313Hz, respectively. For an F0 estimation task, we defined two error criteria: deviations over
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Figure 5.4 Observed power spectra of voiced (top) and unvoiced (bottom) speech and the

corresponding spectral envelope estimates.

5% and 20% from the hand-labeled F0 reference as fine and gross errors, respectively. The

former criterion shows how precisely the proposed analyzer is able to estimate F0 and the

latter shows the robustness against the double/half pitch errors. The areas where reference

F0s are given by zero were not considered in the computation of the accuracy. As a second

evaluation, we took the average of the cosine measures between ‖Y (ω)‖2 and ‖F (ω)‖2 on the

whole analysis interval to verify how well the choices of the distortion measure to minimize

and of the model for expressing actual speech power spectra are. These results can be

seen in Table 5.1. The numbers in the brackets in Table 5.1 are the results obtained with

YIN. The source code was kindly provided to us by its authors. One can verify from the

results that our method is as accurate as YIN when it comes to roughly estimate F0 and

significantly outperforms YIN for precise estimation. Thus, our method would be especially

useful for situations in which a highly precise F0 estimate is required, which is exactly the

case in the spectral envelope estimation algorithms that use F0 estimates. We should note
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Figure 5.5 A spectrogram of a female speech (top) and a gray-scale display of the spectral

envelope estimates (bottom).

however that the parameters used for YIN may not do it full justice. The results seem to

be rather good for a frame-by-frame algorithm, which encourages us to embed this envelope

structured model into the parametric spectrogram model proposed in [?, ?] to exploit the

temporal connectivity of speech attributes for a further improvement.

5.3.2 Synthesis and Analysis

We evaluate here the accuracies of spectral envelope estimation. To do so, we need to use

speech signals whose true spectral envelope is known in advance as the experimental data.

For this we purpose, we created several synthetic speech signals. The synthetic signals were

made using three types of linear filter: all-zero filter, all-pole filter and pole-zero filter, and
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Table 5.1 Accuracies of F0 determination

F0 accuracy (%)

Speech File ±5% ±20%
Cosine (%)

myisda01 98.4 ( 85.3 ) 98.6 ( 98.6 ) 96.7

myisda02 93.3 ( 82.6 ) 97.8 ( 97.8 ) 98.0

myisda03 94.2 ( 79.9 ) 97.5 ( 96.9 ) 96.0

myisda04 98.0 ( 86.3 ) 99.0 ( 95.1 ) 96.8

myisda05 93.7 ( 71.7 ) 97.8 ( 96.1 ) 95.9

fymsda01 97.2 ( 87.0 ) 98.0 ( 98.0 ) 98.3

fymsda02 96.8 ( 88.5 ) 98.1 ( 98.1 ) 97.6

fymsda03 95.4 ( 84.6 ) 98.5 ( 98.5 ) 98.2

fymsda04 97.0 ( 88.2 ) 98.1 ( 98.1 ) 98.2

fymsda05 95.7 ( 86.5 ) 99.2 ( 98.5 ) 98.1

the input excitation. The input excitation we used here is a linear chirped single pulse signal,

whose F0 modulates linearly from 100Hz to 400Hz within 2 seconds. The characteristics of

the filters were chosen as follows:

All-zero (1):

H̃(z) = 1 − 0.1z−1 + 0.3z−2 + 0.4z−3 + 0.2z−4 + 0.4z−5 + 0.2z−6 + 0.1z−7 + 0.5z−8,

All-zero (2):

H̃(z) = −1.2 + 0.1z−1 + 0.3z−2 + 0.1z−3 + 0.2z−4 + 0.4z−5 − 0.2z−6 + 0.8z−7 + 1.2z−8,

All-pole:

H̃(z) =
1

1 − 0.5z−1 + 0.4z−2 − 0.1z−3 + 0.3z−4 − 0.3z−5
,



Chapter 5 Joint Estimation of Spectral Envelope and Fine Structure 87

Pole-zero:

H̃(z) =
−1.2 + 0.1z−1 + 0.3z−2 + 0.1z−3 + 0.2z−4 + 0.4z−5 − 0.2z−6 + 0.8z−7 + 1.2z−8

1 − 0.5z−1 + 0.4z−2 − 0.1z−3 + 0.3z−4 − 0.3z−5
.

We chose as the measure to assess the accuracy of the spectral envelope estimation the

“Spectral Distortion (SD)”, defined by

1

I

I∑

i=1

(
log

∥∥H(ωi)
∥∥ − log

∥∥H̃(ejωi)
∥∥
)2

, (5.32)

where i refers to the index of the frequency-bin, ‖H̃(ejωi)‖ the true (reference) spectral

envelope and ‖H(ωi)‖ the spectral envelope estimate.

The experimental results are shown in Fig. 5.6. Fig. 5.6 (a), (b), (c) and (d) are the

results when testing with the data created respectively by all-zero (1), all-zero (2), all-pole

and pole-zero. Each graph shows the transitions of SD values within two seconds during

which the F0 of the input excitation modulates from 100Hz to 400Hz. One sees from these

graphs that as the F0 of the input gets higher, conventional methods such as 40-order LPC

and LPC cepstrum tend to obtain poorer results. This is perhaps because the envelope

estimates descend down into the space between the partials for high F0. The accuracies of

the envelope estimates obtained by the proposed method does not seem to become poor even

in high F0. This is obviously because the proposed method tries to estimate the spectral fine

structure at the same time. On the other hand, the 14-order LPC envelope is too smooth to

make a good fit to the true envelope.

5.3.3 Analysis and Synthesis

We compared through a psychological experiment the processing capacity and the intel-

ligibility of the synthesized speech restored from the parameters obtained via the proposed

and LPC analyzers. The parameters extracted via the proposed analyzer were transformed

to a synthesized speech using the ∗CWM method [87]. As a test set, we used speech data of

5 vowels (/a/, /i/, /u/, /e/, /o/) and 40 randomly chosen words uttered by a female speaker

excerpted from the same database. Analyses were done with a sampling rate of 16kHz, a

frame shift of 10ms and a frame length of 32ms for the proposed method and 30 ms for the

∗CWM synthesizes speech by spacing composite Gabor functions, transformed from a Gaussian mixture

envelope, by a pitch period interval.
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Table 5.2 Preference score(%) of the synthe-

sized speech generated by CWM[87] using the

parameter estimates of the proposed model.

listener vowel word

A 60 84

B 60 83

C 40 68

D 80 80

E 60 95

F 80 96

G 100 100

H 40 64

I 80 94

J 60 88

Ave. 66 83
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LPC. The dimension of the parameters for the proposed model and the LPC’s were both set

to 45. For the LPC analysis, the F0s were extracted via the supplementary F0 extraction

tool included in the Snack Sound Toolkit. Each synthesized speech used for the evaluation

was excited with an estimated vocal tract characteristic by a pulse sequence at intervals of

a different pitch period from the original one. The pitch periods were modified to 80% and

120% of the pitch periods obtained from the original speech. We let 10 listeners choose the

one they thought was more intelligible and obtained a preference score of the results via

the proposed analyzer. The preference score, shown in Table 5.2, shows that the processing

capacity and the intelligibility of the synthesized speech generated through the proposed

analyzer are higher than that from through LPC analyzer.

5.4 Summary of Chapter 5

In this chapter, we formulated the estimation of F0 and the spectral envelope as a joint

optimization of a composite function model of the spectral envelope and the fine structure,

and confirmed through experiments the effectiveness of this method. Encouraged by the

results, we are planning to apply this idea to Harmonic-Temporal Clustering in the future.
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Figure 5.6 Comparison of the accuracies of spectral envelope estimation between the proposed

method and the conventional methods. Each graph shows the transitions of SD values during

two seconds.



Chapter 6

Parameter Optimization of Sinusoidal

Signal Model

6.1 Introduction

The approaches of the preceding chapters are based on the approximate assumption of

additivity of the power spectra (neglecting the terms corresponding to interferences between

frequency components), but it becomes usually difficult to infer F0s when two voices are

mixed with close F0s as far as we are only looking at the power spectrum. In this case

not only the harmonic structure but also the phase difference of each signal becomes an

important cue for separation. Moreover, having in mind future source separation methods

designed for multi-channel signals of multiple sensory input, analysis methods in the complex

spectrum domain taking into account the phase estimation are indispensable.

After McAulay et al. [71] showed that the sinusoidal signal model could be applied to

Analysis-by-Synthesis systems to obtain high-quality synthesized speech, the range of appli-

cation of this model has widened to Text-To-Speech synthesis, speech modification, coding,

etc. In particular, as the possibility to generate high-quality synthesized speech shows that

the sinusoidal signal model represents extremely well acoustic signals such as speech and

music, we can have high expectations for its application to source separation.

Independently of the situation of application, the common point of this framework (signal

analysis using sinusoidal signal model) is that the most important problem resides in how

to accurately estimate the parameters of the sinusoidal signal model, and this estimation

accuracy is directly related to the performance of every application. The sinusoidal signal

model used by McAulay et al. is the superposition of K complex sinusoids which are assumed

92
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to have constant frequency and amplitude:

s(t) ,
K∑

k=1

Ake
jµkt, t ∈ (−∞,∞), (6.1)

where µk and Ak represent respectively the frequency and complex amplitude of the k-th

sinusoidal component. In addition, the arguments arg(Ak) represent the phases at time t = 0

(initial phase). If we denote the target analytic signal on the short-time analysis interval

t ∈ [−T, T ] by ỹ(t), and if we assume that it can be expressed as

ỹ(t) = s(t) + ε(t), t ∈ [−T, T ], (6.2)

where ε(t) is a Gaussian white noise ε(t) ∼ N (0, Σ) with Σ = ν2I, then the problem is

to obtain the maximal likelihood parameters Θ = {µk, ak, ϕk}K
k=1. In this case, as ε(t) ∼

N (0, Σ), the log-likelihood of Θ can be written

∫ T

−T

(
log

1√
2πν

− 1

2ν2

∥∥∥ỹ(t) − s(t)
∥∥∥

2
)

dt, (6.3)

and finally the solution of the minimization of the L2 norm error corresponds to the maximal

likelihood parameter:

Θ̂ = argmin
Θ

∫ T

−T

∥∥∥ỹ(t) − s(t)
∥∥∥

2

dt (6.4)

= argmin
Θ

∫ ∞

−∞

∥∥∥w(t)
(
ỹ(t) − s(t)

)∥∥∥
2

dt, (6.5)

where w(t) is the rectangular window

w(t) =





1 |t| 5 T

0 |t| > T

. (6.6)

As shown in Eq. (6.1), the sinusoidal signal model depends linearly on Ak, but non-linearly

on µk, and thus it is straightforward to analytically obtain the maximum likelihood solution

for Ak when µk is fixed, but even when Ak is fixed the maximum likelihood solution for µk

cannot be obtained analytically. This point is the essence of the difficulty of the parameter

optimization of the sinusoidal signal model, and methods to obtain the maximum likelihood

solution for µk have been the subject of intensive research for many years in the area of

statistical signal processing [71, 84, 98, 34, 118, 6, 17, 5, 99, 22, 57, 43].

In McAulay et al. [71], in order to obtain the estimation of the parameters Θ = {µk, Ak}K
k=1,

a simple method is used which consists in repeating K times the operation of determining
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the frequency, amplitude and phase of the peak element maximizing the discrete power spec-

trum density (periodogram) of the target signal and of subtracting this peak element from

the signal. The fact pointed out by Rife et al. [83, 81, 82] that the frequency giving the

maximum value of the periodogram of a single sinusoid is a maximum likelihood estimator

and that this estimator is an unbiased estimator is one argument for the validity of the above

frequency estimation method as an approximate solution of Eq. (6.5). Considering that (1)

the peaks of the discrete periodogram do not necessarily correspond to the maximal values

of the original continuous periodogram, (2) when there are several frequency components

the above theory does not stand anymore because of the interferences between frequency

components, (3) when several frequency components are close to each other it happens that

the detection of each peak can not be done correctly because of the energy dispersion, it

is natural to hope for the development of an estimation method with a higher efficiency

than the above simple frequency estimation method can be expected. In such a perspec-

tive, methods [98, 34, 118, 6, 17, 5] trying to obtain a more efficient parameter estimation

by not directly considering the peak frequency as an estimation value but by looking for

the maximal point of a curve interpolating several points in the neighborhood of the peak

have been used particularly often recently for their simplicity. However, these methods still

do not solve the problems (2) and (3) mentioned above, and as they only give, similarly

to McAulay et al.’s method, an approximate solution of (6.5), zero-padding and window

function design methods to increase the accuracy of this approximation are the main object

of their discussions [17, 5]. Meanwhile, non-linear optimization methods such as gradient

search methods (e.g., steepest descent or Newton’s method), and methods based on sta-

tistical sampling (Gibbs sampler or Markov chain Monte-Carlo (MCMC) method) are also

proposed to search numerically for the solution of Eq. (6.5) [1, 99, 22, 57, 43].

While the method of McAulay et al. is a mixture of K pure tone signals, one can also

consider in the same way the case of an analytic signal which is the superposition of K

harmonic signals (signal composed of N harmonic components, where the n-th harmonic

component’s frequency is n times the fundamental frequency µk):

s(t) ,
K∑

k=1

N∑

n=1

Ak,nejnµkt, t ∈ (−∞,∞). (6.7)

This model is often used for 1ch source separation when the target mixed signal is only

composed of harmonic signals [22, 57, 43]. Eq. (6.7) with N = 1 corresponds to assuming

the same model as Eq. (6.1), and McAulay et al.’s model is thus a special case of Eq. (6.7).
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However, as in this model each sinusoid’s frequency does not have its own degree of freedom

but is constrained to be a multiple nµk of the fundamental frequency, obtaining the max-

imum likelihood solution for µk becomes even harder than in McAulay et al’s model. For

example, some methods from the first type presented above try to estimate µk based on peak

extraction, but it then becomes necessary to rely on ad hoc threshold setting to determine

to which harmonic component of which harmonic signal the extracted peak belongs, and the

discussion on the obtained maximum likelihood solution for µk becomes complicated. For

that reason, the source separation approaches which used this model are most often from

the second type (gradient search and sampling methods)[22, 57, 43]. However, this kind of

numerical computation is often beset with local optimum problems. A global minimum for

Eq. (6.5) is not guaranteed to be obtained unless, in the case of the gradient search method

the iterative computation is led to convergence for an infinity of initial points, or in the case

of the stochastic sampling an infinite number of trial is performed. For that reason, the

problem is to know if the search for the solution can be performed with a low computation

cost (the lower the computation cost, the more searches can be performed from different

initial parameter conditions), but as for now only brute force numerical computations such

gradient search method and sampling method have been proposed.

As explained above, albeit the sinusoidal signal model represents extremely well acoustic

signals such as speech and music, room was left for discussion on how to estimate its pa-

rameters. Against this background, the goal of this chapter to is derive a new optimization

algorithm to obtain the maximum likelihood parameter of the sinusoidal signal model.

6.2 Abstract and Organization of Chapter 6

The parameter optimization algorithm for sinusoidal signal model, proposed in this section,

is based on a principle of the iterative method that uses an auxiliary function. This principle

was inspired by the essential idea of EM algorithm. Let Φ(Θ) be the objective function one

wants to minimize with respect to its parameters Θ = (Θ1, · · · , ΘI), and define by Φ+(Θ,m)

the auxiliary function of Φ(Θ), and m = (m1, · · · ,mJ) the auxiliary parameters if Φ+(Θ,m)

satisfies

Φ
(
Θ

)
5 Φ+

(
Θ,m

)
. (6.8)

Φ(Θ) can then be decreased monotonically by the iteration consisting of the two steps:

minimization of the auxiliary function with respect to the auxiliary parameters m, and as
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well with respect to the parameters Θ.

In the next section, we introduce the sinusoidal signal model and the objective function

that we will deal with through this chapter. We show the principle of the auxiliary function

method in Section 6.4, and derive the auxiliary function from the Feder’s lemma in Subsection

6.4.2. As one sees that it is still impossible to obtain analytically the update equation for

the F0 parameter µk, we show in Subsection 6.4.3 that one can derive a further auxiliary

function by introducing a theorem for concave functions. This auxiliary function enables us

to derive analytically the update equation for µk as will be mentioned in Subsection 6.4.4.

6.3 Problem Setting

6.3.1 Pseudoperiodic Signal Model

Consider as the time-varying acoustic signal the sum of pseudoperiodic signal models given

in an analytic signal representation by

s(t) =
K∑

k=1

N∑

n=1

Ak,n(t)ejnθk(t), t ∈ (−∞,∞), (6.9)

where the instantaneous phase θk(t) of the fundamental component, and the instantaneous

complex amplitude Ak,n(t) of the nth are the unknown parameters. µk(t) = θ̇k(t) amounts

to the instantaneous F0 and ak,n(t) = |Ak,n(t)| the instantaneous amplitude, which are both

assumed here to change gradually over time. These are the free parameters that one wants

to estimate, which we denote for convenience by Θ:

Θ =
{

θk(t),
{
Ak,n(t)

}
1≤n≤N

}
1≤k≤K

. (6.10)

Now letting y(t) be the observed signal of interest, we assume the following model:

y(t) = s(t) + n(t), t ∈ (−∞,∞), (6.11)

where n(t) is a Gaussian white noise. The maximum likelihood estimate of Θ can thus be

obtained by minimizing the L2 norm of the error signal in t ∈ (−∞,∞):
∫ ∞

−∞

∥∥∥y(t) − s(t)
∥∥∥

2

dt. (6.12)

We now show that this time domain objective can be equivalently defined in the time-

frequency domain. As short-time Fourier transform (STFT) is one of the most popular ways

of time-frequency decomposition, we show the following lemma, which gives us the objective

function in the time-frequency domain by the Gabor transform (STFT).
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6.3.2 Objective Function Defined on Gabor Transform Domain

Lemma 1 (L2 norm in STFT domain). The time-frequency components of y(t) and s(t)

by Gabor transform is by definition given by

Gy(ω, t) ,
〈
y(u), ψω,t(u)

〉
u∈R

, (6.13)

Gs(ω, t) ,
〈
s(u), ψω,t(u)

〉
u∈R

, (6.14)

where ψω,t(u) is the Gabor function, which is a nonorthogonal basis used to measure the

component of frequency ω at time t, and defined as the product of the complex sinusoid with

frequency of ω and the Gaussian window centered at time t:

ψω,t(u) = e−d(u−t)2+jω(u−t), (6.15)

where d is the time spread parameter of the Gaussian window, that can be chosen arbitrarily.

Though trivial, we then have
∫ ∞

−∞

∥∥∥y(t) − s(t)
∥∥∥

2

dt = η

∫ ∞

−∞

∫ ∞

−∞

∥∥∥Gy(ω, t) − Gs(ω, t)
∥∥∥

2

dωdt, (6.16)

where η is a constant that depends neither on ω nor on t.

Proof. By definition, Gy(ω, t) can be written as

Gy(ω, t) =
〈
y(u), ψω,t(u)

〉
u∈R

(6.17)

=

∫ ∞

−∞
y(u)ψ∗

ω,t(u)du (6.18)

=

∫ ∞

−∞
y(u)e−d(u−t)2e−jω(u−t)du (6.19)

=

∫ ∞

−∞
y(u)e−d(u−t)2+jωte−jωudu (6.20)

= ejωtF
[
y(u)e−d(u−t)2

]
u
. (6.21)

Gy can as well be written as Gy(ω, t) = ejωtF
[
s(u)e−d(u−t)2

]
u
. Therefore,

∫ ∞

−∞

∫ ∞

−∞

∥∥∥Gy(ω, t) − Gs(ω, t)
∥∥∥

2

dωdt =

∫ ∞

−∞

∫ ∞

−∞

∥∥∥∥ejωtF
[(

y(u) − s(u)
)
e−d(u−t)2

]
u

∥∥∥∥
2

dωdt

=

∫ ∞

−∞

∫ ∞

−∞

∥∥∥∥F
[(

y(u) − s(u)
)
e−d(u−t)2

]
u

∥∥∥∥
2

dωdt

=

∫ ∞

−∞

∫ ∞

−∞

∥∥∥∥
(
y(u) − s(u)

)
e−d(u−t)2

∥∥∥∥
2

dudt

=

∫ ∞

−∞

∥∥∥y(u) − s(u)
∥∥∥

2
∫ ∞

−∞
e−2d(t−u)2dtdu. (6.22)
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The equality in the third line follows from the Parseval’s theorem. Using the result of the

Gaussian integral, one obtains

∫ ∞

−∞
e−2d(t−u)2dt =

√
π

2d
, (6.23)

which immediately proves that

∫ ∞

−∞

∫ ∞

−∞

∥∥∥Gy(ω, t) − Gs(ω, t)
∥∥∥

2

dωdt =

√
π

2d

∫ ∞

−∞

∥∥∥y(u) − s(u)
∥∥∥

2

du. (6.24)

One sees from this result that minimization of Eq. (6.12) is equivalent to minimizing

∫ ∞

−∞

∫ ∞

−∞

∥∥∥Gy(ω, t) − Gs(ω, t)
∥∥∥

2

dωdt. (6.25)

Recall that Gs(ω, t) is the Gabor transform of s(t), such that, from Eq. (6.9),

Gs(ω, t) =

∫ ∞

−∞

K∑

k=1

N∑

n=1

Ak,n(u)ejnφk(u)e−d(u−t)2−jω(u−t)du. (6.26)

As the dominant part of the Gabor function e−d(u−t)2−jω(u−t) is localized only around time

t, the result of the integral in Eq. (6.26) depends heavily on the portion of θk(u) and

Ak,n(u) near t. Recalling that we have assumed that the instantaneous phase θk(u) and the

instantaneous complex amplitude Ak,n(t) change gradually over time, approximating θk(u)

and Ak,n(u) by zero and first order Taylor series expansions around time t:

θk(u) ≈ θk(t) + µk(t)(u − t) (6.27)

Ak,n(u) ≈ Ak,n(t) (6.28)

may not affect significantly the result of Eq. (6.26). µk(t) , θ̇k(t) is the instantaneous F0.

Gs(ω, t) can then be written as

Gs(ω, t) =
K∑

k=1

N∑

n=1

Ak,n(t)e−
(ω−nµk(t))2

4d , (6.29)

where Ak,n(t) = Ãk,n(t)ejnθk(t)/
√

2d.

In the case of discrete-time observations, we shall consider as the problem of interest the

minimization of ∫ ∞

−∞

∥∥∥Gy(ω, t) − Gs(ω, t)
∥∥∥

2

dω, (6.30)
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with respect to

Θt =
{

θk,
{
Ak,n

}
1≤n≤N

}
1≤k≤K

(6.31)

at each discrete time point. The problem can thus be summarized as follows.

We model the acoustic signal by a stationary sinusoidal model

s(t) =
K∑

k=1

N∑

n=1

Ãk,ne
jnµkt, t ∈ (−∞,∞), (6.32)

where the F0 µk, and the complex amplitude Ak,n of the nth partial are the unknown param-

eters. These are the free parameters corresponding to the instantaneous features at t = 0,

that one wants to estimate, which we denote for convenience by Θ:

Θ =
{

µk,
{
Ãk,n

}
1≤n≤N

}
1≤k≤K

. (6.33)

Letting y(t) be the observed signal of interest, the problem we are solving is to estimate

the instantaneous feature Θ in y(t) near t = 0. This can be achieved by finding Θ that

minimizes

Φ(Θ) =

∫ ∞

−∞

∥∥∥∥∥Y (ω) −
K∑

k=1

N∑

n=1

Ak,ne−
(ω−nµk)2

4d

∥∥∥∥∥

2

dω, (6.34)

where Ak,n =
eAk,n√

2d
, d is the time spread parameter of the Gaussian window, and Y (ω) the

simplified notation of Gy(ω, 0) (we shall emphasize that it is not meant to be the Fourier

transform of y(t)). From the next section, we will derive the parameter optimization algo-

rithm that finds the maximum likelihood estimate of Θ.

6.4 Parameter Optimization Algorithm

6.4.1 Auxiliary Function Method

The parameter optimization algorithm we propose in this chapter is based on a principle

called the auxiliary function method, which was inspired by the idea of the EM algorithm.

We first define the auxiliary function and then show the lemma for the iterative algorithm,

the auxiliary function method.

Definition 1 (Auxiliary function). Let Φ(Θ) be the objective function that one wants to

minimize with respect to the parameter Θ = (Θ1, · · · , ΘI). We then define Φ+(Θ, m) as the
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auxiliary function of Φ(Θ), and m = (m1, · · · ,mJ) as the auxiliary parameter if Φ+(Θ,m)

satisfies

Φ
(
Θ

)
5 Φ+

(
Θ, m

)
, (6.35)

or

Φ
(
Θ

)
= min

m
Φ+

(
Θ,m

)
. (6.36)

Lemma 2 (Auxiliary function method). Denoting by Φ(Θ) the objective function, and

by Φ+(Θ,m) the auxiliary function of Φ(Θ), then the objective function Φ(Θ) can be de-

creased monotonically by minimizing Φ+(Θ,m) iteratively with respect to m = (m1, · · · ,mJ)

and with respect to Θ1, · · · , ΘI :

m̂ = argmin
m

Φ+
(
Θ,m

)
(6.37)

∀i, Θ̂i = argmin
Θi

Φ+
(
Θ̂1, · · · , Θ̂i−1, Θi, · · · , ΘI ,m

)
. (6.38)

If Φ(Θ) is bounded below, then the parameter Θ converges to a stationary point.

Proof. Suppose we set the parameter to an arbitrary value Θ(0). We will prove that Φ(Θ)

necessarily decreases after the update Eq. (6.37) and Eq. (6.38). From Eq. (6.37), one

obtains

Φ(Θ(0)) = Φ+(Θ(0), m̂), (6.39)

and it is obvious from Eq. (6.38) that

Φ+(Θ(0), m̂) = Φ+(Θ̂, m̂). (6.40)

By definition, one sees from Eq. (6.35) that

Φ+(Θ̂, m̂) = Φ(Θ̂). (6.41)

Therefore, we can immediately prove that

Φ(Θ(0)) = Φ+(Θ(0), m̂) = Φ+(Θ̂, m̂) = Φ(Θ̂). (6.42)

Having in mind applying this method to some optimization problem, it is important to

design an auxiliary function such that the update equations for both the auxiliary parameter

and the model parameters can be obtained analytically. It should be emphasized here that

the EM algorithm can be considered as a special case of this method.
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6.4.2 Inequality for L2 norm

One possible auxiliary function of Eq. (6.34) can be made using the inequality for L2

norm suggested for example by Feder et al. [39].

Lemma 3 (Inequality for L2 norm). If some complex function mi(x) satisfies

∀x,

I∑

i=1

mi(x) =
I∑

i=1

m∗
i (x) = 1, (6.43)

then ∫ ∞

−∞

∥∥∥∥y(x) −
I∑

i=1

si(x)

∥∥∥∥
2

dx 5
I∑

i=1

1

βi

∫ ∞

−∞

∥∥∥∥mi(x)y(x) − si(x)

∥∥∥∥
2

dx, (6.44)

and the equality holds if and only if

mi(x) =
1

y(x)

[
si(x) + βi

(
y(x) −

I∑

i=1

si(x)

)]
. (6.45)

βi is an arbitrary constant such that

I∑

i=1

βi = 1 (6.46)

0 < βi < 1, i ∈ {1, · · · , I}. (6.47)

Proof. We prove that the minimum of the right-hand side with respect to mi(x) is equal to

the left-hand side using the variational method. Consider here the functional

J [m] ,
I∑

i=1

1

βi

∫ ∞

−∞

∥∥∥∥mi(x)y(x) − si(x)

∥∥∥∥
2

dx −
∫ ∞

−∞
λ(x)

(
I∑

i=1

m∗
i (x) − 1

)
dx (6.48)

where the second term is the Lagrange multiplier term corresponding to the condition Eq.

(6.43). The variation of J [m] with respect to m∗
i (t) is given as

δJ [m] =
I∑

i=1

∫ ∞

−∞

(
∂J [m]

∂m∗
i

)
δm∗

i dx, (6.49)

which should be 0 at the minimum point. In order to let this be identically 0, one must solve

∂J [m]
∂m∗

i
= 0. Hence, setting

∂J [m]

∂m∗ =
1

βi

y∗(x)
(
mi(x)y(x) − si(x)

)
− λ(x) (6.50)
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to 0, one obtains

mi(x) =
1∥∥y(t)

∥∥2

(
βiλ(x) + y∗(x)si(x)

)
. (6.51)

From Eq. (6.43),

I∑

i=1

mi(x) =
I∑

i=1

1∥∥y(x)
∥∥2

(
βiλ(x) + y∗(x)si(x)

)
=

1∥∥y(x)
∥∥2

(
λ(x) + y∗(x)

I∑

i=1

si(x)

)
= 1.

(6.52)

Therefore,

λ(x) =
∥∥y(x)

∥∥2 − y∗(x)
I∑

i=1

si(x). (6.53)

Substituting this result into Eq. (6.51), the extreme value is determined uniquely as:

mi(x) =
1

y(x)

[
si(x) + βi

(
y(x) −

I∑

i=1

si(x)

)]
. (6.54)

One immediately notices that the sign of equality in Eq. (6.44) holds when mi(x) is given by

this result. Whether this extreme value is the minimum solution or not can be shown easily

by checking that the Hessian of J [m] with respect to m(x), given by diag
(‖y(x)‖2

β1
, · · · , ‖y(x)‖2

βI

)
,

is obviously positive definite.

Putting Sk,n(ω) , Ak,ne
− (ω−nµk)2

4d for simplicity of notation, then by the Lemma 3 and from

Eq. (6.34) we have the following inequality:

Φ(Θ) =

∫ ∞

−∞

∥∥∥∥∥Y (ω) −
K∑

k=1

N∑

n=1

Sk,n(ω)

∥∥∥∥∥

2

dω

5
K∑

k=1

N∑

n=1

1

βk,n

∫ ∞

−∞

∥∥∥mk,n(ω)Y (ω) − Sk,n(ω)
∥∥∥

2

dω, (6.55)

where βk,n ∈ (0, 1),
∑

k,n βk,n = 1. The sign of the equality holds when

mk,n(ω) =
1

Y (ω)

[
Sk,n(ω) + βk,n

(
Y (ω) −

K∑

k=1

N∑

n=1

Sk,n(ω)

)]
. (6.56)

Let Φ+(Θ,m) be the right-hand side of Eq. (6.55). By Definition 1, Φ+(Θ,m) is an auxiliary

function of the objective Φ(Θ), and mk,n(ω) is an auxiliary parameter, respectively. Eq.

(6.56) corresponds to the update equation for Eq. (6.37) in Lemma 2.

This inequality implies that L2 norm of the error between the observed signal and the

sinusoidal model is the lower limit of the weighted sum of L2 norm of each error between
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an arbitrarily decomposed component mk,n(ω)Y (ω) and the single sinusoid Sk,n(ω). As the

auxiliary parameter mk,n(ω) acts as sort of a filter that decomposes the observed signal, we

will henceforth call it a decomposing filter. Eq. (6.56) implies that letting mk,n(ω)Y (ω) be

the sum of the {k, n}th sinusoid and the portion of the error between the observed signal

and the sinusoidal model is said to be the “optimal” way of separating Y (ω).

By Lemma 2, we consider next to minimize Φ+(Θ,m) with respect to Θ. As Φ+(Θ,m)

can be written as

Φ+(Θ, m) =

K∑

k=1

N∑

n=1

1

βk,n

∫ ∞

−∞

(
∥∥mk,n(ω)Y (ω)

∥∥2
+

∥∥Sk,n(ω)
∥∥2−2e−

(ω−nµk)2

4d Re
[
Ak,nm∗

k,n(ω)Y ∗(ω)
])

dω,

(6.57)

from which we see that the integral of the second term inside the parenthesis can be calculated

straightforwardly using the Gaussian integral:

∫ ∞

−∞

∥∥Sk,n(ω)
∥∥2

dω =
√

2πd
∥∥Ak,n

∥∥2
. (6.58)

Hence, this term does not depend on µk. Eq. (6.57) can thus be written as follows:

Φ+(Θ, m) =
√

2πd

K∑

k=1

N∑

n=1

∥∥Ak,n

∥∥2

βk,n

+
K∑

k=1

N∑

n=1

1

βk,n

∫ ∞

−∞

(∥∥mk,n(ω)Y (ω)
∥∥2 − 2e−

(ω−nµk)2

4d Re
[
Ak,nm∗

k,n(ω)Y ∗(ω)
])

dω. (6.59)

One notices from Eq. (6.59) that one still cannot obtain analytically the update equation

for µk because µk appears inside the exponential. In the next subsection, we will derive

another auxiliary function that enables the analytical expression of the update equation for

µk, using the property of exponential function.

6.4.3 Theorem on Differentiable Concave Functions

Not being able to obtain analytically the update equation for µk is because of the nonlinear

part exp(− (ω−nµk)2

4d
) in Eq. (6.59). To further derive another auxiliary function such that

the update equation for µk can be obtained analytically, we focused on two points: −e−x

is a continuously differentiable concave function, and we have the following theorem about

continuously differentiable concave function.
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Lemma 4 (Inequality on differentiable concave functions). Let f(x) be a real function

of x that is continuously differentiable and concave. Then, for any point α ∈ R,

f(x) 5 f(α) + (x − α)f ′(α), (6.60)

where f ′(α) = df(x)
dx

∣∣
x=α

.

Proof. By definition, for any two points x, α ∈ R and for any real number γ ∈ (0, 1), if

f
(
αx + (1 − γ)α

)
= γf(x) + (1 − γ)f(α), (6.61)

then f(x) is said to be a concave function. This inequality can be rewritten as

f
(
γx + (1 − γ)α

)
− f(α)

γ
= f(x) − f(α). (6.62)

Since γx + (1 − γ)α = α + γ(x − α),

(x − α)
f
(
α + γ(x − α)

)
− f(α)

γ(x − α)
= f(x) − f(α). (6.63)

As f(x) is assumed to be differentiable, when γ → 0,

lim
γ→0

f
(
α + γ(x − α)

)
− f(α)

γ(x − α)
= f ′(α). (6.64)

Substituting this expression into Eq. (6.63), one obtains

(x − α)f ′(α) = f(x) − f(α). (6.65)

Since −e−x is a differentiable concave function, using Lemma 4 we have

−e−x 5 −e−α +
(
x − α

)
e−α, (6.66)

for any point α ∈ R. Replacing x with (ω−nµk)2

4d
and α with a real function αk,n(ω), then

−e−
(ω−nµk)2

4d 5 −e−αk,n(ω) +

(
(ω − nµk)

2

4d
− αk,n(ω)

)
e−αk,n(ω). (6.67)

From Eq. (6.59) and Eq. (6.67),

Φ+(Θ,m) ≤
√

2πd
K∑

k=1

N∑

n=1

∥∥Ak,n

∥∥2

βk,n

+

K∑

k=1

N∑

n=1

1

βk,n

∫ ∞

−∞

[
∥∥Yk,n(ω)

∥∥2
+ 2Re

[
Ak,nm∗

k,n(ω)Y ∗(ω)
]

{
− e−αk,n(ω) + e−αk,n(ω)

(
(ω − nµk)

2

4d
− αk,n(ω)

)}]
dω. (6.68)
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Denoting by Φ̃+(Θ,m, α) the right-hand side of this inequation, Φ̃+(Θ,m, α) can also be

considered as an auxiliary function of Φ(Θ) because

Φ(Θ) 5 Φ+(Θ,m) 5 Φ̃+(Θ,m, α). (6.69)

In such case, both mk,n(ω) and αk,n(ω) are the corresponding auxiliary parameters. Equality

Φ(Θ) = Φ̃+(Θ,m, α) holds if and only if mk,n(ω) is given by Eq. (6.56) and αk,n(ω) by

αk,n(ω) =
(ω − nµk)

2

4d
. (6.70)

6.4.4 Update Equations for Sinusoidal Parameters

There are two advantages worth mentioning of deriving this auxiliary function. One is

that this enables the analytical expression of the update equation for the F0 parameter µk,

allowing a complex-spectrum-domain EM-like multipitch estimation.

Setting to 0 the partial derivative of Φ̃+(Θ,m, α) with respect to µk:

∂Φ̃+(Θ,m, α)

∂µk

=
N∑

n=1

1

βk,n

∫ ∞

−∞
e−αk,n(ω)Re

[
Ak,nm∗

k,n(ω)Y ∗(ω)
]−n (ω − nµk)

d
dω, (6.71)

if
N∑

n=1

n2

βk,n

∫ ∞

−∞
e−αk,n(ω)Re

[
Ak,nm

∗
k,n(ω)Y ∗(ω)

]
dω 6= 0, (6.72)

then one obtains

µk =

N∑

n=1

n

βk,n

∫ ∞

−∞
e−αk,n(ω)Re

[
Ak,nm∗

k,n(ω)Y ∗(ω)
]
ωdω

N∑

n=1

n2

βk,n

∫ ∞

−∞
e−αk,n(ω)Re

[
Ak,nm∗

k,n(ω)Y ∗(ω)
]
dω

. (6.73)

Secondly, the so far constant d can be regarded as a free variable dk,n for each k, n sinusoidal

component and its update equation can be derived analytically. The ML estimate of dk,n

itself is not important to us as its true value is already known, but by updating dk,n in parallel

to the other parameters, we expect dk,n to play a similar role to the variance parameter in

GMM, which often helps other parameters getting out of local optima during the parameter

learning. The update equation for dk,n is given as

dk,n =




∫ ∞
−∞ e−αk,n(ω)Re

[
Ak,nm∗

k,n(ω)Y ∗(ω)
](

ω − nµk

)2
dω

√
2π

∥∥Ak,n

∥∥2




2/3

(6.74)
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Figure 6.1 An illustration of the proposed parameter optimization algorithm

We should mention also that the update equation for Ak,n can be derived analytically.

Setting to 0 the partial derivative of Φ̃+(Θ,m, α) with respect to A∗
k,n:

∂Φ̃+(Θ,m)

∂A∗
k,n

=

√
2πdAk,n

βk,n

− 1

βk,n

∫ ∞

−∞

{
− e−αk,n(ω) + e−αk,n(ω)

(
(ω − nµk)

2

4d
− αk,n(ω)

)}
mk,n(ω)Y (ω)dω, (6.75)

one immediately obtains

Ak,n =
1√
2πd

∫ ∞

−∞

{
−e−αk,n(ω)+e−αk,n(ω)

(
(ω − nµk)

2

4d
−αk,n(ω)

)}
mk,n(ω)Y (ω)dω. (6.76)

The amplitude and the starting phase of the each sinusoidal component can be expressed

using Ak,n as ak,n =
∣∣Ak,n

∣∣ and ϕk,n = arg
(
Ak,n

)
, respectively.

6.4.5 Overview of the Algorithm

We summarize here the global structure of the algorithm for the optimization of the

sinusoidal signal model parameters. The transitions between the objective functions of each
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step of the iteration are represented in Fig. 6.1.

Step 0 Initial setting of {µk, {Ak,n}1≤n≤N}1≤k≤K .

Step 1 Update mk,n(ω) through Eq. (6.56).

Step 2 Update e−αk,n(ω) through Eq. (6.70).

Step 3 Update Ak,n through Eq. (6.76)

Step 4 Update µk through Eq. (6.73) and go back to Step 1.

6.5 Experimental Evaluation

6.5.1 Convergence Properties of the Algorithm

The goal of this subsection is to compare the dependency on the initial parameter and the

convergence speed of the gradient search method and the proposed method. The gradient

search method-based parameter estimation method we use here as a comparison (hereafter

simply called gradient method) is based on the Jinachitra’s method [57] and composed of

three steps, the update of mk,n(ω) through Eq. (6.37), the update of Ak,n through Eq.

(6.76) and the decrease through steepest descent update of µk through Eq. (6.59). From

the comparison of this method to the proposed method, we show the effectiveness of the

pitch frequency estimation method proposed in this chapter in terms of ability to avoid local

solutions.

In this comparative experiment, a signal which parameters are already known (synthetic

signal) is analyzed. Specifically, two periodic signals (with pitch frequencies 207Hz and

200Hz) composed of 10 harmonic components, with each component’s amplitude and phase

determined by random generation, were added together to create a mixed signal. The interval

of definition for the random generation of the amplitude and phase of the n-th harmonic

component were respectively [ 1
n
, 3

n
) and [0, 2π). In the sinusoidal signal model, we set K = 2

and N = 10. A Gabor transform with diffusion parameter d = 0.067 was performed on

this synthetic signal (16kHz sampling frequency) to obtain the short-time complex spectrum

Y (ω).

The courses of the update of the pitch frequencies µ1, µ2 as they are updated at each step

through the proposed method and the gradient method, starting from various initial param-

eter conditions, are shown in Fig. 6.2 and Fig. 6.3 (the update pattern of the parameters



108 Chapter 6 Parameter Optimization of Sinusoidal Signal Model

 210
 220
 230
 240
 250
 260
 270
 280
 290
 300
 310
 320
 330

 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290
 300

 0  10  20  30  40  50  60  70  80  90  100
iteration #

µ 1

µ 2

Figure 6.2 Course of the pitch frequency update for the proposed method

except the pitch frequencies is omitted). The transitions of the update values of µ1 and µ2

corresponding to the same iterative computation are shown in each figure respectively in

the upper and lower part with the same color and same line type. The initial value for the

amplitude Ak,n was set to 0.

One sees from Fig. 6.2 and Fig. 6.3 that the gradient method often gets trapped into

stationary points different from the true values for initial values of µ1, µ2 which are not

sufficiently close to the true values (270Hz、270Hz), while the proposed method converges

quickly from any initial points in a large interval to the true values. The result of this

simulation is one illustration of the fact that the proposed method outperforms the previous

works using gradient methods in terms of ability to avoid local solutions and convergence

speed.

6.5.2 1ch Blind Source Separation of Concurrent Speech

Next, we confirm here the basic performance of our method for 1ch blind source separation.

We use the ATR B-set speech database to build the mixed signals by adding together the
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Figure 6.3 Course of the pitch frequency update for the steepest descent method

waveforms of utterances from two male speakers, two female speakers, or a male speaker and

a female speaker.

For all the speech data the sampling rate was 16kHz, and the frequency analysis was done

using a Gabor transform with a frame interval of 10ms. As in the preceding subsection,

the diffusion parameter was set to 0.067. The number of harmonic components N of each

harmonic signal of the sinusoidal signal model was set to 30.

The overview of the algorithm used here is as follows: starting from a sinusoidal signal

model with an initial number K of harmonic signals equal to 10, in the process of the iterative

estimation of the parameters, if the pitch frequency parameters of several harmonic signal

models (1) come closer than a fixed value or (2) see their ratio become almost integer, the

harmonic signal with the lowest pitch frequency only is kept and the other discarded. After

convergence, the two harmonic signals with the largest total power are kept and parameter

estimation is performed once again. The two harmonic signals thus obtained eventually are

the separated signals. The initial values for µk are obtained by finding all the frequencies

giving a minimum or a maximum of the real part or the imaginary part of the complex

spectrum of the observed mixed signal, and selecting the 10 frequencies which correspond
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to the largest power. The procedure described above estimates the separated signals on

each short-time window (frame), but we do not determine here to which source the signal

separated at each frame correspond. In this experiment, in order to check the basic source

separation performance in the situation where this source determination would be dealt with,

we determine to which source the separated signals correspond by looking at their proximity

to each signal prior to the mixing.

Under the above conditions, an example of actual results of the separation of the mixed

signal shown in Fig. 6.4 is shown in Fig. 6.5. After separation performed on the mixed signal

of the male speaker A and the female speaker B (with a SNR of -0.3dB seen from the male

speaker A), the SNRs for the speakers were respectively 7.2dB and 6.4dB (improvement of

7.5dB and 6.1dB), after separation performed on the mixed signal of the female speaker A

and the female speaker B (with a SNR of 1.5dB seen from the female speaker A), the SNRs

for the speakers were respectively 6.0dB and 4.8dB (improvement of 4.5dB and 6.3dB), after

separation performed on the mixed signal of the male speaker A and the male speaker B

(with a SNR of -0.3dB seen from the male speaker A), the SNRs for the speakers were

respectively 4.8dB and 4.3dB (improvement of 5.1dB and 4.0dB). As in our method the

difference between the pitch frequencies of the two speakers is clue for the source separation,

the fact that the separation accuracy on mixed signal with speakers of the same gender is

slightly lower than the accuracy on mixed signals with speakers of different gender is a result

which corresponds to what we expected.

As the method presented in this chapter estimates the parameter independently for each

frame, it happens quite often that the phase change of the separated signals is not continuous

or the amplitude of varies abruptly. In the future, if a coordinated parameter estimation

accross several adjacent frames could be performed, we shall expect a substantial reduction

of the musical noise and an improvement of the SNR.

6.6 Summary of Chapter 6

In this chapter, focusing on the fact that the essential difficulty of the single tone frequency

estimation or the fundamental frequency estimation, which are at the core of the parameter

estimation problem for the sinusoidal signal model, comes from the non-linearity of the

sinusoidal signal model in the frequency parameter, we introduced a new iterative estimation

algorithm using an auxiliary function. Contrary to the power spectrum domain multi-pitch
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Figure 6.4 Utterance by a female speaker (a), a male speaker (b) and their mixed signal (c).

analysis methods discussed in the preceding chapters, this method does not assume that

there is no interference between the components of different sources of between the harmonic

components of a same source, and could become, depending on the accuracy of the parameter

estimation, a very accurate method for the separation of frequency components which are

close to each other.

In the present implementation, we derived the update equation of the fundamental fre-

quency by transfering the objective function to the STFT domain, using the fact that through

Parseval equality the L2 norm of the error defined in the time domain is equal to the L2 norm

of the error in the STFT domain. From the analogy with the performance of the multipitch

analysis methods in the power spectrum domain presented in the preceding chapters, one can

think that it is highly probable that a higher performance could be obtained by performing

the parameter update in the time-frequency domain obtained through constant Q filterbank.

We thus plan to concentrate heavily in the future on investigating the possibility to obtain a

formulation for which convergence is guaranteed and to derive parameter update equations

in this domain.
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Figure 6.5 Separated signals corresponding to the female and the male speaker.



Chapter 7

Conclusion

The objective of this paper was to propose a unified methodological framework, in which

one can handle (1) source separation, (2) multipitch estimation, (3) estimation of the number

of sources, (4) estimation of the continuous temporal trajectories of F0s and amplitudes, and

(5) spectral envelope estimation, at the same time.

We introduced in Chapter 2 a method called “Harmonic Clustering”. The method searches

for the optimal spectral masking function and the optimal F0 estimate for each source by

performing the source separation step and the F0 estimation step iteratively. In Chapter 3,

we generalized the Harmonic Clustering method and then reformulated it from a Bayesian

point of view. This Bayesian reformulation enabled us to derive a model selection criterion,

that leaded to estimating the number of sources. We confirmed through experiments the

effectiveness of the two techniques introduced in Chapter 3: multiple F0 estimation and

source number estimation.

In Chapter 4, based on Bregman’s grouping cues, we proposed a new methodology to

estimate simultaneously the spectral structure of each source on the whole time-frequency

domain, which we called the “Harmonic-Temporal Clustering (HTC)”. Through experimen-

tal evaluations on the F0 estimation of mixed speech signals and music signals, we showed

that our method’s accuracy outperforms the previous state-of-the-art methods of each of

these areas.

As F0 estimation and spectral envelope estimation could be considered as “chicken and

egg” problems, we formulated in Chapter 5 the estimation of F0 and the spectral envelope

as a joint optimization of a compound model of the spectral envelope and the fine structure.

We found through experiments a significant advantage of jointly estimating F0 and spectral

113
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envelope in both F0 estimation and spectral envelope estimation.

Taking into account the fact that it becomes usually difficult to estimate F0s or to sepa-

rate frequency components that are close to each other only based on the power spectrum,

we considered that not only the harmonic structure but also the phase difference of each

signal could be an important cue for separation. The main topic of Chapter 6 was the

development of a non-linear optimization algorithm to obtain the maximum likelihood pa-

rameter of the sinusoidal signal model. We introduced a new iterative estimation algorithm

using an auxiliary function, eventually allowing a complex-spectrum-domain EM-like multi-

pitch estimation, which was inspired by the idea of the EM algorithm. Through simulation

experiments, we showed that this parameter optimization algorithm outperformed existing

gradient descent-based methods in the ability to avoid local solutions and the convergence

speed. We also confirmed the basic performance of our method through 1ch speech separa-

tion experiments on real speech signal.
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があり、今後もこの付き合いを大切にしていきたいと思います。

井上和士氏 (コルグ)、鎌本優氏 (NTT)、中潟昌平氏 (富士通)は、筆者にとって初めての

研究室の後輩でした。とはいえ、井上氏と鎌本氏は年齢が同じだったこともあり、まるで同

期のように仲良くして頂きました。井上氏は、筆者が博士 1年時に隣席だったこともあり、

当時最も多く研究の議論や雑談を日常的に交わしていた相手でした。この優秀な三人の後輩

の存在が、当時の研究室の活気につながっていたことは幸運でした。槐武也氏、山本遼氏、

齊藤翔一郎氏とは、ときに白熱した議論を、ときには実に他愛のない雑談を交わし合いまし

た。三方の研究には筆者も興味があり、問題に直面しては一緒に考えたりしておりました。

また、それらを通して筆者も学んだことが多くありました。槐氏は修士在学中に音声合成の

研究に取り組んでおり、その過程で音声のスペクトル包絡をGMMで近似する何らかの方法

が必要だという状況になり、それが筆者が第 5章の手法を思いつくきっかけとなりました。

山本遼氏は、槐氏と同期の現博士課程の学生であり、研究室の雰囲気を明るく楽しくするこ

とに努力を惜しまない大変好ましい人物です。同氏が時々投げかけてくる質問は実に奥が深

く、理解していたつもりの事柄を改めて考えさせられたことが何度もありました。齊藤氏と

は、時が経つのを忘れてしまうくらい議論が白熱してしまうことが多々ありました。一方で、

たまに同氏が発するジョークはときには筆者のツボにはまってしまうことがあり、そのせい

で研究に集中できないことも多々ありました。

本論文の完成は、Jonathan Le Roux氏の協力なくしてはありえませんでした。第 4章に

相当する研究は同氏とともに行ったものであり、音声分析の実験結果は同氏の実装によるも

のです。また、本論文の英語化と英文添削を献身的に手伝って頂きました。同氏いわく「謝

金のためではなく友情のため」とのことですが真実は謎です。ともに研究できたこと、隣席

であったこともあり、今ではすっかり嵯峨山研究室で最も仲の良い友人 (漫才コンビ)です。

筆者が在学する最後の一年を和泉洋介氏、松本恭輔氏、宮本賢一氏といった素質溢れる

面々とともに過ごせたのは幸運でした。彼らの研究はいずれも非常にレベルの高いものであ

り、三方とホワイトボードで交わす議論はいつも刺激的でした。松本氏と宮本氏からは時々
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ドキッとするような鋭い質問や指摘を受けることがあり、最も議論し甲斐のある後輩たちで

した。和泉氏には公私にわたり御世話になりました。博士課程に進学するはずの同氏のこと

は今後も応援し続けるつもりですが、もし博士学生特有の悩みに直面したときにはいつでも

相談に乗ってあげようと思います。隣の研究室の学生でありながら、藤田悠哉氏 (東大)とは

雑談や研究に関連することがらの議論を交わしたりしました。同氏の研究の話をいつも楽し

く聞かせて頂きました。

安東弘泰氏 (東大)とは、学部時代から博士課程までの 7年間、別々の専攻に在籍していま

したが、ともに切磋琢磨しながら大学院生活を送ってきました。筆者は、博士課程に進学し

た後、時として言いようのない孤独感に苛まれるときがありました。そうしたときにはいつ

も、同氏も同じ状況で頑張っているのだと思うことで、自然と自分自身を奮い立たせること

ができました。同氏とともに学位を取得することは、実に感慨深いものがあります。

大石康智氏 (名大)、北原鉄朗氏 (京大)、中野倫靖氏 (筑波大)、藤原弘将氏 (京大)、吉井和

佳氏 (京大)、吉岡拓也氏 (NTT)は、学会や学外実習を通じて知り合った同志たちです。筆

者が学会デビューを果たしたときに同じセッションで発表していたのが北原氏で、筆者と同

学年にも関わらず当時既に何度も学会発表をこなしていたせいか同氏が醸し出していたエネ

ルギーに圧倒されたのを今でも鮮明に記憶しております。産総研実習において筆者と同時期

に実習生だったことがきっかけで仲良くなった大石氏と藤原氏は今や同分野を代表する若手

研究者となりました。実習中最も多くの議論を交わしたのがこの両氏でした。彼らとの議論

はとても楽しく、直接会える機会をいつも楽しみにしております。中野氏とは長い付き合い

で、公私ともに仲の良い同分野の研究者仲間の一人です。同氏には見習うべきところが多く、

特に、人一倍強い研究への情熱にはとても影響を受けました。吉岡氏にはNTT CS 研実習

中に御世話になりました。同氏との議論は大変刺激的で、議論を通じて同氏から学んだこと

が多くありました。研究者として生きていくのは、孤独との戦いの連続だとはじめは思って

おり、これだけ優秀で、かつ素晴しい仲間ができることは想像だにしていませんでした。同

分野の同世代のこうした新進気鋭の研究者の活躍が発奮材料となったことも本論文完成の一

端を担っています。今後とも学生時代にできたこの仲間たちとは、同分野で切磋琢磨してい

ける良い関係でいたいと願います。

この他にも、本研究は、数多くの方々からの支援や議論なくしては成しえませんでした。

本研究に関して議論して頂いたすべての方々に御礼申し上げます。また、このあまりにも長

文の謝辞を最後まで読んで頂いた読者に感謝します。
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Analysis of Frequency to Instamtaneous Frequency Mapping for Accurate Estimation

of F0 and Periodicity,” In Proc. Eurospeech’99, Vol. 6, pp. 2781–2784, 1999.

[65] H. Kawahara, I. Masuda-Katsuse and A. de Cheveigné, “Restructuring Speech Repre-
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