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Abstract

We deal through this paper with the problem of estimating “information” of each sound
source separately from an acoustic signal of compound sound. Here “information” is used in
a wide sense to include not only the waveform itself of the separate source signal but also the
power spectrum, fundamental frequency (Fp), spectral envelope and other features. Such a
technique could be potentially useful for a wide range of applications such as robot auditory
sensor, robust speech recognition, automatic transcription of music, waveform encoding for
the audio CODEC (compression-decompression) system, a new equalizer system enabling
bass and treble controls for separate source, and indexing of music for music retrieval system.

Generally speaking, if the compound signal were separated, then it would be a simple
matter to obtain an Fj estimate from each stream using a single voice Fj estimation method
and, on the other hand, if the Fjs were known in advance, could be very useful information
available for separation algorithms. Therefore, source separation and Fj estimation are
essentially a “chicken-and-egg problem”, and it is thus perhaps better if one could formulate
these two tasks as a joint optimization problem. In Chapter 2, we introduce a method called
“Harmonic Clustering”, which searches for the optimal spectral masking function and the
optimal F{ estimate for each source by performing the source separation step and the Fj
estimation step iteratively.

In Chapter 3, we establish a generalized principle of Harmonic Clustering by showing that
Harmonic Clustering can be understood as the minimization of the distortion between the
power spectrum of the mixed sound and a mixture of spectral cluster models. Based on this
fact, it becomes clear that this problem amounts to a maximum likelihood problem with
the continuous Poisson distribution as the likelihood function. This Bayesian reformulation
enables us not only to impose empirical constraints, which are usually necessary for any
underdetermined problems, to the parameters by introducing prior probabilities but also
to derive a model selection criterion, that leads to estimating the number of sources. We
confirmed through the experiments the effectiveness of the two techniques introduced in this

chapter: multiple Fj estimation and source number estimation.
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Human listeners are able to concentrate on listening to a target sound without difficulty
even in the situation where many speakers are talking at the same time or many instruments
are played together. Recent efforts are being directed toward the attempt to implement this
ability by human called the “auditory stream segregation”. Such an approach is referred to as
the “Computational Auditory Scene Analysis (CASA)”. In Chapter 4, we aim at developing
a computational algorithm enabling the decomposition of the time-frequency components
of the signal of interest into distinct clusters such that each of them is associated with a
single auditory stream. To do so, we directly model a spectro-temporal model whose shape
can be taken freely within the constraint called “Bregman’s grouping cues”, and then try
to fit the mixture of this model to the observed spectrogram as well as possible. We call
this approach “Harmonic-Temporal Clustering”. While most of the conventional methods
usually perform separately the extraction of the instantaneous features at each discrete time
point and the estimation of the whole tracks of these features, the method described in
this chapter performs these procedures simultaneously. We confirmed the advantage of the
proposed method over conventional methods through experimental evaluations.

Although many efforts have been devoted to both Fy estimation and spectral envelope
estimation intensively in the speech processing area, the problem of determining Fy and
spectral envelope seems to have been tackled independently. If the Fjy were known in advance,
then the spectral envelope could be estimated very reliably. On the other hand, if the
spectral envelope were known in advance, then we could easily correct subharmonic errors.
Fy estimation and spectral envelope estimation, having such a chicken and egg relationship,
should thus be done jointly rather than independently with successive procedures. From this
standpoint, we will propose a new speech analyzer that jointly estimates pitch and spectral
envelope using a parametric speech source-filter model. We found through the experiments
a significant advantage of jointly estimating Fy and spectral envelope in both Fj estimation
and spectral envelope estimation.

The approaches of the preceding chapters are based on the approximate assumption of
additivity of the power spectra (neglecting the terms corresponding to interferences between
frequency components), but it becomes usually difficult to infer Fys when two voices are
mixed with close Fys as far as we are only looking at the power spectrum. In this case not
only the harmonic structure but also the phase difference of each signal becomes an important
cue for separation. Moreover, having in mind future source separation methods designed for

multi-channel signals of multiple sensory input, analysis methods in the complex spectrum



domain including the phase estimation are indispensable. Taking into account the significant
effectiveness and the advantage of the approach described in the preceding chapters, we
have been motivated to extend it to a complex-spectrum-domain approach without losing
its essential characteristics. The main topic of Chapter 6 is the development of a nonlinear
optimization algorithm to obtain the maximum likelihood parameter of the superimposed
periodic signal model: focusing on the fact that the difficulty of the single tone frequency
estimation or the fundamental frequency estimation, which are at the core of the parameter
estimation problem for the sinusoidal signal model, comes essentially from the nonlinearity
of the model in the frequency parameter, we introduce a new iterative estimation algorithm
using a principle called the “auxiliary function method”. This idea was inspired by the
principle of the EM algorithm. Through simulations, we confirmed that the advantage of
the proposed method over the existing gradient descent-based method in the ability to avoid
local solutions and the convergence speed. We also confirmed the basic performance of our

method through 1ch speech separation experiments on real speech signal.
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Chapter 1

Introduction

1.1 Background

We deal through this paper with the problem of estimating “information” of each sound
source separately from an acoustic signal of concurrent sound sources. The acoustic signal
can be the compound sound of several people speaking at the same time, or several musical
instruments playing together. Here “information” is used in a wide sense to include not only
the waveform itself of the separate source signal but also the power spectrum, fundamental
frequency (Fp), spectral envelope and other features. Such a technique could be poten-
tially useful for a wide range of applications such as robot auditory sensor, robust speech
recognition, automatic transcription of music, waveform encoding for the audio CODEC
(compression-decompression) system, a new equalizer system enabling bass and treble con-
trols for separate source, and indexing of music for music retrieval system. The problem,
however, is not so simple to solve. We will henceforth call this kind of problem “multisource
analysis”. Multisource analysis can be categorized in several types of problem setting de-
pending on the situation one assumes. A situation where there are more sensors than source
signals, for instance, is referred to as the overdetermined case, in which the source separa-
tion can be performed satisfactorily especially in clean environment by using the well-known
“Independent Component Analysis” (see, for example, [46, 47]). A situation where there are
less sensors than source signals, on the other hand, is referred to as the underdetermined
case. In such a situation, one requires some empirical assumption in addition to the statis-
tical independence of sources. One of the most well-known such assumptions is called the
“time-frequency sparseness of speech”, which assumes that time-frequency components of

sources rarely overlap with each other. This assumption is experimentally supported by the



2 Chapter 1 Introduction

methods that use a binary mask to extract only the time-frequency components which seems
to have propagated from the same spatial direction (or position) [117, 91, 92, §].

On the contrary, the particular problem of interest in this paper is a multisource analysis
where one only has a single sensory input and does not know how many sources in the
compound acoustic signal. We will be confronted with such a situation, for example, when
we need to detect musical note from monaural CD recordings, or when several different
source signals originate from very close position even if we had multiple sensors. The greatest
difference from the multisensor case is thus that it is impossible to obtain spatial data of

sources.

1.2 Source Separation and F{ Estimation

The auditory system is able to extract the period despite very different waveforms or
spectra of sounds at the ears. Explanations of how this is done have been elaborated since
antiquity [27]. Even with a monaural recording, a musically inclined listener can often follow
and concentrate on the particular melodic line of each instrument in a polyphonic ensemble.
This implies that human can hear several pitches from a single compound waveform. As
psychophysical data on this capability are said to be fragmentary (see, for example, [12,
13, 51]), the limits of this capability, and the parameters that determine them, are not well
known. This “proof of feasibility” has nevertheless encouraged the search for algorithms
for multisource analysis. The task of multisource analysis in essence involves two tasks:
source separation and Fj estimation. If the compound signal representing the mixture were
separated into single source signals, then it would be a simple matter to derive an Fj estimate
from each stream using a single voice [y estimation algorithm (comprehensive reviews for
single voice Fjy estimation methods can be seen in [49, 50]). On the other hand the Fps, if
known in advance, could be very useful information available for separation algorithms. This
leads to a “chicken and egg” situation: estimation and segregation are each a prerequisite of
the other, the difficulty being to “bootstrap” this process.

Conventional techniques for multisource analysis are usually designed to cope with either
of the two tasks, Fy (multipitch) estimation and source separation. Many publications on
methods corresponding to the former type have been proposed [111, 101, 59, 105, 38, 79, 60,
61, 116, 45, 10, 32, 43, 66, 67, 69, 102, 88, 89, 112, 107, 108, 75, 23, 24, 26, 72, 113, 114, 115,

22, 57], which can be found in de Cheveigné’s excellent review paper [28].
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A learning-based method such like sparse coding [110], non-negative sparse coding [109,
2, 97], and non-negative matriz factorization [94] models the signal or power spectrum as
a weighted sum of basis functions and tries to estimate them such that each of them is a
waveform structure or a power spectrum structure that seems to recur many times in the
whole acoustic signals or spectrogram. This approach enables source separation without
estimating Fys and thus corresponds to the latter type.

However, since source separation and Fj estimation, as is mentioned beforehand, are in
essence a “chicken and egg” problem, it is perhaps better if one could formulate these two
tasks as a joint optimization problem. In Chapter 2, a new principle called “Harmonic
Clustering” is introduced, which iteratively performs two steps: source separation and Fj
estimation, in which the common objective function is decreased/increased monotonically
at each iteration step. This is reformulated in Chapter 3 in a Bayesian framework, which

enables further extensions.

1.3 Estimating the Number of Sources

Up to now, no concern was given to finding the number of sources present within a mixture.
This is a difficult aspect of multisource analysis. Many studies ignore it and concentrate on
the simpler task of producing some fixed number of estimates, regardless of the number of
sources.

Some signals are inherently ambiguous, and may be interpreted either as a single voice
with low Fjy, or as the sum of several voices with higher, harmonically-related Fys. Tuned to
find as many voices as possible (or to favor the shortest possible periods) an algorithm may
“dismember” a voice into subsets of partials, tuned to find as few as possible (or the longest
possible periods) it may coalesce multiple voices. The voice count is accordingly over- or
underestimated.

[terative estimation methods typically apply a model at each iteration, and assign as much
signal power to a voice as fits this model. Iteration continues on the remainder, and stops
when the spectrum (or waveform) has been depleted of power. In the presence of noise, it
may be difficult to distinguish between residual noise and yet another source.

In the method of [26], cancellation filters are applied successively to remove each periodic
voice. The algorithm stops when application of a new filter reduces power by less than a

criterion ratio. Klapuri evaluates the “global weight” of the F candidate derived from the
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residual after a voice has been suppressed, and stops the search if that weight falls below
threshold [67]. In nonnegative deconvolution [90, 95], the number of sources is given by the
number of elements of deconvolved matrix with amplitudes greater than some threshold. Wu
and colleagues [113, 114, 115] use an HMM to model transitions between states of 0, 1 or 2
voices.

The Bayesian formulation of the Harmonic Clustering enables us further to derive a the-

oretical framework for estimating the number of sources.

1.4 Temporal and Spectral Continuity

In general, there are two situations in which the multisource analysis becomes extremely
difficult to solve: One is when the Fjs of two or more sources coincide at a particular instant
of time, and the other is when the partials of one source overlap with those of other sources.
Are there any ways to make a reasonable guess for restoring the partial amplitudes of the
underlying sources in such situations? A hint for this apparently unsolvable question is the
temporal and spectral continuity of source signals.

A common assumption is that voices should change gradually over time. Continuity of
F, contours is often exploited in so-called “post-processing” algorithms [49] such as median-
smoothing, dynamic programming, Kalman filtering [76, 106, 4], hidden Markov models
[113, 114, 115], or multiple agents [75, 45] in order to improve the F| estimation results
obtained via some frame-by-frame Fj estimation algorithm. In addition to continuity of Fj
tracks, the assumption that partial amplitudes vary smoothly can be used to track voices
over instants when Fys cross. A challenge to the multisource analysis using the continuity-
constraints of Fj and amplitude tracks is called the “Computational Auditory Scene Analysis
(CASA)”, which will be mentioned more in details in Chapter 4.

An assumption that has been used recently is spectral smoothness, that is, limited variation
of partial amplitudes across frequency axis [67, 116, 108, 10, 21, 69]. Speech and many
musical instruments usually have smooth spectral envelopes. Irregularity of the compound
spectrum then signals the presence of multiple voices, and smoothness allows the contribution
of a voice to shared partials to be discounted. For example if two voices are at an octave
from each other, partials of even rank are the superposition of both voices. Based on spectral
smoothness, the contribution of the voice of the lower Fjy can be inferred from the amplitude

of partials of odd rank, and can then be subtracted to reveal the presence of the voice of the
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higher Fj. Spectral smoothness has also been used to reduce subharmonic errors [10, 67].
If the Fys of all the sources within a mixture were known in advance, then the spectral
envelope could be inferred very reliably using the spectral smoothness constraint. On the
other hand, if the spectral envelope were known in advance, then we could easily correct
subharmonic errors as noted above. Here we find another “chicken and egg” situation,
which motivates us to formulate a joint estimation method of Fy and spectral envelope with

the spectral smoothness constraint. This will be discussed in Chapter 5.

1.5 Objective of the Thesis

The objective of this paper is to propose a unified methodological framework, in which one
can handle (1) source separation, (2) multipitch estimation, (3) estimation of the number of
sources, (4) estimation of the continuous temporal trajectories of Fys and amplitudes, and

(5) spectral envelope estimation, at the same time.



Chapter 2

Harmonic Clustering

2.1 Introduction

The auditory system is able to extract the period despite very different waveforms or
spectra of sounds at the ears. Explanations of how this is done have been elaborated since
antiquity [27]. Even with a monaural recording, a musically inclined listener can often
follow and concentrate on the particular melodic line of each instrument in a polyphonic
ensemble. This implies that several pitches may be heard from a single compound waveform.
As psychophysical data on this capability are said to be fragmentary (see, for example,
[12, 13, 51]), the limits of this capability, and the parameters that determine them, are not
well known. This “proof of feasibility” has nevertheless encouraged the search for algorithms
for multisource analysis. The task of multisource analysis in essence involves two tasks:
source separation and Fj estimation. If the compound signal representing the mixture were
separated into single source signals, then it would be a simple matter to derive an F{ estimate
from each stream using a single voice Fjy estimation algorithm (comprehensive reviews for
single voice Fjy estimation methods can be seen in [49, 50]). On the other hand the Fps, if
known in advance, could feed some of the separation algorithms. This leads to a “chicken
and egg” situation: estimation and segregation are each a prerequisite of the other, the
difficulty being to “bootstrap” this process.

Conventional techniques for multisource analysis are usually designed to cope with either
of the two tasks, Fy (multipitch) estimation and source separation. Many publications on
methods corresponding to the former type can be found in de Cheveigné’s excellent review
paper [28]. A learning-based method such like sparse coding [110], non-negative sparse coding

(109, 2, 97], and non-negative matriz factorization [94] models the signal or power spectrum

6



Chapter 2 Harmonic Clustering 7

as a weighted sum of basis functions and tries to estimate them such that each of them
is a waveform structure or a power spectrum structure that seems to recur many times in
the whole acoustic signals or spectrogram. This approach enables source separation without
estimating Fys and thus corresponds to the latter type.

However, since source separation and [{ estimation, as mentioned beforehand, are in
essence a “chicken and egg” problem, it is perhaps better if one could formulate these two
tasks as a joint optimization problem. In this chapter, we propose a new principle called
“Harmonic Clustering”, which iteratively performs two steps: source separation and Fj
estimation, in which the common objective function is decreased/increased monotonically at

each iteration step.

2.2 Principle

2.2.1 Binary Masking of Power Spectrum Based on Sparseness

Let us assume here for simplicity that frequency components of a source signal are sparsely
distributed so that components rarely overlap with each other. More specifically, it is as-
sumed here that a frequency component at some frequency-bin originates completely from
only a single source (see, for example, [117, 91, 92, 8] for the justification for this assump-
tion). Similarly to the Yilmaz’s method, we shall consider to estimate an ideal binary mask
that extracts only the components that seem to originate from the same source. What differs
from Yilmaz’s is that we are dealing with an single sensory input and a guide to estimate
the ideal binary mask is the harmonic structure, that depends on Fy of speech.

First we will consider the single-tone case and introduce a very simple yet intuitive idea to
estimate the frequency from power spectrum in the next subsection. This idea is extended
to the single-voice case in Subsection 2.2.3 and is generalized to the multisource case in

Subsection 2.2.4.

2.2.2 Single-Tone Frequency Estimation

According to the Rife’s paper [83], the peak frequency of the power spectrum of a single
tone is said to be the unbiased maximum likelihood estimator, when noise is assumed to

be a Gaussian white noise. Using this result, we introduce a simple yet intuitive objective
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Figure 2.1 The objective function (Eq. (2.1)) is minimized when

v coincides to the peak frequency of ||V (w)||?

function to obtain the frequency estimate. This concept will be applied also in the following
extended versions.

Let ||Y (w)]|? be the observed short-time power spectrum of a single tone signal (complex
sinusoid). The shape of this distribution depends on the shape of the window function we
choose to use. Assuming the particular case where the peak and the mean frequencies of
this distribution coincide (where the distribution is symmetric about the peak), then one

can obtain the frequency estimate by finding p that minimizes

/_Z (w— u)2||Y(w)H2dw. (2.1)

Consequently, the frequency estimate is derived as the mean of the distribution:

| elvePas
p= 1= (2.2)

[ Ielfas

2.2.3 Single-Voice Fj Estimation and Overtone Separation

If one thinks of applying the above method to the single voice case, one may want to

separate overtones as if one is dealing with the single tone case problems separately. For this
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Figure 2.2 The objective function (Eq. (2.12)) can be monotonically decreased by
iteratively updating C,, and p while keeping the other fixed.

purpose, we introduce a binary mask function defined by

1, wedl,
1o, (w) = , (2.3)
0, wéeC,

where C,, is the set of the frequencies dominated by the n'® overtone, which satisfies, for any

7 and j such that i # j,

If we decide not to discard any of the power spectrum portions, then
N
U Cn = R(—00,0), (2.5)
n=1

and thus for all w € R,
N
D e, (w) =1, (2.6)
n=1

because it is proved by the formula:

1

1U{:1 Cs (w) = Z 1Ci (w> - Z ]'Cincj (w) + Z 1Ciﬂcj NCr (w) - (27>

=1 1,7:1<J 1,5,ki<j<k
Using such a masking function, one is able to describe a masked power spectrum portion by

2
)

L, ()|[Y(w)

(2.8)
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that correspond to the n'" overtone. Therefore, we can apply the same method described in

Subsection 2.2.2 and

/oo (w = 1) Ly, (W) [[Y (@) dw (2.9)

[e.e]

corresponds to the cost function for the frequency estimate of the n'" overtone. As we want
to make the cost function as small as possible not only for the n'" overtone but for all the
components at the same time, we should write as follows the objective function in the single

voice case: N
Z/ (0 — 1) 1, (@) |V ()P (2.10)
n=1Y X

If we further assume that the overtone frequencies are integer multiplies of the fundamental

frequency p such that
[, = UYL, (2.11)

then the objective function can be written further as

> [ - m) 10, @Y @) .12

This objective function can be monotonically decreased by iteratively updating C,, and u

while keeping the other fixed. In each iteration, €, and u should be updated to

Cn = { w i n = argmin (w— n’u)Q}, (2.13)
Zn/oo w 1Cn(w)||Y(w)||2dw

p= = _°°OO . (2.14)
Zn2/_ 1Cn(w)HY(w)H2dw

The update of C,, separates the observed power spectrum ||Y (w)||? into clusters correspond-
ing to the overtones using the Fy estimated hypothetically at the previous step and the

update of u reestimates Fj using these spectral clusters.

2.2.4 Multipitch Estimation and Source Separation

The method derived above is easily extendable to the multisource case. Let the binary

mask function, used to extract the n'" partial component of the k" source, be defined by

1, we Ck:,n
1oy, (w) = , (2.15)
0, w ¢ Ok,n
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where Cj,, is the set of the frequencies dominated by the n' overtone of the k™ source. It
is assumed here again that

> Y 16, W) =1 (2.16)

k=1 n=1
Using such a masking function, one is able to describe a masked power spectrum portion by

Lo, WY @), (2.17)

that correspond to the n'® overtone of the £ source. Therefore, if we denote by j, the Fy
estimate of the k" source, then
* 2 2
/OO (w — ) “1e,, (W) ||Y (w)]|“dw (2.18)
corresponds to the cost function for the frequency estimate of the n'® overtone of the k'™
source. As we want to make the cost function as small as possible not only for this component

but for all the components at the same time, we should write as follows the objective function:

> /Oo (w = nu) “1e,, @)Y ()] dw. (2.19)

k=1 n=1""
This objective function can be monotonically decreased in a similar way by iteratively up-
dating Cj,, and gy, while keeping the other fixed. In each iteration, Cj, and pu; should be
updated to

Crm = { w : (k,n)=argmin (w— n’,uk/)Q}, (2.20)

k' n'

WE

n/_oo w lck,n(w)HY(w)Hde

o0

oy = ™ - . (2.21)
n2/ 1Ck7n(w)||Y(w)||2dw

1 —0o0

Il
—

WE

n

The update of Cj,, separates the observed power spectrum ||Y (w)||? into clusters each of
which corresponds to an overtone of one particular source using the Fys estimated hypo-
thetically at the previous step and the update of ;s reestimates Fys using these spectral
clusters.

This iterative algorithm therefore consists of the source separation step and the multipitch
estimation step, leading us to solve a joint optimization problem of source separation and
multipitch estimation. We call this method “Harmonic Clustering”. We reformulate this
idea in Chapter 3 and try to explain it from the Bayesian point of view, which enables

various extensions.



Chapter 3

Bayesian Harmonic Clustering

3.1 Introduction

In this chapter, we aim at extending the idea introduced in Chapter 2. The Harmonic
Clustering is extended to a principle based on the estimation of the optimal fuzzy masking
function for the clustering source by source of the power spectrum of the mixed sound of
interest. Whether each of the spectral clusters has a harmonic structure or not is considered
to be the criterion for this optimization problem. More specifically, we will consider a de-
composition of the power spectrum of the mixed sound in which every spectral clusters has
a harmonic structure as the optimal solution. We will show that this optimization problem
is equivalent to the problem of minimizing the distortion between the power spectrum of the
mixed sound and a mixture of spectral cluster models used as the clustering criterion. Mean-
while, from the viewpoint of statistical estimation, the distortion minimization procedure is
none other than the regression analysis. It follows from this that the method constitutes
in maximizing a likelihood function. Thus looking at the problem from the perspective of
statistical estimation, the empirical constraints which are necessary in any undetermined
problem can now be introduced, based on Bayes theorem, in the form of prior distributions.
Moreover, as many empirical constraints which at first looked irrelevant can now be ex-
pressed with the same measure (that is, probability), the problem becomes more organized,
and the perspective of a formulation and the intuitive meaning of the problem appear more
clearly. Furthermore, through model selection, estimation of the optimal number of clusters,
i.e. the number of sources, in the sense of posterior distribution is also performed.

As we explained in the preceding paragraph, this “extended” Harmonic Clustering can be

understood as the minimization of the distortion between the power spectrum of the mixed

12
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sound and a mixture of spectral cluster models, or as the optimal decomposition (clustering)
of the power spectrum using spectral cluster models. Consequently, after deriving in the
following section the specific form of a spectral cluster model from the ideal case of periodic
signal models, we formulate in section Section 3.3 the problem separately from these two
points of view and show that they eventually both lead to the same algorithm. Then,
in sections Section 3.4 and Section 3.5, we show that optimal estimation under empirical
constraints can be performed through Maximal A Posterior: estimation, and that a criterion

for the source number estimation can be obtained from the model selection criterion.

3.2 Spectral Cluster Model

3.2.1 Definition of Fourier Transform Pair

Denoting by Y (w) the Fourier transform of y(t), the Fourier transform pair is defined by
1 o ,

Zlyt)] =Y (w :—/ t)e 7¥tdt 3.1

0] =)= == [ vt (1)
1 o ,

FHY ()] =y) = —/ Y (w)e’'dw. 3.2

Y] =y == [ Y (32

3.2.2 Definition of Analytic Signal

We define the analytic signal of a real signal x(t) by

y(t) = x(t) + j=(1), (3.3)

where z(t) is the Hilbert transform of x(¢), defined as

() = L /_ G (3.4)

Tt —T

3.2.3 Gabor Transform Output of Periodic Signal Model

Assuming that all source signals are perfectly periodic in a short time range, we will
consider as the spectral cluster model the output of the Gabor transform (STFT) of a
periodic signal model around ¢ = 0. Consider here as the k" source signal model the

analytic signal representation of a periodic signal given by

N
i) 25 Gy (mnttenn) -t e (—o0, 00), (3.5)

n=1
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where py, is the fundamental frequency, ¢y, the starting phase and ay,, the amplitude of the

n' partial, respectively. Denoting by w(t) a window function, let

gr(t) = w(t) fi(t) (3.6)

be the short-time signal enhanced by w(t) around ¢ = 0. As the window function w(t) > 0
can be chosen arbitrary, we choose to use a Gaussian window. This type of STFT is called
the Gabor transform. The Fourier transform of the left- and right-hand sides of Eq. (3.6)

is, by the convolution theorem, given by

Grlw) = \/%W(w) ¥ Fo(w) (3.7)

= \/%W(w) * (m;amej%nd (w— n%)) (3.8)

N
= Z’dk’new’mW(w — npg), (3.9)

n=1

where Fi(w) £ Z [ fi(t)] and W(w) £ .Z [w(t)]. As w(t) is a Gaussian window, its Fourier

transform is again a Gaussian-type function such that

W(w) = exp ( - 4%) (3.10)

Hence, Eq. (3.9) can be written as

N 2
Gr(w) = Z&'kvnej%’" exp ( — %) (3.11)

n=1

The power spectrum of Eq. (3.11) can be written as

N 2
2 — " JPk,n w— n’uk
= ;ak,ne k exp( T
N 2
~ ; w — nuk
:; ay, e’ 7" eXp( 152 )
e (0 = )’ (v = ')’
D Wl P exp | =SB fexp | = S )

n#n'

|Gi(w)

(3.12)

If we now assume that the time-frequency components are sparsely distributed so that the

partials rarely overlap, the second term could be negligibly smaller than the first term in
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the above equation. This assumption justifies the additivity of power spectra and the power

spectrum of the k™ source signal model is then expressed as a Gaussian mixture model:

|Gr(w)|” ~ D pn” exp <— M) (3.13)

202

. . . . A ~
whose maxima are centered over prospective harmonics w = nuy. Putting ay, = v/ 27raak7n2,

one finally obtains

2mo

2 al Ak (w_nﬂk)2
IGr@P > > —==exp | =5 |- (3.14)
n=1

3.2.4 Constant Q) Filterbank Output of Periodic Signal Model

Similarly, one can derive as well the constant Q filterbank output of a periodic signal

model. Let the wavelet basis function defined by

ba 1) 2 — w(“ - t), (3.15)

2T o

where « is the scale parameter, ¢ the shift parameter and ¢)(u) an arbitrary analyzing wavelet
that has the center frequency of 1 and satisfies the admissible condition. ¢, +(u) is used to

measure the component of period « at time . Now letting
N
Jr(u) = Zﬁkmej("“k“’“p’“"), u € (—00,00) (3.16)
n=1

be the £ source signal model, its continuous wavelet transform is defined by

Wi (log 2,1) 2 (fulu). Yos(w) (3.17)

U€(—00,00)

= (Frp(w), Yor(w) , (3.18)
< )

W€ (—00,00)

where Fj,(w) £ F[fi(u)] and U, (w) £ F[has(u)] The equality in the second line follows
from the Parseval’s theorem. Defining by ¥(w) £ Z[1)(u)], then the Fourier transform of
Eq. (3.15) can be written as

U, 1 (w) = U(aw)e ", (3.19)

and from Eq. (3.18), one obtains

Wi, (log 1,t) = /00 Fi(w)¥* (aw) e’ dw. (3.20)

—00
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One immediately realizes that Eq. (3.20) amounts to the inverse Fourier transform of
Fr(w)¥(ow). Wi(logL,t) could thus be interpreted as an output signal from the subband
filter with center frequency of 1/« and with frequency response ¥(aw) with the input f(¢).

The Fourier transform of the k' source signal model is given as
N
Fr(w) = V2r Z&'kvnew’“"é(w — ). (3.21)
n=1

By substituting this result into Eq. (3.20), one obtains

N
Wi, (log 1,t) = ZEik,nej@’“"\ll*(an,uk)ej”“kt. (3.22)

n=1
By changing the variable z = logé and by putting Q0 £ log i, W;, can be expressed in the

time-logfrequency domain:

N
Wi(z,t) = Z?ik,n\ll* <ne’w+9k>ej(‘”’%"+”eg”), (3.23)

n=1
We will henceforth simply call €, the pitch frequency. As the frequency characteristic ¥(w)
of the analyzing wavelet can be chosen arbitrarily, we use here the following unimodal real

function whose maximum is taken at w =1 (see Fig. 3.1):

exp(—%) (w>0)

0 (w < 0)

U(w) = (3.24)

Eq. (3.23) is then given as

N (x — Q. — log n)2 , O
Wi(z,t) = E agnexp| — ¢ (Prntne t), (3.25)
n=1

402

and the resulting power spectrum of Eq. (3.22) can be written as

N 2
Zak,n exp < — (l’ _ Qk _ IOg TL) )e]'(sok,n+negkt)
n=1

2

2
[ Wite. o) = =

N 2 2
=3 e ( R e )<>
n=1 g
— Q) — logn)®
+ Z Qo Ol 7 €XP (‘ (90 102 > n) )
n#n’

402

2
exp ( et )ej(”eﬂk”"'enk't*@kmmun ). (3.26)
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8 10

1

Figure 3.1 Frequency response W(w) given by Eq. (8.24) for o = 3.

If we assume here again that the time-frequency components are sparsely distributed so
that the partials rarely overlap, the second term could be negligibly smaller than the first
term in the above equation. Putting a, 2 v27o|ds.,|*> for simplicity of notation, one
obtains a Gaussian mixture model whose maxima are centered over prospective harmonics

x = Qg(t) + log n:

W (. 0)|” ~ ii n_ g, (2= O logn)’ (3.27)
’ k=1 n=1 V2ro 20° 7

I

whose graphical representation can be seen in Fig. 4.1. Let us denote simply by [|[W(x)

the power spectrum ||[W(z,0)||? and consider it as the spectral cluster model. We are now
able to assess how clearly a harmonic structure appears in a spectral cluster by measuring

the distance between the cluster and this cluster model.

3.3 Principle

3.3.1 Optimal Separation of Power Spectrum

We will henceforth suppose the situation where we obtain the observed spectrum by con-

stant () analysis. We formulate the problem of the decomposition of the observed power
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power

Qk Qk: —|—10g 2 c. log-freq.

Figure 3.2 Graphical representation of Eq. (3.27).

spectrum into distinct clusters, which is said to be ‘optimal” when all the clusters are har-
monically structured. Let © refers to {Q,{ar. ;e .

We define by ||Y (z)||? the power spectrum of the signal of interest obtained by the constant
Q analysis. Let us introduce a spectral masking function my(z) that extracts the components
associated with the &*® source from [|Y (z)||?. For € R, my(z) indicates the percentage of

the portion of ||Y (z)||? shared to the k" source, such that satisfies
K
> mp(r) =1 (3.28)
k=1

0<mg(z) <1, ke{l,--- ,K}. (3.29)

Assuming again additivity of power spectra, a portion of the observed power spectrum is
thus given arbitrarily by
2
my(2)||Y (2)||”, = € (—o00,00), (3.30)

which we call a “spectral cluster”. As we expect the spectral cluster to be associated with a
single harmonic structure, we need to introduce a measure function that specifies how clearly
a harmonic structure appears in this spectral cluster. One possible measure function may

be the I divergence [30] (The reason of this choice will be made clear in Subsection 3.3.2.)
12 | we derived in Subsection

between my(z)||Y (z)||* and the spectral cluster model ||Wy(z)

3.2.4:

~ 210, MY @) 2 )
/OO (mk(a:)HY(x)H log 0 — (@Y @] = IWe@)?) | de.  (3.31)

The more clearly the harmonic structure appears in my(z)||Y (x)||?, the smaller this value

may be. The optimal clustering achieved by minimizing their sum with respect to mg(z)
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and O:
(@)[|Y (=

Z / (mk Y @ 1og = W” —(mk<w>||Y<x>H2—|\Wk<x>n2))dx, (3.32)

tries to make all separate clusters to be harmonically structured.

In the same way, let us introduce a spectral masking function my ,(x) that extracts the
components associated with the n'® partial of the &*® source from ||Y(z)||?. For z € R,
I

my.n(z) indicates the percentage of the portion of ||Y (z)||? shared to the n'" partial of the
b} g

k' source, such that satisfies

Z Z Mpn(z) =1 (3.33)

k=1 n=1
0<myn(r)<l, ke{l,--- K}, ne{l,--- ,N} (3.34)

a portion of the observed power spectrum is thus given arbitrarily by

Mg (2)]|Y () ||

z € (—00,00) (3.35)

which we call a “spectral cluster”. In the same way, the optimal clustering can be achieved

by minimizing

d(O,m) = Z Z /OO (mk,n(x)HY(x)H2 log mknx:!z;()x)“

k=1 n=1Y~%

_ <mk,n(g;)\}Y(x)y\2 - wk,n(x))>dx. (3.36)

with respect to ® and my,(z). To do so, we shall find it most convenient to minimize this
objective function recursively with respect to my ,(x) and © while keeping the other fixed.
As both steps necessarily decreases the objective function, which is bounded by below, the
convergence of this recursive algorithm is thus guaranteed.

We shall first derive the update equation for the spectral masking function my ,(x) that
minimizes ®(O, m) with fixed ©. Adding to the objective function the Lagrange multiplier
term that ensures Eq. (3.33):

/ (Zkan —1>dx (3.37)

k=1 n=1
its partial derivative with respect to my ,(x) is given as

02(©,m) _ [V ()| (10g Wealz) _ 1) ~ ). (3.38)

Mo ()
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Setting this to 0, one obtains

m x) = T)ex M_
b (2) = Win(2) p( o) 1. (3.39)

From Eq. (3.33), the Lagrange multiplier A\(x) is given as

D) Winla) exp (HY;(—?)H - 1) =1, (3.40)

k=1 n=1

which yields
~ Win(2)

My (x) = )
k n

Substituting this result into Eq. (4.31), we obtain

(3.41)

[ 21 Y@l 2 _
o7 = [ | Ivelfos il (Hm)u ;;Wk,nm) &

(3.42)

from which we see that what we are trying to minimize w.r.t ® is the I divergence between

the whole observed power spectrum and the sum of all the spectral cluster models.

3.3.2 Minimization of Distortion Measure

Optimally fitting a parametric function with respect to observed values corresponds, from
the viewpoint of statistical estimation, to regression analysis. That is, if we consider that
the observations ||Y (z;)]|? at the discrete points z; are generated from the regression model
|[W(x)||* with a randomly oscillating noise, one can come back naturally to a maximum

likelihood estimation problem. Denoting by
P(|Y (z)]*|©) (3.43)

the output probability of observation [|Y(z;)||* from the regression model ||[W(z)||? with
parameter © (in other words, the likelihood of the parameter © of the regression model
with respect to the observation ||Y (z;)]|?), our goal is to maximize the joint probability that
all the observations Y = (||Y (x1)|%,-- -, ||[Y (z1)]|*)* were generated independently by the

regression model,

PY|e) = HP(HY(JJZ-)HQIG), (3.44)
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or its logarithm (hereafter mentioned as log-likelihood)
log P(Y|©) = ZlogP 1Y (z:)]%]©). (3.45)
For example, if we now consider the relation
1Y (2)||* = [|W()||* + e, (3.46)

it is often assumed that ¢; is a Gaussian white noise, i.e. ¢ ~ N(0,2?), and in this case

expression (3.43) is defined as

2
2 | (I @l* = W)
P(Y(@)IF10) = ——exp | - _ (3.47
Substituting it into (3.45), the quantity to maximize becomes
2
Ll (el - e ) -
; Vo 212 ’ (3.48)

and we thus see that this is equivalent to the least mean square estimation problem be-
tween ||Y'(x)|* and |W (z)||?>. However, despite the fact that ||Y (x)||* is a power spectrum
distribution density, the above likelihood function P(]|Y (x;)|*|®) is non-zero even when
W (z)||* < 0. Of course, P(||Y (x;)||?|©) does not need to be a Gaussian distribution, and
for other distribution shapes the essential interpretation as a regression analysis problem is
not lost. Here, it is desirable that P(||Y (x;)||*|©) is only defined for ||[W(z;)||* = 0, and
the Poisson distribution is a representative example of such a probability density function.
Poisson distribution is usually defined as a probability density function of random variables
on non-negative integers, but it can be extended to a probability density function of random
variables on all non-negative real numbers. Distinguishing it from the usual Poisson distri-
bution, we will call it continuous Poisson distribution. The continuous Poisson distribution

of ||Y (x;)||* with parameter ||[W (z)||* is given by

e |lwe

()
|y ()| +1)

P(IY (z)]?|©) = (3.49)

where I'(+) is the Gamma function

[(z) = / e 7 de, (3.50)
0
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and the likelihood is defined as 0 when ||[W(x)||? is negative. The shape of the distribution
of the likelihood of ® with respect to || (z;)||? is shown in Fig. 3.3.2. Substituting this

expression into (3.45), we obtain the log-likelihood to maximize:
I
L(®) £ "log P(|[Y (2:)]1°|®) (3.51)
i=1

= (HY(xz‘)H210g W ()| = |V ()||” - 10gF<HY(a:0||2 + 1)) (3.52)

i=1
As shown in Fig. 3.3.2, the above distribution is a unimodal distribution reaching its max-

| = |[W(x)||?, which implies as expected that this maximum like-

imum only when [|Y (z)
lihood problem amounts to a model fitting one. In the same way as we have shown that
when the likelihood function is considered to be a Gaussian distribution the maximum like-
lihood problem becomes equivalent to a least-mean square estimation, the maximum like-
lihood problem under the above continuous Poisson distribution type likelihood function is
equivalent to the minimization with respect to HW(JE)H2 of a distortion measure between

distributions called I-divergence:

1

5 (\\Y<xi>||210g

1=1

||Y($z‘) B
[ (o) ||

This is clear if we compare this expression to Eq. (3.52). As shown in Fig. 3.3.2, the

I

(bl =Iwel)). e

distortion measure inside the parentheses in Eq. (3.53) is a non-symmetrical measure giving
more penalty to positive errors, and thus emphasizes the goodness of fitting between spectral
peaks. In that regard, it is similar to the Itakura-Saito distance [54] derived in Linear
Predictive Coding (LPC).

We have explained the model fitting from a statistical estimation point of view. From
the above perspective, we can redefine the problem as a Maximum A Posteriori estimation
problem by introducing very naturally a prior distribution P(®), which we will explain in
more details later. In the next subsection, we show how one can derive an efficient iterative

estimation algorithm.

3.3.3 Iterative Maximum Likelihood Estimation

Goto [45], by considering hypothetically the frequencies as observation data and the nor-

malized power spectrum as the probability distribution of the observation data, uses the EM
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Figure 3.3 Graphical representation of the likelihood function (3.49) for |Y (z)|]* = 5.

algorithm to maximize the probability that the whole observation data have been generated
by a statistical model represented by a GMM. However, from a statistical signal processing
viewpoint, it is not obvious whether the assumption that the frequencies behave stochasti-
cally is appropriate or not. As the power spectrum ||Y (x)||? is actually not a probability
distribution and the mixed sound model ||W (z)||* is also not a statistical model, formulas
from the probability theory (Bayes theorem, marginalization operations, etc.) cannot be
applied in a rigorous manner to their distributions, and the fact that the EM algorithm
derived using Bayes’ rule could be used to perform approximation between them is thus def-
initely non-trivial. The goal of this subsection is to derive an iterative estimation algorithm
formally equivalent to the EM algorithm without making use of Bayes’ rule. This derivation
justifies of course our method, but eventually also supports simultaneously the validity of
Goto’s method.
The goal of the problem (maximum likelihood estimation) is now

© = argmax L(©). (3.54)
S

Looking back at Eq. (3.14),

2
— Q. —1
Wkn(x)é%exp<_ (z — Q — logn) >

W(z)||? can be written as a sum over k and n of terms of the

form

o2
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Figure 3.4 The distortion measure inside the parentheses in (3.53) for |[W(z)||* = 5.

and one can thus write L(®) as

L(®) =3 (IIY(mHQ log > " Wia(wi) = 30D Wia(w) — log T (||V ()| + 1)) .
i=1 k=1 n=1 k=1 n=1 (355>

Approximating the second term in the parentheses above by a Gaussian integral, we get

I o
> Winlwi) = / Win(2)dz = agp, (3.56)
i=1 —o0

and thus ), an Win(x;) = an apn. However, one cannot obtain analytically © max-
imizing the above L(®). The specific reason for this is that L(®) has a nonlinear term
expressed as the logarithm of a sum of several exponential terms.

If we now notice that the logarithm function is convex, introducing arbitrary weight func-

tions my () such that Vz,

K N
DY muale) =1, Vhkn:0<mpa(x) <1, (3.57)

k=1 n=1
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we obtain the following inequality:

(”Y x;) ‘ logZkan x;) ((Z)) logf‘(HY x; H +1>>

M

K N
DD kn
k=1 n=1
K N

1;1 . k=1 n=1
EZ <ZZHY zi) | M (2 )log ((;C)) 10gF<HY(:ci)H2+1>> Za
==L =l ' k=1 n=1
(3.58)
Let us denote the right-hand side of this inequality by L~[@, m]:
L™[®,m]
I K N " KN
=2 <ZZ I3 ) log S — o (| )|+ 1>> I
i=1 \ k=1 n=1 mkn(xz) P ot
(3.59)

What must be noticed in the above inequality is not only that a lower bound function (right-
hand side) has been obtained for L(®), but that in this lower bound function L~ (©,m) the
exponential inside W), ,(z) has disappeared and become a second-order function in €, thus
suggesting that it should be possible to obtain analytically € maximizing L~ (©,m). Using
this fact, we develop hereafter a method to increase L(®) indirectly using L™ (©,m).

L~ (©,m) contains a new variable my,,(x) which did not appear in L(®). For any fixed
O, if we maximize the lower bound function with respect to my,(x), equality is reached
in the inequality, with L= (©,m) always staying smaller than L(©). The latter is a direct
consequence of the inequality while the former can be verified by looking for my ,(z) maxi-
mizing L~ (0, m). Let us first differentiate with respect to my,(z;) the lower bound function

to which the Lagrange multiplier term

_ Z A ( SO mpala) — 1 ) (3.60)

k=1 n=1

has been added. We obtain

& HY(:&')HQ(bgM - 1) — A (3.61)

om Mg ()

and putting this to 0, we get

M () = Whn(2;) exp (HY()\L;)” — 1> . (3.62)
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According to condition (3.57),

i iwk,n(xi) exp (M — 1) =1, (3.63)

k=1 n=1

and the Lagrange multipliers A; can thus be obtained. We eventually get
Wk:,n (Iz)

g S Weanlai)

Introducing this result into Eq. (3.59), we can verify that indeed L™ (®,m) = L(©®).

(3.64)

M (i) =

From this state of equality, if we now increase L~ (@, m) with respect to ©, automatically
L(®) shall also increase. This is due to the fact that the convex inequality ensures that
L(®) is necessarily larger than the increased L~ (©,m). From the above, we can see that
performing alternately the maximization of L~ (@, m) with respect to my, ,(x) and an increase
of L=(©®,m) with respect to ©, L(©®) will monotonically increase. The parameter estimation

algorithm is thus composed of the two following steps:

Step 0 Set the initial parameters @, put £ = 1.
Step 1 m¥ = argmax L= (@Y m).

Step 2 Set ® as © such that L= (©,m®) > L’(G)(e_l),m(e)), put £ — (+1
and go back to Step 1.

As L(®) is bounded above, from the preceding discussion, we can see that the convergence
of the iterative estimation algorithm is guaranteed.

A point which should particularly be noticed here is that the iterative estimation of the
pitch frequencies €25 through the EM algorithm, which could not be obtained in the methods
of Chazan et al. [22] and Jinachitra et al. [57], can now be performed. We shall give the
details about the update equations of the model parameter set ® later, but let us verify here
first that the update equation for €2, can be obtained analytically. Putting to 0 the partial
derivative of L~ (®,m) with respect to

ZZHY ) [P () S S~ g (3.65)

0-2
i=1 n=1

(‘)Qk

the update equation for €2

SO Y @) min (@) (2 — log n)

Qp = =Ln=t (3.66)

ZZHX x;) ’ Mo ()

i=1 n=1
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can be obtained analytically.

The iterative computation presented above eventually follows formally the same procedure
as the EM algorithm, but as we do not assume that ||Y(z)||? and ||W(z)||* are probability
distributions, its derivation method is slightly different from the original EM algorithm [33].

In that sense, the above derivation gives another interpretation of the EM algorithm.

3.4 Bayesian Harmonic Clustering

3.4.1 Maximum A Posteriori (MAP) Estimation

Based on the above preparatory work, from the viewpoint of statistical estimation as in
Subsection 3.3.2, the empirical constraints which are necessary in underdetermined problems
can be smoothly introduced through Bayes theorem, and many problems can be dealt with.
Moreover, as many empirical constraints which at first looked irrelevant can now be expressed
with the same measure (i.e., probability), the problem becomes more organized, and the
perspective of a formulation and the intuitive meaning of the problem appear more clearly.

First, from the Bayes theorem, the posterior probability of © is given by

P(Y|®)P(©)
P(Y)

PO|Y) = (3.67)

It is then through the prior probability P(®) that the relation to the empirical constraints

appears. Let us consider here the maximization of the posterior probability P(©|Y):

argmax P(O|Y) = argmax P(Y'|®)P(©) (3.68)
C C)

= argmax <log P(Y|©®) + log P(@)) (3.69)
e

= argmax <L(@) + log P(@)). (3.70)
e

This is the Maximum A Posteriori estimation of the model parameters ®. As can be seen
in Eq. (3.70), the objective function in this case is only the objective function L(®) used
in the discussion of Subsection 3.3.3, to which log P(®) has been added. As log P(©) does
not depend on my,(z;), the update equation of my,(z;) stays the same as (3.64). If we
can obtain update equations for @ from L~ (0, m) + log P(®), then in the same was as in
Subsection 3.3.3, we will be able to derive an iterative algorithm monotonically increasing

L(®) + log P(©).
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3.4.2 Smoothness of Spectral Envelope

In speech and music, the empirical constraint that “the spectral envelope is smooth” is
relatively largely accepted. The necessary condition such that the spectral envelope is smooth
is that the values of ay, and a,—1 should be sufficiently close. Therefore, one strategy is
to define the prior distribution such that the probability should get larger as the values of
ak,n, and ay,—1 become closer.

For simplicity, let us first suppose that in ©, {2} and {ax,} are independent, and
furthermore that the {ax,} are independent across sources. One can then separate the

variables as follows:

P(@®) =Py, - ,Qk) HP(ak,h e 7ak,N)' (3.71)
k
We can decompose furthermore P(ay 1, ,axy) in
P(aky, -+ ,axn) = Plagy)Plagg, -+, axn|ag:)
= P(ak,l)P(akQ|ak,1)P(ak,37'" 7ak7N|ak,1aak,2)

= P(ag1)P(arzlart)Plags|ag, arz) - - Plagnlag, - apn).  (3.72)

If we now suppose that the power aj, of the n-th harmonic component only depends on
the power ay,_; of the neighboring component, P(ay 1, a2 -+ ,a;n) can be expressed as a
Markov chain probability:

N

Pag, -, arn) = Plag,) H P(ann|arn-1)- (3.73)

n=2
The probability P(ay,n|ak,—1) should become larger as the powers of the neighboring har-
monic components are closer. Moreover, as ag, is a power (and thus non-negative), we
would like to consider a probability distribution for which the probability density function

is only defined for ay,, = 0. For example, let us assume it follows the Gamma distribution:

(v—1Dag p

(ry — 1)7 ak nfy_lei Ak n—1
Plagplapn-1) = : 3.74
(aknlarn-1) IO P (3.74)

This distribution’s probability density function is only defined for ag, = 0, and is a uni-
modal distribution which takes its maximum at the parameter ay ;. 7 > 0 is called shape

parameter, and as the peak of the distribution becomes sharper as v becomes larger, it can
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Figure 3.5 lllustration of P(agn|akn—1) when ay,—1 =5 (shape parameter v = 3,6,12).

be considered as a constant, that is used for adjusting the effect of the prior distribution.
An illustration of the Gamma distribution is shown in Fig. 3.4.2.
If we assume P(y,---,Qk) and P(ay) follow uniform distributions (all values can be
taken evenly), from the above we obtain that log P(®) can be written specifically as
log P(®) =n+ K(N —1)log ————
(©) ( IO

N-1

_Z (ZM—% Zlogakn+7logak1 — (v - 1)logakN> (3.75)

Ak n—1 =2

where n = log P(Qy,- -+, Q) + >, log P(ay,1) = const.

3.4.3 Update Equations for the Model Parameters

We can now finally derive the update equations of the Step 2 of Subsection 3.3.3. As
explained earlier, we want to obtain ® increasing or maximizing L~ (6, m) + log P(©).

As log P(©) does not depend on €2, the update equation of p, is already given as presented
n (3.66). The update equation of the ay,, is performed, for each k, by using sequentially
from n = 1 to n = N the following update equations (Coordinate Descent method), ensuring

that L=(0,m) + log P(®) does not decrease. Hereafter, let us write

Z X (22) | P (). (3.76)



30 Chapter 3 Bayesian Harmonic Clustering

The update equation for ay, can then be obtained as follows. We first put to 0 the partial
derivative of L~ (6, m) + log P(®) with respect to a1,

and obtain

+ (v — l)ak,2)2 : (3.77)

where a2 in the above update equation is the value updated one step before. Then putting

to 0 the partial derivative of L™(6,m) + log P(®) with respect to ag,(n =2,--- ,N — 1),

1 —1 —1ap, 1
L g, o122 (v )an, no b
Ak Ak n—1 Qk.n Qk.n
we obtain
1
- Ak P, —1 &, — 1)? — D(app-1+v—Dagn 2
Ak,n—1 +7 - 1 2 4 Akn—1

where ay,,—1 is the latest updated value and a1 is the value updated one step before.

Finally, putting to 0 the partial derivative with respect to ax v,

oL~ 1 vy—1 ~v-—1
=—Pn—1- ;
OJay N ag N A, N-1 ag N
we obtain
N apN-1( Py +7—1
Gy = =2 {(Brv 7= 1) , (3.79)
agn—1+7—1

where ay y_1 is the latest updated value.

3.5 A Criterion for Source Number Estimation

3.5.1 Model Selection using Bayesian Information Criterion

Another important characteristic of Bayesian statistical inference is that a model structure
selection criterion can be derived. Model structure specifies the model function class and the
number of free parameters, but as here the function class is fixed, it indicates the number of
free parameters. Model selection criterion is a criterion to determine comparatively which
kind of model structure shall have a model which would be likely to generate a given ob-
servation data. Up to now, the discussion was done under the assumption that the number

of sources K and the number of harmonic components N of the mixed sound model were
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already known, but in general the number of sources mixed in the input mixed sound signal
is unknown. Therefore, if one could derive a model selection criterion, it would lead a new
criterion to estimate the number of sources K and the number of harmonic components V.

Meanwhile, as compared to the estimation of the number of sources K, estimating the
number of harmonic components is not engineeringly such an important problem, hereafter
for the sake of simplicity we shall assume that /N is an experimentally fixed constant. Then,
through comparison of all the mixed sound models for K varying from K =1 to K = K ,
where K is the maximum source number, and selection of the best model structure, the
number of sources can be estimated.

K)where the superscript refers to the

We first express the model structure index as M
number of sources, which is related to the number of free parameters. Similarly, denoting by
O &) the number of model parameters of a mixed sound model for which the number sources
is K, the problem considered here is to find the model structure M) that maximizes the
posterior probability of M),

P(Y|MT) P (M)

pary) - DRI,

(3.80)

where Y refers to the set of observations ||Y (x1)||?, - -, [|Y (z7)]|*>. Assuming that the prior
probability P(M %)) of the model structure is a uniform distribution, the problem amounts

to performing the maximum likelihood estimation of the model structure:

ME) = argmax P(Y | M5)). (3.81)
M(K)

In Subsection 3.3.2, as we assumed implicitly that K was fixed, the model structure index
was actually omitted in the right-hand side of Eq. (3.44). If we now consider that K is an
unknown variable, P(Y|®) should be written more exactly P(Y|®@U) M &) Then, as

P(Y, 0|5 = p(y|@%), M) p(@F) | M), (3.82)

if we marginalize both sides with respect to 0% from
P(Y|MK)) = / P(y|e%), M) p(e@™)|mF)ae™ (3.83)
= / exp { L(OFN) 1 P(@F) | MF))de™), (3.84)

where, L(@%)) = log P(Y |@") M(K)), we can obtain the desired model selection criterion.
This is actually none other than the denominator of the right-hand side of Eq. (3.67). The
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criterion for estimation of the model structure is thus the “marginal probability of the obser-
vation data”, which tends to be disregarded in the context of maximum likelihood estimation
and Maximum A Posteriori estimation of model parameters.

The next point that we have to discuss is how to obtain the marginal distribution of the
above equation. One could think of computing numerically the integral with respect to o).
but this would require considerable computational cost and is thus not realistic. Here we
can use the well-known Bayesian Information Criterion (BIC)[7, 93], model evaluation crite-
rion derived by approximating the marginal probability of the above equation. Its principle
is based on the assumption that when the data number I (here referring to the number of
discrete frequency points) is sufficiently large, as the integrand in the above equation concen-
trates in the vicinity of the value of the maximal likelihood estimator (or of the Maximum A
Posteriori estimator) @, the integration value depends on the behavior in the neighborhood
of ©, and L(O®%)) and log P(@%)| M) can be approximated around o respectively
by their 2nd order and Oth order Taylor expansion [93]. This corresponds to approximating
the posterior distribution of ® by a multidimensional Gaussian distribution centered on the
value © of the maximum likelihood estimator (or of the Maximum A Posteriori estimator),
and in case the maximum likelihood estimator is asymptotically normal, this approximation
is justified. The marginalization operation of (3.84) can then be easily performed. The above
question can thus be approximated in the following way:

~1/2

P(YIM™) ~ exp {L(®) } P(OW| M) (2m) " 212712 1(81) |, (3.85)

where I is the number of elements of the observation time series Y, D) is the number of

free parameters in the mixed sound model ||Y(z)||*> when the number of sources is K, and

J ((:)(K )} is the Fisher information matrix. Taking the logarithm of this equation, multiplying
by —2 and approximating further, we obtain the BIC:

—2log P(Y|M9))
~ —2L(0%)) + DI 1og I +1log|J(O5))| — DH) log (27) — 21og P(@U) M)

~ —2L(0%)) + D log 1. (3.86)

For more details on the above derivation, we shall refer to [7, 93].
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3.5.2 Model Selection Algorithm

In this subsection, we present the global structure of the Bayesian Harmonic Clustering
algorithm, including the Maximum A Posteriori estimation of the parameters and the model

selection of the spectral cluster models.

1. Set the initial value K of the number of sources K.

~ (K
2. Estimate the Maximum A Posteriori parameter @( : using the iterative algorithm

presented in Subsection 3.3.3.

(a) Set the initial parameters © K of the spectral cluster models. Detect the top K
peaks of the power spectrum ||Y (x)]|? and use them as initial parameters €.

(b) Update my,,(z) through Eq. (3.64).

(c) Update € through Eq. (3.66).

(d) After updating ay, through Eq. (3.77), Eq. (3.78) and Eq. (3.79), return to (b).
After convergence, proceed to 3.
3. Compute BIC(K) through Eq. (3.86). If K # 1, proceed to 4. If K =1, proceed to 5.

4. Find the spectral cluster model with smallest power,

N
k = argmin Z Aoy (3.87)

k n=1

and eliminate it. Set K = K — 1 and return to 2.
5. Find K minimizing BIC. For this model structure, look for the Maximum A Posteriori
estimation Parameter

~(K)

K = argmin BIC(K) = © (3.88)
K

as the final solution.

3.6 Experimental Evaluation

3.6.1 Condition

Considering music is the typical example of multipitch audio signal, the proposed method
was tested on a framewise musical note estimation task using 8 pieces of real music perfor-

mance data excerpted from RWC music database (the list of the experimental data is shown
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Table 3.1 Ezperimental conditions

frequency analysis || Sampling rate 16 kHz
frame shift 32 msec
mother wavelet Gabor function
frequency resolution 12.0 cent
frequency range 60-3000 Hz
proposed algorithm || initial # of harmonic kernels 10
# of partials 8
o 3.0 x 1073
T 0.6547 x n 2
d 3.0
Pn 0.01 x %
PreFEst-core[45] | pitch resolution 20 cent
# of partials 8
# of harmonic models 200
standard deviation of Gaussian | 3.0
T 0.6547 x n 2
d 3.0

in table 3.2). Time series of power spectrum was analyzed using Gabor wavelet transform
with frame shift of 16ms for input digital signals of 16kHz sampling rate. The lower bound
of the frequency range and the frequency resolution were 60Hz and 12cent, respectively. The
experimental conditions are shown in detail in table 3.1.

The purpose of this experiment is to clarify the effect of using BIC, and the multipitch
estimation accuracy of the Bayesian Harmonic Clustering. As the first task, we compare the
performance of the source number estimation method using BIC with that of a simple inten-
sity thresholding for Fj candidate truncation. As the second task, we chose as a comparison

*PreFEst-core’[45]. Since PreFEst-core is actually designed to be an extraction of the most

*Note that we have only implemented the ‘PreFEst-core’, i.e., a framewise pitch likelihood estimation,

for the evaluation and not included the ‘PreFEst-back-end’, i.e., multi-agent based pitch tracking algorithm.
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dominant Fj trajectory from multipitch signals and does not include a specific procedure
for source number determination, we decided to include the same intensity thresholding for
decision making under the same condition to make a proper comparison. The specific way
of intensity thresholding we have implemented is to regard the harmonic kernels, or the
tone models as referred in [45], as silence, whose integral, i.e., wy) ., 7kn is smaller than a
particular value.

Let us refer to these three types of methods as following;:

e proposed A: Bayesian Harmonic Clustering and minimum BIC model selection for

source number estimation,

e proposed B: Bayesian Harmonic Clustering and intensity thresholding for F{y candidate

truncation.
e conventional: PreFEst-core[45] and intensity thresholding for Fj candidate truncation.

We expect that the effectiveness of the source number estimation method using BIC can be
confirmed through comparison between proposed A & B, and as well the effectiveness of the
Bayesian Harmonic Clustering-based multipitch estimation estimation through comparison

between proposed B & conventional.

3.6.2 Results

A typical example of the Fj estimates obtained by proposed A together with the corre-
sponding handcrafted reference MIDI data is demonstrated in Fig. 4.6.

The average accuracy rates over all experimental data of the proposed A and the rest of
the two methods with different thresholds are shown in Fig. 3.7. One sees from the result
that proposed A obviously outperforms proposed B, and as well proposed B significantly
outperforms conventional. Therefore, both elements in our proposed method, i.e., applying
information criterion to source number estimation and Bayesian Harmonic Clustering-based
multipitch estimation was proved to be effective.

For more detail, see table 3.4 showing accuracy rate for each experimental data. From the
results of proposed B and conventional, the proper threshold that gives the best accuracy
rate, tends to depend highly on test data, obviously because if the relative power level differs

among several data, a proper threshold for a particular data is not always proper also for
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Table 3.2 List of the experimental data excerpted from the RWC music database [44]

Symbol Title (Genre) Composer/Player | Instruments | # of frames
data(1) || Crescent Serenade (Jazz) S. Yamamoto Guitar 4427
data(2) || For Two (Jazz) H. Chubachi Guitar 6555
data(3) || Jive (Jazz) M. Nakamura Piano 5179
data(4) || Lounge Away (Jazz) S. Yamamoto Guitar 9583
data(5) || For Two (Jazz) M. Nakamura Piano 9091
data(6) || Jive (Jazz) H. Chubachi Guitar 3690
data(7) || Three Gimnopedies no. 1 (Classic) | E. Satie Piano 6571
data(8) || Nocturne no.2, op.9-2(Classic) F. F. Chopin Piano 7258

others. When considering a practical use, it is, however, inconvenient to tune thresholds
carefully every time we test on different data. It should be emphasized that the proposed A

works reliably even without such exhausting tuning.

3.7 Summary of Chapter 3

In this chapter, we have proposed the principle of Harmonic Clustering estimating the
optimal spectral masking functions clustering source by source the power spectrum of the
mixed sound signal of interest. We have shown that Harmonic Clustering can be under-
stood as the minimization of the distortion between the power spectrum of the mixed sound
and a mixture of spectral cluster models, or as the optimal decomposition (clustering) of
the power spectrum using spectral cluster models, and we presented the formulation of the
problem in these two points of view. Moreover, starting from the fact that the minimization
of the distortion measure can be understood as a maximum likelihood problem with the
continuous Poisson distribution as likelihood function, we showed that, by introducing prior
distributions, optimal estimation under empirical constraints can performed through Maxi-
mum A Posteriori estimation. Furthermore, we showed that a criterion for source number
selection could simultaneously be obtained through model selection criterion. Experimen-

tal evaluations proved the effectiveness of the two elemental techniques introduced in this
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Table 3.3 Results obtained by PreFEst-core [45]. Columns (A)~(J) and (K)~(R) show the
accuracies with different thresholds: (A)2.0x108, (B)2.5x10%, (C)5.0x10%, (D)7.5x10%, (E)10x
108, (F)15x8, (G)17.5x 108, (H)20x 108, (1)25x 108, (J)27.5x10%, (K)7.5x10°, (L)1.0x
101, (M)2.0x 10, (N)3.0x 10, (0)4.0x 10, (P)5.0x10Y, (Q)6.0x 10, (R)7.0x10°.

Accuracy(%)

conventional [45]

(A) 1 B) | (©) | D) | (E) | F) | (G H) | O]
data(1) | 56.6 | 62.49 | 75.9 | 81.6 | 83.3 | 84.6 | 83.0 | 81.5 | 78.4 | 75.8
data(2) | 68.7 | 69.6 | 66.3 | 59.0 | 53.7 | 36.3 | 32.4 | 30.3 | 26.8 | 26.5
data(3) | -20.8 | -7.3 | 31.7 | 47.8 | 56.9 | 65.1 | 69.5 | 71.9 | 75.5 | 71.8
data(4) | 55.1 | 56.8 | 60.7 | 63.3 | 63.1| 63.6 | 64.1 | 62.3 | 60.6 | 60.2
data(5) | 50.7 | 53.2 | 61.0 | 60.0 | 58.8 | 59.3 | 57.6 | 58.0 | 57.5 | 49.7
data(6) | -7.2 | 6.6 | 37.9 | 51.1 | 57.7| 65.9 | 65.6 | 66.7 | 66.3 | 65.7
data(7) | 51.6 | 54.1 | 62.7 | 52.4 | 47.0 | 45.9 | 42.7 | 41.1 | 42.2 | 42.7
data(8) | 20.8 | 22.9 | 36.6 | 42.5 | 38.5 | 39.1 | 38.8 | 37.7 | 32.7 | 30.6
Average || 39.1 | 43.3 | 55.2 | 57.1 | 56.5 | 55.9 | 55.0 | 54.4 | 53.0 | 50.7

chapter, multipitch estimation and automatic source number estimation based on Harmonic

Clustering.

We discussed here multipitch estimation for short-time frames of mixed signals. In the next
chapter, assuming the continuity in the time direction of the Fj and of the power, we extend

this method to a global spectral structure estimation method on the whole time-frequency

domain.
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Table 3.4 Results obtained by the proposed method (proposed A and proposed B). Columns
(A)~(J) and (K)~(R) show the accuracies with different thresholds: (A)2.0x10%, (B)2.5x
108, (C)5.0x 108, (D)7.5x10%, (E)10x 108, (F)15x%, (G)17.5x 108, (H)20 x 108, (1)25 x
108, (J)27.5x108, (K)7.5x10°, (L)1.0x10', (M)2.0x10%, (N)3.0x10', (0)4.0x10', (P)5.0x
10", (Q)6.0x10'°, (R)7.0x10'°.

Accuracy(%)

proposed B proposed A
(K) | @) | (M) | (N) | (O) | (P) | (Q | (R)

data(l) | 42.4 | 72.1 | 76.8 | 79.4 | 85.9 | 87.2 | 86.8 | 82.7 76.3

data(2) || 76.4 | 85.3 | 86.3 | 86.4 | 69.7 | 65.6 | 59.9 | 57.9 84.8

data(3) || 37.3 | 52.4 | 57.5 | 61.0 | 69.0 | 70.2 | 70.5 | 71.6 72.6

data(4) || 64.5 | 66.3 | 66.5 | 67.0 | 69.0 | 69.7 | 69.1 | 67.8 76.7

data(5) || 62.6 | 65.3 | 66.3 | 66.9 | 66.8 | 64.1 | 63.3 | 62.7 72.1

data(6) || 27.1 | 54.4 | 61.8 | 66.3 | 76.7 | 78.6 | 80.8 | 82.0 57.4

data(7) || 64.5 | 74.4 | 77.7 | 79.2 | 76.6 | 75.1 | 70.9 | 69.9 76.5

data(8) || 63.7 | 76.5 | 78.2 | 78.7 | 74.9 | 66.4 | 56.6 | 50.6 75.5

Average || 58.4 | 69.2 | 71.6 | 73.0 | 72.4 | 70.6 | 67.9 | 66.2 74.9
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Figure 3.6 A multipitch estimation result(top) by the proposed method and the hand-labeled
MIDI reference data displayed in piano-roll form (bottom).
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Figure 3.7 Average accuracy rates over all test data of ‘proposed A’ (Bayesian Harmonic
Clustering multipitch estimation € minimum BIC model selection), ‘proposed B’ (Bayesian

Harmonic Clustering multipitch estimation & thresholding) and ‘conventional” with different
thresholds.



Chapter 4

Harmonic-Temporal Clustering

4.1 Introduction

Human listeners are able to concentrate on listening to a target sound without difficulty
even in the situation where many speakers are talking at the same time. This fact has
persuaded many scientists that the auditory system of human has a significant ability to
recognize the external environment actively. This nature is referred to as the “auditory scene
analysis (ASA)” and has been attracting interest since Bregman’s book was published [16].
In [16], Bregman has shown through experiments the psychological evidences concerning the

ability of the auditory system, such that:

1. Acoustic signal is “segregated” into spectrogram-like pieces, which is called the “audi-

tory elements”.

2. Auditory elements that originate from the same source are likely to be “grouped” to

form the “auditory stream”.
3. The grouping cues are said to be related to:

(a) harmonicity,

(b) common onset and offset,

(c) coherent amplitude and frequency modulation,
(d) continuity of amplitude and frequency,

(e) proximity of time-frequency components,

(f) common spatial location.

41
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Recent efforts are being directed toward the attempt to implement this ability of the auditory
system. Such a framework is called the “Computational Auditory Scene Analysis (CASA)”.

The main focus of today’s CASA research is to develop a source separation method based
upon the grouping cues suggested by Bregman. More specifically, the main purpose is
to extract useful features (for example, Fy) or to restore the target signal of interest by
performing the segregation process and grouping process through a computational algorithm.

Cooke [29], Brown et al. [18], Ellis [37], Fishbach [40], Nakatani et al. [75] developed
source separation methods utilizing the grouping cues. As most of these methods use
artificial-intelligence-based or rule-based approaches, they enable the introduction of var-
ious constraints in a top-down manner, but the algorithms tend to have many thresholding
steps, that often make systems too complicated to handle. Nishi et al. [76], Unoki et al.
[106], Abe et al. [3, 4], Wu et al. [115] tried to formulate the CASA problem as an optimiza-
tion problem using the grouping cues as mathematically formalized constraints. Kashino
et al. [60] presented a CASA algorithm designed specifically for an automatic transcription
use. Goto’s PreFEst [45] is in some sense a CASA method.

In most of these conventional methods, they usually implement the grouping process in
the following way: first extract instantaneous feature at each discrete time point and then
estimate the whole tracks of those features by exploiting hidden Markov model (HMM),
multiple agents, or some dynamical system such as Kalman filtering. The first half of this
procedure is for finding the set of frequency components that seem to originate from the
same source using only the “harmonicity” constraint. This step corresponds to the grouping
process in the frequency direction. The second half, on the other hand, is for interpolating
over incorrect values of the features possibly taken at the previous step using the rest of the
cues. This step corresponds to the grouping process in the time direction.

From the engineering point of view, however, one cannot necessarily conclude that this
is the optimal way of performing the grouping process. It is quite obvious that the more
accurate the grouping process in the frequency direction, the more reliable the result of
that in the time direction. On the other hand, we hope to know, if possible, the features
at preceding and succeeding time points to estimate a high precision result of the feature
extraction at the current time assuming they change gradually over time. Therefore, these
two processes should be done essentially in a cooperative way and not independently in suc-
cession for even more reliable results. This belief has led us to formulate a unified estimation

framework for the two dimensional structure of time-frequency power spectra, in contrast to
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the conventional strategy. We will call this method “Harmonic-Temporal Clustering”.

4.2 Abstract and Organization of Chapter 4

we aim at developing a computational algorithm enabling the decomposition of the time-
frequency components of the signal of interest into distinct clusters such that each of them
is associated with a single auditory stream. To do so, we directly model a spectro-temporal
model whose shape can be taken freely within the Bregman’s constraint, and then try to fit
the mixture of this model to the observed spectrogram as well as possible.

As constant Q filterbank is known to be a good model for the auditory periphery system, we
will first derive in Subsection 4.3.1 the constant Q filterbank output of a pseudoperiodic signal
model and then give a specific form for the spectro-temporal structure that is associated
with the auditory stream in the succeeding subsections. In Subsection 4.4, we present the
optimization algorithm, that performs segregation of the observed spectrogram and the

parameter estimation of the auditory stream model at the same time.

4.3 Spectro-Temporal Cluster Model

4.3.1 Constant Q Filterbank Output of Pseudoperiodic Signal

Consider as the k™ source signal model the analytic signal representation of a pseudo-

periodic signal given by
N .
Felu) = Z@km(u)ej(nek(uwrcpk,n), u € (—00,00), (4.1)
n=1

where u is the time, nfy(u) + @y, is the instantaneous phase of the n'® partial and wy,, (u)
the instantaneous amplitude. This signal model implies that it satisfies the ‘harmonicity’,
out of the Bregman’s grouping cues. We will first derive its constant Q filterbank output.
Let us define the wavelet basis function by

baal) 2 — w(“_t) (4.2)

2T a

where « is the scale parameter such that o > 0, ¢ the shift parameter and ¢ (u) an arbitrary

analyzing wavelet that has the center frequency of 1 and satisfies the admissible condition.



44 Chapter 4 Harmonic-Temporal Clustering

at(u) is used to measure the component of period a at time ¢. The continuous wavelet

transform of f(u) is then defined by

Wi(log £.0) 2 (fulu). Yaslw)) (43)
o N
= [ S B )y (4.4)

As the dominant part of ¥} ,(u) is generally localized only around time ¢, the result of the
integral in Eq. (4.4) depends heavily on the portion of 8 (t) and wy,,(¢) near t. Taking into
account that the instantaneous phase 6 (¢) and the instantaneous amplitude wy,(t) of the
signal of interest often change gradually over time, approximating 6;(t) and wy,,(t) by zero

and first order Taylor series expansions around time ¢:

() = W (8) + MZ{—Z(M (u—1) +%% (w—1)" 4
" Ben(?), - . (4.5)
e e MUSUES & - U
)+ 0o~ ) @)

may not affect significantly the result of Eq. (4.4). As the instantaneous frequency is
defined as the first order derivative of the instantaneous phase, 6} (u) is the instantaneous
Fy frequency (a Fy trajectory function) of the k'™ source, which we will henceforth denote

by pr(w). From these approximations, Eq. (4.5) and Eq. (4.6), Eq. (4.4) can be written as

W (log 1 Zwkn 1)) (M060)+1.) / Oy (o) s (4.7)

Using the Parseval’s theorem, the integral part is given explicitly as
/OO eI O=0 (1) dy = <6jnuk(t)(u—t), 1 Wb <“ - t)> (4.8)

0 @ 2ra o uER(—00,00)
_ <ejnuk(t>u, 1 w(£>> (4.9)
2T @ uER(—00,00)
1
= (V21 (w — nu(t)), —\I/(aw)> (4.10)
< ( ) V 2T WER(—00,00)
= U* (anpu(t)), (4.11)
which yields
N

Wi(log L,6) & S @n ()0 (anpu(t)) e (0O + o) (4.12)
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By changing the variable z = log = and by putting Q(t) £ log f1,(t), Wy can be expressed

in the time-logfrequency domain:
N
Wi(z,t) = Z Wy (E) " (ne‘”g’“(t)) &I (0 +xn). (4.13)
n=1

As the frequency characteristic U(w) of the analyzing wavelet can be chosen arbitrarily, we
use here again the following unimodal real function whose maximum is taken at w = 1 (see

Fig. 3.1):

exp ( — %) (w>0)
U(w) =TV (w) = : (4.14)
0 (w=0)

Eq. (4.13) is then given as

N 2
—(t) — 1 |
Wiz, t) =) Wpn(t) exp (— (@ ’“(4;2 051) )eﬂ<”9k(”+@km), (4.15)
n=1

and the resulting power spectrum of Eq. (4.15) can be written as

2

N 2
HWk(l‘7 t)H2 = Z ﬂ;k,n(t) €xp <_ (x Qkiti_g log n) ) €j(n9k(t)+(pk’")
n=1
~ - z — Qu(t) — logn)”
+7;/ Wi () Wi (1) €XP (—( k(4()72 gn) )

exp (_ (z — Qx(t) — log n’)2> eI MOk (O+1 OO+ P o) (4.16)
402

If we now assume that the time-frequency components are sparsely distributed so that the
partials rarely overlap, the second term could be negligibly smaller than the first term
in the above equation. This assumption justifies the additivity of power spectra and the
power spectrum of the k" source signal model is then expressed as a Gaussian mixture
model whose maxima are centered over prospective harmonics x = € (t) + logn. Putting
Wy (t) 2 V270 ||Wy,, (t)||? (instantaneous power), one obtains

HWk(ZL’,t)”Q R~ Z W (1) exp (— (2~ u(t) — logn) ) (4.17)

2mo 202

The graphical representation of its cutting plane at time ¢ can be seen in Fig. 4.1.

4.3.2 Nonparametric and Parametric Modeling

There may be two possible ways to enforce ‘continuity’ constraints on the temporal tra-

jectories of the instantaneous power of each partial and the instantaneous Fj frequency. One



46 Chapter 4 Harmonic-Temporal Clustering

power

Q. (t) Qr(t)+log2 - log-freq.
Figure 4.1 Graphical representation of Eq. (4.17).

is to adopt particular classes of parametric function for wy,(t) and Qx(¢). In this case, the
smoothness of the functions can often be controlled by the degree-of-freedom of the models
we choose to apply. Second is to consider both wy ,,(t) and €2(¢) as nonparametric functions
and to try to estimate them directly. In this case, the smoothness of the functions can be
controlled by a gradient penalizing term added to the cost function. This kind of penalizer
is often called a ‘regularization term’ in the image processing area. In the Bayesian point of
view, essentially the same role is played by the prior distribution. Details will be presented
in Subsection 4.4.1. In order to distinguish between these two ways of modeling wy, ,(t) and
Qk(t), we will call the spectro-temporal source model in the former way the “parametric
spectro-temporal model”, and that in the latter way the “nonparametric spectro-temporal
model”.

Formulation of the parameter estimation algorithm depends on the choice of the parametric
model or the nonparametric model. After we show a thinkable class of parametric function
for wy,(t) and Qg(t) in Subsection 4.3.3, we formulate the optimal clustering algorithms,

“nonparametric HT'C” in Subsection 4.4.1 and “parametric HT'C” in Subsection 4.4.2.

4.3.3 Parametric Spectro-Temporal Cluster Model

Assuming the ‘common onset’ and the ‘common amplitude’ of the partial components for
the source model, the instantaneous power should be of a variable separable form of the

partial index n and the time t:

w;w(t) = 'ﬁkmuk(t). (418)



Chapter 4 Harmonic-Temporal Clustering 47

energy

Figure 4.2 Graphical representation of Eq. (4.21).

Letting ug(t) satisfy
Vi, / u()dt = 1, (4.19)

o0

then the parameter Uy, corresponds to the total energy of the n' partial of the k™ source

such that vy, = f Wy (t)dt. Let further be vy, = £ wrup n, hence
Win (1) = wyvgnur(t), (4.20)

and let vy, satisfy > v, = 1 for convenience. The normalized common power envelope
ug(t) should be a smooth and non-negative function that has a time spread from minus to
plus infinity, which can be modeled by a following type of constrained Gaussian mixture

model (see Fig. 4.2):

(t — Tk — /fy(bk)Q) ) (421)

exp | —

Z v 27T ¢k ( 20y,
T, is the center of the forefront Gaussian, that could be considered as an onset time estimate,
Uy, the weight parameter for each kernel, that allows the function to have variable shapes.

To satisfy Eq. (4.19), uy, must only be normalized to unity:
VE, > ugy = 1. (4.22)
Y

The particularity of this function is that the centers of the Gaussian function kernels are
spaced by a distance proportional to the common diffusion parameter ¢, with a proportion-
ality coefficient x, which we henceforth set to 1 (see Fig. Fig. 4.2). This tying ensures

the smoothness of the curve by preventing adjacent kernels from being separated from each
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Figure 4.3 The spectro-temporal model associated with an audio stream.
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Figure 4.4 Cubic spline Fy track function (Eq. (4.25))

other. ¢ also works as a parameter to make a linear stretch of wy(¢) in the time direction
allowing to express various durations of sources. Moreover, by forbidding switches in the
position of the kernels, it reduces the singularity of the system, improving the optimization

perspectives. Substituting Eq. (4.20) and Eq. (4.21) into Eq. (4.17), one obtains

N Y-1 (-0 (t)—logn)?  (t—m—yop)?
Wi Vg, nuky k252 - k2¢>2 8
O Utk T (4.23)
o
n—1 y—0 Pr

Its graphical representation can be seen in Fig. 4.23.

We choose two types of models for the Fy trajectory function 2(t), a polynomial of time

Q(t) & Qo + Qeat + Qot® + Qst® + -+ -, (4.24)

and a cubic spline function (see Fig. 4.4):

1
Q(t) £ P (Qk,i(ti—i—l — 1)+ Qi (t —t;)
i+1 — t;
1
— gttt =) [(tive — )Y + (¢ — i)Y H—l]) t € [ty tiv1). (4.25)
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In the cubic spline Fy contour function, the analysis interval is divided into subintervals
[ti,t;11) which are assumed of equal length. The parameters of the spline contour model
are then the values () ; of the I at each bounding point ¢;. The values €2} ; of the second
derivative at those points are given by the expression Q" = M for a certain matrix M
which can be explicitly computed offline if we consider ¢, --- ,¢; are constant parameters,

under the hypothesis that the first-order derivative is 0 at the bounds of the analysis interval.

Y-1

=0 > Wk, T, G, then the k™ source

If we are able to estimate {Q;}_1, {vkn} 1, {ury}
signal can be reconstructed by Eq. (4.1) whose starting phase is chosen arbitrarily. The

parameter estimation algorithm will be discussed in Subsection 4.4.

4.4 Optimal Clustering Algorithm

We consider here the problem of decomposing the observed time-frequency spectrum into
distinct clusters that correspond to the auditory stream. Two ways of solution to this

problem is presented in the following subsections.

4.4.1 Nonparametric HTC

We will consider here the nonparametric case. Let © refers to {Q(¢),{ws(t) }2_, H .

We define by ||Y(z,t)]|* the time-logfrequency power spectrum of the signal of interest
obtained by the constant ) analysis. Let us introduce a masking function my ,(x,t) that ex-
tracts the spectro-temporal components associated with the n*® partial of the £ source from
|V (z,t)|]?. For (x,t) € R? my,(x,t) indicates the percentage of the portion of ||V (z,t)]?

shared to the n'" partial of the k™" source, such that satisfies

K N
SN mpa(a,t) =1 (4.26)
k=1 n=1
0<myn(z,t)<l, ke{l,--- K}, ne{l,---,N}. (4.27)

A portion of the observed power spectrum is thus given arbitrarily by

mua(z, ||V (,0)|7, (x,1) € R?, (4.28)

which we call a “spectral cluster”. As we expect the spectral cluster to be associated with

the auditory stream, we need to introduce a measure function that specifies how well the
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spectral cluster fits all the Bregman’s grouping cues. One possible measure function may be
the I divergence between my, ,,(z,t)||Y (z,t)||* and the spectro-temporal model we derived in

Section 3.2:

Win(z) 2 Z:};l(U) exp <— o= Qk(;;; logn) ), (4.29)

which is written as

oo 0 2 mk,n<w7t)||y<x7t)“2
/_oo /_oo (mk’"(x’””Y(%t)H o8 =) @D

_ (mk,n@, HI[Y (2, 8)[|° = Wen(e, t)))dxdt. (4.30)

The optimal clustering can thus be achieved by minimizing their sum:

My (x, ) ||Y (
2(6,m) ZZ/ / (mkn$tl|Yxt||l :L,t)ﬂll

k=1 n=1

_ (mk,n(a;, H||Y (2, 0)]]” = Win(a, t))> dzdt (4.31)

with respect to ©® and myg,(z,t). To do so, we shall find it most convenient to minimize
this objective function recursively with respect to my ,(x,t) and © while keeping the other
fixed. The minimization with respect to my,,(z,t) decomposes the observed power spectrum
using the auditory stream models estimated hypothetically at the previous step and the
minimization with respect to ©, on the other hand, updates the auditory stream models to
a more convincing one using these separate clusters. Both steps necessarily decreases the
objective function, which is bounded below, and the convergence of this recursive algorithm
is thus guaranteed.

The update equation for the spectral masking function my, ,(x,t) that minimizes ®(®,m)
when © is fixed is obtained analytically as
Win(z,t)

DD Win(a,t)

Substituting this result into Eq. (4.31), we obtain

[ NTERR ||Y(x,t)||2
- /_oo /_oo <HY( Ol *STS Wenlo 1)
(HY z,t)| ZZWM (z,1) ))dxdt, (4.33)

Fon(z,1) = (4.32)
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from which we realize that what we are trying to minimize w.r.t © is the [ divergence
between the whole observed power spectrum and the mixture of all the spectro-temporal
source models. From the statistical point of view, this minimization is understood as a

maximum likelihood (regression analysis) where its log-likelihood is given explicitly by

2 [* [ g P(Iv (@)F|@)duat

R 2 2 2 2
-] (HY@J)H o5 | W (z, 1) | (a0 = tog D[ (e 1) [+ 1))dxdt.
(4.34)
See Chapter 3 for more detailed discussion.
Now we shall derive the update equation for ® that minimizes ®(©,m) when my ,(x,t) is

fixed. The optimal € (t) and wy,(¢) that minimizes the functional ®(@®,m) can be obtained
by the variational method. The variation of (@, m) with respect to Q(f) and wy ,(t) given

(0, m) / / ((a(b 88km)) 5 + (%f) 5wk,n> dadt, (4.35)

as

is identically 0 if 8‘1)((9(%"1) =0 and 8<I(>9(w—("k),m) = 0. Hence, setting
99(©,m) — Qi(t) —logn)
o0, / My (2, 8) ||V (2, t H = dz, (4.36)

to 0, one obtains

Z/Oo mk,n(x,t)HY(x,t)HQ(ﬂt —logn)dz
Ult) = 2= : (4.37)

Z/_oo mk,n(w,t)”Y(a:,t)Hde

Eq. (4.37) implies a frame-by-frame Fj, parameter update. Similarly, setting

02(©,m) e 2 1
o) /_OO ma (Y )| e (4.38)
to 0, one obtains
Wen(t) = / i (. D[ (. 8) e (4.39)

This also implies a frame-by-frame partial power parameter update. Therefore, the HTC
method essentially amounts to the BHC, if Q4 (¢) and wy,(t) are both represented in a

nonparametric way and if no constraints are assumed on their smoothness.
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Next we shall introduce a penalizing term into the objective function ®(®,m) in order
to enforce the smoothness constraints on Q(¢) and wy,(t). In a Bayesian point of view,
this penalizing term corresponds to the prior distribution term log P(®) when thinking of
maximizing the posterior probability L(®) + log P(®). Following the same way adopted in
the regularization theory, which is often used in the image processing area, we can use the
square integral of the first order partial derivative of € (t):

/_ Z (898—’;(15))2@. (4.40)

The smoother () is, the smaller this value. Hence, when thinking of minimizing

(O, m) + ng/z <8Q;t(t)>2 dt, (4.41)

one must try to make as small as possible not only ®(©,m) but also the second term as

well. 7 is a constant parameter that should be chosen experimentally to control the effect of
the two terms. The larger this value, the flatter the contour tends to be estimated.

Let us consider the discrete-time case where the first order derivative of Q(t) is approxi-
mated by the difference between the values taken at adjacent time points. Hence, Eq. (4.41)

is written as

K mk,n(x7tl>HY(x7tZ>H2

ZZZ/ At (mkﬁ(x’t’)HY(x’tZ)HQlog Wk,n(x7ti>

k=1 n=1 i=1 Y~

— (mk,n(I, ti)HY(ZL‘, ti)H2 — Wial(z, tﬂ))dx +7n Z Z At (Qk(ti_l)A; Qk(tz)) . (4.42)

k=1 =2

Similarly, we shall include a penalizing term also for wy, ,(t). The update equations for 2 (¢)
and wy,(t) can then be derived using Eq. (4.42) and the maximum posterior estimation

algorithm is thus formalized. The rest of the formulation shall be omitted.

4.4.2 Parametric HTC

We will consider here, on the other hand, the parametric case where wy,(t) and ()
are represented by the parametric models shown in Subsection 4.3.3. Let © refers to
{ o vl ey gm0 Wi, Ty G130

We define by ||Y(z,t)]|* the time-logfrequency power spectrum of the signal of interest

obtained by the constant () analysis. Let us introduce a masking function my, ,(x,t) that
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extracts the spectro-temporal components associated with the y* temporal element of the
b partial of the k™ source from ||Y (x,t)||?. For (z,t) € R? myn,(x,t) indicates the
percentage of the portion of ||Y (x,t)||? shared to the y™ temporal element of the n'® partial

of the k' source, such that satisfies

K N Y-1
ZZkanxt 1 (4.43)
k=1 n=1 y=0

0<mynylz,t)y<l, ke{l,--- K}, ne{l,--- N}, ye{0,--- .Y —1}. (4.44)

Binary mask technique is often used in the research area of CASA and multichannel blind
source separation to separate sources by allocating all the component in each time-frequency
bin to a single source. On the contrary, the spectral masking function my,, ,(z,t) is similar
in some sense to this technique but could be understood as a masking function that has a
fuzzy membership to every source. A portion of the observed power spectrum is thus given
arbitrarily by

My (@, )|V (2,07, (2,1) € R? (4.45)

which we call again as a “spectral cluster”. As we expect the spectral cluster to be associated
with the auditory stream, we need to introduce a measure function that specifies how well
the spectral cluster fits all the Bregman’s grouping cues. We shall use again the I divergence
between my. .., (z,t)||Y (x,1)||* and the spectro-temporal model we derived in Section 3.2:

(x=9Q(b)—logn)? (b=t —ydp)>
WEU u - —
Wiy () & —E0 00, 207 2% (4.46)
LY )
2T0 Oy,

which is written as

0o poo Mgy (2, 1) ||Y (2,1 ]
/ / (mk,n,y(x>t)HY(x’t)H2log k, Z;ka )|(|x (t) )”
—00 — 00 e ’

_ (mk,n,y(:p, H|[Y (2, )[|° = Wen(e, t)))dxdt. (4.47)

The optimal clustering can thus be achieved by minimizing their sum:

K N My (T, Y(x,t ?
(O, m) = ZZ / / (mkny x,t) HY z,t) || log — y(\;kn)ﬂx,(t) >H

_ (mk’n,y(x, HIY (@, )" = Winl(a, t))) dzdt (4.48)

with respect to ©® and my,(z,t). To do so, we shall find it most convenient to minimize

this objective function recursively with respect to my ,(x,t) and © while keeping the other
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fixed. The minimization with respect to my,(z,t) decomposes the observed power spectrum
using the auditory stream models estimated hypothetically at the previous step and the
minimization with respect to ®, on the other hand, updates the auditory stream models to
a more convincing one using these separate clusters. Both steps necessarily decreases the
objective function, which is bounded below, and the convergence of this recursive algorithm
is thus guaranteed.

The update equation for the spectral masking function myg,(z,t) such that minimizes

®(©®,m) when O is fixed is obtained analytically as

t
Mo,y (2, 1) = Whana(2, ) (4.49)

YN Wty

Substituting this result into Eq. (4.48), one obtains again the I divergence between the

whole observed power spectrum and the mixture of all the spectro-temporal source models:

m) = e x ’1o HY(%t)HQ
(I)((_)v >_/—oo/—00 <HY( 7{;)“ : gZZZWk,n,y(x7t)

_ <||y(;,;, HIF =33 Win(a, t)) ) dadt. (4.50)

As mentioned beforehand, this clustering objective ®(®,m) can be monotonically de-

creased by the following 2-step iteration:

Step 0 Set initially ®y and put ¢ = 1.

0-1)

Step 1 Update the spectral masking function: m® = argmin ®(@“ 1 m)

Step 2 Update ® to ©®“ such that ®(©,m®) < d(OY m®) and set ¢ —
¢+ 1 and then return to Step 1.

Setting to zero the partial derivative of Eq. (4.50), the update equation of each parameter
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at Step 2 of the (-th iteration is derived analytically as follows:

N Y-1
w,(f) = Z / / m,my z, 1)||Y (z,t) H dadt, (4.51)

n=1 y:0

O = w% / / m\ (@, 0)||Y (2,0)]]* (x — log n)dadt, (4.52)
’ 7/]LV:Y 1

0 = ﬁzz / / mO, (@ DY @ P -yl dade,  (453)
Qe

Y-
Vi = ZZ/ / mio (@, )] (w, 8)]|*dadt, (4.54)

1
u, = WZ/_OO /_Oo mio, (@ )Y (1), (4.55)

S

k n=1
I(f) = 1(4)( a(f)2 +4ﬁ ) al(f)>7 (4.56)
2w,
N Y-1
a,(f)éZZ/ / mknya:tHYa:tHyt—Tg))dxdt
n=11y
. )
ﬁl(f) & Z / / mkny x,t)HY(x,t)W(t - T,Se))le’dt
n=1 y=

We showed in the above only the update equation for 5, which is the coefficient of the 0
order term in the polynomial-type Fy trajectory function given by Eq. (4.24). Note that the
update equations for the coefficients of the other terms can be derived analytically as well.
On the other hand, the update equation for each term in the cubic-spline-type Fj trajectory
function given by Eq. (4.25) is derived as follow:

iyzl/ / v 0 ,mmm))agf’;() O (e ||V (. 0)| et
ng == N v-1 O ) - (457)
k [))
;g/ / (an ) m,(g’njy(m,t)HY(x,t)” dxdt
where Q) = (..., Q) o7V ol oY) and Q) Q) = Q) -
Ba%k(,? Q,(CZ +log n does not depend on €, ; and m’“(t) only depends on t and the fixed matrix

M.

The so far constant o, which depends on which value we set in the front-end constant
Q analysis, can be regarded as a free variable o for each k and its update equation can
be derived analytically. The ML estimate of oy itself is not what we really want to obtain

as its true value is already known, but by updating o in parallel to the other parameters,
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we expect that it could avoid other variables to be trapped in local optima. As we know
empirically that in parameter learning of GMM, the update of the variance parameter of
each Gaussian component often helps other parameters getting out of local optima, this is

the reason why we treat o as free parameters here. The update equation for oy is given as

a,(f): ( e)iyzl/ / mkny z, 0)||Y (¢ H (x—Q(E() logn)zdxdt> . (4.58)

n=1 y=0

N

4.5 Bayesian HTC

4.5.1 Reformulation

We used in Subsection 4.4.2 the [-divergence [30] to measure the “distortion” between the
two distributions:

/ / OWthbyﬁ@ﬂ% Qwu@W—W@¢@0>n% (4.59)

where
W(z,t;©) :ZZZWknyxt (4.60)

is the sum of all the source models spread in the time-frequency plane, and we were looking
for Ogpt = argming Z (0). Keeping only the terms depending on © and reversing the sign

of this expression, one defines the following function to maximize w.r.t. ©:
:/‘/(MMﬁWMW@¢®—W@ﬁ®FMt (4.61)
Using this function 7, one can derive the likelihood of the parameter ©:

T(©)—[>=_ =1 r<1+ Y (.t 2>d dt
P(Y|®) 2 ¢ )= 25 J25 log Y (zt)]? ) do 7 (4.62)
where I'(+) is the Gamma function and the second part of the exponent ensures that we
obtain a probability measure. One can indeed see this probability as the joint probability of
all the variables ||Y (z,t)||* independently following Poisson-like distributions of parameter
W (x,t). This way of presenting the problem enables us to interpret it as a Maximum A

Posteriori (MAP) estimation problem and to introduce prior functions on the parameters as
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follows, using Bayes theorem:
Oap = argmax P(OY)
C)
= argmax (log P(Y|®) + log P(@))
G

= arg(glax (j(@) + log P(@)). (4.63)

Our goal is now equivalent to the maximization with respect to © of J(©) +log P(®). The
problem is that in the term [= [ [|Y(z,t)|I*log >, , Winy(,t) dadt, there is a sum
inside the logarithm, and that is why we cannot obtain an analytical solution. But if we
introduce non-negative membership degrees my, ,, ,,(, t) summing to 1 for each (z,t), one can

write, using the concavity of the logarithm:

Wkn (J} t)
log Winy(T,t;0) = log My (T, 1) —"—2 (4.64)
i;; ’ 1;; ! m’f My (2, 1)
= log Weny(2,t) (4.65)
mk,n,y<x7 t) m

> <log w> kany x,t) logM(() (4.66)

& Mgy (T, 1)
where (-),, denotes the convex combination with coefficients m. Moreover, the inequality
(4.64) becomes an equality for

Wkny(l‘ t)

3)3) BTSED)

We can thus iteratively maximize the likelihood by alternately updating ® and the mem-

My (T,1) = (4.67)

bership degrees m, which act as auxiliary parameters, while keeping the other fixed:

(E-step)  Update the spectral masking function: m® = argmax J*(G)(K_l), m).

m

(M-step)  Update © to @ such that 7+ (©, m)+log P(®) > 7H(© 1 m®)+
log P(©“1) and set £ < ¢+ 1 and then return to E-step.

with

@, m) / / S Wty (2, )Y (1, )2 1ong‘"y(( t)) W(r.1:©))dudr. (468)

One must notice that this iterative procedure is called the EM algorithm [33]. For all m, we

indeed have from (4.64) that

k,n,y

J(©) +log P(®) > J(O,m) + log P(O), (4.69)
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TJO)F -------- 3J(©,m)
E-step
J(©,m)

Figure 4.5 Optimization through the EM algorithm.  During the E-
step, the auziliary parameter m is updated to widem so that J(©) =
J (O, widem). Then, during the M-step, J+(©,m) is optimized w.r.t.
®, ensuring that J(©) > JH®,m) > JH(O©,m) = J(O©). The local
mazximization of J(©) can thus be performed through the mazximization of

the auziliary function J+(©,m) alternately w.r.t. m and ©.

and JT(©,m) can be used as an auxiliary function to maximize, enabling us to obtain
analytical update equations. The optimization process is illustrated in Fig. 4.5.1. The

E-step is straightforward and is dealt with in exactly the same way as in Chapter 3.

4.5.2 Prior Distribution

As seen in Subsection 4.5.1, the optimization of our model can be naturally extended
to a Maximum A Posteriori (MAP) estimation by introducing prior distributions P(®) on
the parameters, which work as penalty functions that try to keep the parameters within a
specified range. The parameters which are the best compromise with empirical constraints
are then obtained through equation Eq. (4.63).

By introducing such a prior distribution on vy,, it becomes possible to prevent half-pitch
errors, as the resulting source model would usually have a harmonic structure with zero
power for all the odd order harmonics, which is abnormal for usual speech and instruments.

A prior distribution on ug,, on the other hand, helps to avoid overfitting many source models
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to the observed power envelope of a single source, as the resulting individual source models
in this case would often have abnormal power envelopes. We apply the Dirichlet distribution,

which is explicitly given by:

) F<Zn(dvﬂn+1)) L
s TRyl § L )

r($, (i, + 1) )
plur) = %yr(duuy+1))1;[u'“’yduuy’ (4.71)

where ©,, and 4, is the most preferred ‘expected’ values of vy, and wy, such that > v,=1
and ) u,=1, d, and d, the weighting constants of the priors and I'(-) the Gamma function.
The maximum values for P(v;) and P(uy) are taken respectively when v, = 0, for all n
and uk,y = u, for all y. When d, and d, are zero, P(v;) and P(u;) become uniform
distributions. The choice of this particular distribution allows us to give an analytical form

of the update equations of vy, and uy,:

2
v = PG (d vn—l—z / / m) ()Y (2.8 d:z:dt), (4.72)
ujyy = PR <d Uy+2/ / m, x,t)||Y(x,t)||2dxdt> _ (4.73)

Although the spline model can be used as is, one can also introduce in the same way a prior
distribution on the parameters z; of the spline Fjy contour, in order to avoid an overfitting
problem with the spline function. Indeed, spline functions have a tendency to take large
variations, which is not natural for the Fj contour of a speech utterance. Moreover, the Fj
contour might also be hard to obtain on voiced parts with relatively lower power, or poor
harmonicity. The neighboring voiced portions with higher power help the estimation over
these intervals by providing a good prior distribution.

To build this prior distribution, we assume that the z; form a Markov chain, such that

K K I—

1
1P %0, Q) =[] P(o) [] Pl hi1), (4.74)
k=1 k=1 j=1

and assume furthermore that ¢ follows a uniform distribution and that, conditionally to

2

Qpj—1, i ; follows a Gaussian distribution of center €2, ;_; and variance o7 corresponding

to the weighting constant of the prior distribution:

1 (=13
P(Qp 5[ j-1) = oo i (4.75)
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In the derivative with respect to €, ; used above to obtain (Eq. (4.57)) add up two new
810gP(Qk7j‘Qk7j_1) 810gP(Qk7j+1|Qk,]')

terms 0L, + 0L, , and the update equation Eq. (4.57) then becomes
0 (1)
2 Qiat+%n e
— - + A
(0 _ o3 2 ’
Q) = , (4.76)
k. 2 ©
2 t5

where Ag-e) and B](-Z) are respectively the numerator and denominator of the right term of
equation Eq. (4.57). The update equation for the boundary points is derived similarly.
The update equations for the rest of the parameters are given as is shown in Subsection

4.4.2.

4.6 Experimental Evaluation

A perceptual unit as defined in ASA does not necessarily coincide with a single physical
event, but we may be able to show by investigating in an engineering way through experimen-
tal evaluations the performance of our algorithm in a particular case how deeply Bregman’s
grouping cues are related to a physical phenomenon. In this subsection, to show the effec-
tiveness of the Harmonic Temporal Clustering (hereafter HTC), we perform F{ estimation

experiments on various kinds of acoustic signals and evaluate its performance.

4.6.1 Note Estimation from Acoustic Signals of Music

We first evaluated accuracies of note estimation using real-performed music acoustic signals
excerpted from RWC music database [44]. The experimental data used for the evaluation
can be seen in Table 4.1. The Power spectrum time series was analyzed by the wavelet
transform (constant Q analysis) using Gabor-wavelet basis functions with a time resolution
of 16 ms for the lowest frequency subband on an input signal digitalized at a 16 kHz sampling
rate. To speed up the computation time, we set the time resolution across all the subbands
equally to 16ms. The lower bound of the frequency range and the frequency resolution were
60 Hz and 12 cents, respectively. The initial parameters of (ugo, 75|k = 1,---, K) for the
HTC source models were automatically determined by picking the 60 largest peaks in the

observed spectrogram of 400 consecutive frames (6.4s). After the parameters converged, the
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Table 4.1 List of the experimental data excerpted from RWC music database [44].

Symbol Title (Genre) Composer/Player | Instruments | Ave. source#
data(1) || Crescent Serenade (Jazz) S. Yamamoto Guitar 2.13
data(2) || For Two (Jazz) H. Chubachi Guitar 2.67
data(3) || Jive (Jazz) M. Nakamura Piano 1.86
data(4) || Lounge Away (Jazz) S. Yamamoto Guitar 4.04
data(5) || For Two (Jazz) M. Nakamura Piano 2.34
data(6) || Jive (Jazz) H. Chubachi Guitar 1.78
data(7) || Three Gimnopedies no. 1 (Classic) | E. Satie Piano 2.96
data(8) || Nocturne no.2, op.9-2(Classic) F. F. Chopin Piano 1.55

W

Voo Was smaller than a threshold, was

source model, whose energy per unit time given by
considered to be silent. The experimental conditions are shown in detail in Table 4.2.

We chose *‘PreFEst’ [45] for comparison, as it is one of the most frequently cited works
which is dedicated to multipitch analysis. Since PreFEst extracts only the most dominant
Iy trajectory and does not include a specific procedure of estimating the number of sources,
we included intensity thresholding as well for the Fj candidate truncation.

As the HTC method generates Fp, onset time and offset time with continuous values,
we quantize them to the closest note and the closest frame number in order to match with
the format of the reference. Using the hand-labeled ground truth data as references, Fjy
accuracies were computed by

X-D-1-S8
X
X : # of the total frames of the voiced parts

x 100(%).

D : # of deletion errors
I : # of insertion errors

S : # of substitution errors

*Note that we implemented for the evaluation only the module called ‘PreFEst-core’, a framewise Fjy
likelihood estimation, and not included the one called ‘PreFEst-back-end’, a multi-agent based Fy tracking

algorithm. Refer to [45] for their details.
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Table 4.2 Experimental Conditions

frequency || Sampling rate 16 kHz
analysis || frame shift 16 ms
frequency resolution 12.0 cent
frequency range 60-3000 Hz
HTC # of HT'C source models: K 60
# of partials: NV 6
# of kernels in Ug(t): Y 10
Un, 0.6547 x n~2
Uy 0.2096 x e~ 02y
dy, dy 0.04
time range of a spectrogram segment | 400 frames (6.4 s)
# of the segments 4 (total time: 25.6 s)
PreFEst || Fj resolution 20 cent
[45] # of partials 8
# of tone models 200
standard deviation of Gaussian 3.0
T 0.6547 x n 2
d (prior contribution factor) 3.0

A typical example of the Fj, onset and offset estimates on a particular test data is shown
in Fig.4.6 together with the hand-labeled ground truth data. The optimized model and the
observed power spectrum time series are shown with 3D and grayscale displays in Fig.4.7.

To validate the performance of the proposed method, we compared the highest accuracy
of the HTC method with that of the PreFEst among all the thresholds that were tested,
which also shows the limit of the potential capability. The highest accuracies of PreFEst
and HTC among all the thresholds we tested are shown in table Table 4.3 together with
the number of insertion, deletion and substitution errors, respectively. Comparing these
accuracies between PreFEst and HTC, HTC outperforms PreFEst for most of the data,

which verifies its potential.
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Figure 4.6 Estimates of pgo, Tk, Y ¢x (top) and piano-roll display of the reference MIDI (bot-
tom)

The workstation used to perform the experiments had a Pentium IV processor with 3.2
GHz clock speed and 2 GB memory. With our implementation with the conditions listed

in Table 4.2, the computational time for analyzing an acoustic signal of 25.6 seconds length
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Figure 4.7 Observed spectrogram (top) and estimated spectro-temporal model (bottom)

was about 2 minutes. In most cases, the parameters of the HTC source models converged
within less than 100 iteration cycles.

We also compared the HT'C performances with different conditions: the time range of an
analyzing spectrogram segment of 100, 200 and 400 frames, and the number of the HTC

source models of 15, 30 and 60, respectively. Comparative results are shown in Table 4.4.
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Table 4.3 Accuracies of the PreFEst [45] and the HTC.

conventional ‘PreFFEst’[}5] proposed ‘HTC’

X || Accuracy (%) | I | D | S | Accuracy (%) | I | D | S
data(1) | 3063 74.2 383 | 327 | 81 81.2 210 | 312 | 55
data(2) || 3828 71.8 455 | 397 | 228 77.9 241 | 397 | 208
data(3) | 2671 55.9 553 | 500 | 126 64.2 313 | 524 | 120
data(4) || 5798 76.2 476 | 650 | 254 75.2 361 | 769 | 310
data(5) | 3366 62.3 565 | 515 | 190 62.2 465 | 627 | 178
data(6) | 2563 48.8 531 | 597 | 185 63.8 304 | 476 | 147
data(7) || 4244 53.6 801 | 830 | 337 63.2 427 | 734 | 403
data(8) | 2227 57.6 367 | 482 | 96 70.9 278 1291 | 79

From the results, one can see that the larger the time range of a spectrogram segment, the
higher the accuracies. This shows that the domain of definition of ¢ should be as large as

possible for a higher performance of the HTC.

4.6.2 [y Determination of Single Speech in Clean Environment

We evaluated the accuracy of the Fy contour estimation of our model on a database of
speech recorded together with a laryngograph signal [11], consisting of one male and one
female speaker who each spoke 50 English sentences for a total of 0.12h of speech, for the
purpose of evaluation of Fy-estimation algorithms.

The power spectrum ||Y (x,)||* was calculated from an input signal digitized at a 16kHz
sampling rate (the original data of the database was converted from 20kHz to 16 kHz) using
a Gabor wavelet transform with a time resolution of 16ms for the lowest frequency subband.
Higher subbands were downsampled to match the lowest subband resolution. The lower
bound of the frequency range and the frequency resolution were respectively 50Hz and 14

cent. The spline contour was initially flat and set to 132Hz for the male speaker and 296Hz
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Table 4.4 Comparison of the HT'C performances with different ranges of a spectrogram seg-

ment and the number of source models.

Time range: 100 frames, K: 15 | Time range: 200 frames, K: 30
X | Accuracy (%) | I D S | Accuracy (%) | I D S
data(1) || 3063 68.5 130 | 677 | 159 79.4 188 | 368 | 76
data(2) | 3828 75.1 142 | 720 | 93 74.2 218 | 538 | 233
data(3) || 2671 58.7 271 | 671 | 160 61.8 332 | 549 | 139
data(4) || 5798 60.7 175 | 1863 | 243 66.6 232 | 1376 | 327
data(b) || 3366 55.3 427 | 926 | 153 59.6 385 | 774 | 201
data(6) || 2563 57.7 229 | 617 | 239 61.2 270 | 519 | 206
data(7) || 4244 54.4 309 | 1226 | 400 63.5 470 | 619 | 461
data(8) || 2227 58.8 234 | 598 | 85 68.2 315 | 325 | 69

Time range: 400 frames, K: 60

X | Accuracy (%) | I | D | S

data(1) || 3063 81.2 210 | 312 | 55

data(2) | 3828 77.9 241 | 397 | 208

data(3) || 2671 64.2 313 | 524 | 120

data(4) || 5798 75.2 361 | 769 | 310

data(5) | 3366 62.2 465 | 627 | 178

data(6) || 2563 63.8 304 | 476 | 147

data(7) || 4244 63.2 427 1 734 | 403

data(8) || 2227 70.9 278 [ 291 | 79
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Figure 4.8 A screenshot of the GUI editor we implemented to create the ground truth data
set of note pitches, onsets and durations. The note events of the supplement MIDI data
included in the RWC' database, which are not temporally aligned with the corresponding real
performed signal data, are displayed as rectangular objects over the spectrogram of the real
performed signal. We are then able to edit the rectangular objects to align carefully the onset

and offset times according to the background spectrogram.

for the female speaker. The length of the interpolation intervals was fixed to 4 frames. For
HTC, we used K = 10 source models, each of them with N = 10 harmonics. This is enough
for Fj estimation. For a better modeling of the spectrogram, one can use 40 or 60 harmonics
for example. Temporal envelope functions were modeled using Y = 3 Gaussian kernels. The
initial values of wy, 7 and ¢, were determined uniformly, and o, was fixed to 422 cents. For
the prior functions, oy was fixed to 0.4, d, to 0.04 and (0,)1<p<n = %(8, 8,4,2,1,...,1).
We used as ground truth the Fjy estimates and the reliability mask derived by de Cheveigné

et al. [25] under the following criteria: (1) any estimate for which the Fj estimate was
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Figure 4.9 Comparison of observed and modeled spectra (“Tsuuyaku denwa kokusai kaigi
gimukyoku desu”, female speaker). The estimated Fy contour is reproduced on both the ob-

served and modeled spectrograms to show the precision of the algorithm.
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obviously incorrect was excluded and (2) any remaining estimate for which there was evidence
of vocal fold vibration was included. Frames outside the reliability mask were not taken into
account during our computation of the accuracy, although our algorithm gives values for
every point of the analysis interval by construction. As the spline function gives an analytical
expression for the Fjy contour, we compare our result with the reference values at a sampling
rate of 20kHz although all the analysis was performed with a time resolution of 16ms.
Deviations over 20% from the reference were deemed to be gross errors. The results can be
seen in Table Table 4.5, with for comparison the results obtained by de Cheveigné et al. [25]
for several other algorithms. Notations stand for the method used, as follows: ac: Boersma’s
autocorrelation method [14] [15], cc: cross-correlation [15], shs: spectral subharmonic sum-
mation [48] [15], pda: eSRPD algorithm [11] [120], fxac: autocorrelation function (ACF) of
the cubed waveform [121], fxcep: cepstrum [121], additive: probabilistic spectrum-based
method [35], acf: ACF [25], nacf: normalized ACF [25], TEMPO: the TEMPO algorithm
[64], YIN: the YIN algorithm [25]. More details concerning these algorithms can be found
in [25]. We can see that our model’s accuracy for clean speech is comparable to the best

existing single speaker F{y extraction algorithms designed for that purpose.

4.6.3 Multipitch Estimation of Concurrent Speech

We present here results on the estimation of the Fy contour of the co-channel speech of two
speakers speaking simultaneously with equal average power. We used again the database
mentioned above [11], and produced a total of 150 mixed utterances, 50 for each of the
“male-male”, “female-female” and “male-female” patterns, using each utterance only once
and mixing it with another such that two utterances of the same sentence were never mixed
together. We used our algorithm in the same experimental conditions as described in 4.6.2
for clean single-speaker speech, but using two spline F contours. The spline contours were
initially flat and set to 155Hz and 296Hz in the male-female case, 112Hz and 168Hz in the
male-male case, and 252Hz and 378Hz in the female-female case.

The evaluation was done in the following way: only times inside the reliability mask of
either of the two references were counted; for each reference point, if either one of the two
spline Iy contours lies within a criterion distance of the reference, we considered the estima-
tion correct. We present scores for two criterion thresholds: 10% and 20% For comparison,

tests using the WWB algorithm [115] introduced earlier were also performed, using the code
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Table 4.5 Gross error rates for several Fy estimation

algorithms on clean single speaker speech

Method Gross error (%)
pda 19.0
fxac 16.8
fxcep 15.8
ac 9.2
cc 6.8
shs 12.8
acf 1.9
nacf 1.7
additive 3.6
TEMPO 3.2
YIN 1.4
HTC (proposed) 3.5

made available by its authors. YIN could not be used as it does not perform multipitch es-
timation. Results summarized in Table 4.7 show that our algorithm outperforms the WWB
algorithm on this experiment. Fig. 4.6.3 shows the spectrogram of a signal obtained by
mixing the two Japanese utterances “oi wo ou” by a male speaker and “aoi” by a female
speaker, together with the F{ contours estimated by our method. One can see from Fig. 4.11
that the spectro-temporal cluster models are separately estimated such that each of them is

associated with a single speaker’s speech.
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Table 4.6 F, estimation of concurrent speech by multiple speakers, gross

error for a difference with the reference higher than 20% and 10%

Gross error threshold 20% 10%
methods HTC WWB HTC WWB
Male-Female 93.3 81.8 86.8 81.5
Male-Male 96.1 83.4 87.9 69.0
Female-Female 98.9 95.8 95.6 90.8
Total 96.1 87.0 90.2 83.5
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Figure 4.10 The observed spectrogram of concurrent speech signal of two speakers

talking at the same time and the estimated Fy contour.

4.7 Summary of Chapter 4

In this chapter, based on Bregman’s grouping cues, we proposed a new methodology to

estimate simultaneously the spectral structure of each source on the whole time-frequency
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Figure 4.11 Parametric representation of separated spectrograms. Fig. 4.6.3 shows the spec-
trogram of a signal obtained by mizing the two Japanese utterances “oi wo ou” by a male
speaker and “a0i” by a female speaker, together with the Fy contours estimated by our method.
Fig. (a) and Fig. (b) show the parametric representations of the spectrograms of the utter-

ances by the male and female speaker respectively, extracted from the mized signal shown in

Fig. 4.6.3.
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Table 4.7 F, estimation of concurrent speech by multiple speakers, gross

error for a difference with the reference higher than 20% and 10%

Gross error threshold 20% 10%

HTC WWB HTC WWB
Male-Female 93.3 81.8 86.8 81.5
Male-Male 96.1 83.4 87.9 69.0
Female-Female 98.9 95.8 95.6 90.8
Total 96.1 87.0 90.2 83.5

domain, which we called Harmonic-Temporal Clustering (HTC). Through evaluation exper-
iments on the Fj estimation of mixed speech signals and music signals, we showed that our

method’s accuracy outperforms the previous state-of-the-art methods of each of these areas.



Chapter 5

Joint Estimation of Spectral Envelope

and Fine Structure

5.1 Introduction

Fy determination and spectral envelope estimation both have a long history in speech
research as they play a very important role in a wide range of speech processing activities
such as speech compression, speech recognition and synthesis. Although many efforts have
been devoted to both of these topics of research, the problem of determining Fj and spectral
envelope seems to have been tackled independently. The aim of this chapter is to highlight the
importance of jointly determining the Fy and the spectral envelope. From this standpoint,
we will propose a new speech analyzer that jointly estimates Fy and spectral envelope using
a parametric speech source-filter model.

Up to now, a number of approaches to spectral envelope estimation have been investigated:
LPC (Linear Predictive Coding) [53], PARCOR (Partial Autocorrelation) [55], LSP (Line
Spectrum Pair) [56], pole-zero modeling techniques [68, 96, 58, 100], DAP (discrete all-pole)
modeling [36], MVDR (minimum variance distortionless response) modeling [73], IAP (itera-
tive all-pole) modeling [78], SEEVOC (spectral envelope estimation vocoder) [80], cepstrum
[77] approaches such as LPC cepstrum [9], discrete cepstrum method [42], regularized dis-
crete cepstrum method [20], discrete cepstrum method based on OLC (optimization of the
likelihood criterion) [19] and true envelope estimator [52], STRAIGHT (Speech Transfor-
mation and Representation using Adaptive Interpolation of weiGHTed spectrum) [63], and
others such like [74, 85]. LPC [53, 55, 56] estimates the vocal tract characteristics mod-

eled by an all-pole filter by assuming the excitation source signal of the vocal cords to be

74
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a Gaussian white process, and has been applied with great success in many problems of
speech processing. Cepstrum [77] is used to extract the spectral envelope by low-pass filter-
ing a log-amplitude spectrum interpreted as a signal. The fact that MFCC (Mel-Frequency
Cepstral Coefficients) [31] has become the most popular feature in speech recognition im-
plies how well the cepstrum-based spectral envelopes express the vocal tract characteristics
of speech. Furthermore, LPC cepstrum analyzer [9] is also a well-known and widely used
spectral envelope extractor. DAP modeling [36] is an improved method of LPC, that tries
to fit an all-pole transfer function to the discrete set of frequency points, and is known to
be slightly more accurate than the classical LPC. Discrete cepstrum first presented by Galas
and Rodet in [42] is an improved method of cepstrum, that estimates directly the cepstral
coefficients through the minimization of a frequency-domain least squares criterion using
discrete set of frequency points of the harmonic peaks. Regularized discrete cepstrum [20]
is based on the discrete cepstrum approach that makes use of a regularization technique in
order to enforce smoothness conditions on spectral envelope estimates. OLC cepstrum [19]
is a further improved method that optimizes the cepstral coefficients through a different like-
lihood criterion, which is considered to be one of today’s state-of-the-art methods. Another
state-of-the-art technique, called STRAIGHT [63], starts by estimating the Fj frequency,
and then, using an analysis window varying in time according to the F{ estimate precisely
estimates the spectral envelope in a non-parametric way.

Making explicit use of the Fjy estimates via Fj extractor, as opposed to the classical LPC
and cepstrum, is certainly one of the reasons that discrete cepstrum methods [42, 20, 19] and
STRAIGHT have been such a high-quality spectral envelope extractor. Accordingly, we can
thus expect that the higher the accuracy of Iy determination the more accurate the spectral
envelope estimate.

However, although a huge number of F{y estimation algorithms have been proposed [49,
50, 25|, the reliability of them are still limited. The ambiguity involved in the definition
of Fy makes its determination difficult. In particular, one of the most diffucult problems
is how to reduce subharmonic errors, or say, “octave errors”. In a mathematical sense,
the period of the signal s(t), the inverse of Fy, is defined as the minimum of 7" such that
s(t) = s(t + T). This definition, however, applies strictly only to a perfectly periodic signal
but as for speech, that departs from perfect periodicity, one must find the minimum of T’
such that s(t) = s(t + 7). The difficulty in Fj estimation of the acoustic signal in a real

environment, in general, stems from the fact that 7" that is ‘likely’ to be the smallest member
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Figure 5.1 The linear system approximation model in the power spectrum domain

of the infinite set of time shifts that leave the signal ‘almost’ invariant is not always unique,
since if T" is the true pitch period one obtains s(t) ~ s(t+nT) for all n € N, where nT'(n # 1)
correspond to the periods of subharmonics. It thus sometimes become difficult to determine
which one is the true pitch period, and choosing nT(n # 1) instead of T' is referred to as
the subharmonic error. Making a subharmonic error amounts to misinterpreting as the true
spectrum a harmonic structure with zero power for all the odd order harmonics, which is
abnormal for usual speech and instruments. Such an error could thus be corrected if we knew
in advance the true spectral envelope or at least by assuming that the spectral envelope are
usually relatively smooth. For this reason, the spectral smoothness assumption has indeed
been used to reduce subharmonic errors in F estimation [10, 67].

So far, we have discussed that the more reliable the Fy determination the more accurate the
spectral envelope estimation will be, and, on the other hand, the more accurate the spectral
envelope estimation the more reliable the Iy determination will be. The Fy determination
and the spectral envelope estimation, having such a chicken and egg relationship, should
thus be done jointly rather than independently in succession. This is the standpoint we
chose in this chapter to formulate a joint estimation model of the spectral envelope and the

fine structure.
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5.2 Formulation of the Proposed Method

5.2.1 Speech Spectrum Modeling

A short-time segment of speech signal y(t) can be modeled as an output of the linear

system of the vocal tract impulse response h(t) with the source excitation s(t) such that

y(t) = (s(t) « h(t))w(t), (5.1)

where ¢ is time and w(t) a window function. In the Fourier domain, the above equation is

written as

Y(w) = (S(w)H(w)) £ W (w), (5.2)

where w is the frequency, Y (w), S(w), H(w) and W (w) are the Fourier transforms of y(t),
s(t), h(t) and w(t). Letting the excitation source signal s(t) be a pulse sequence with pitch
period T" such that

s(t) = \/g > 6(t —nT), (5.3)

n=—oo

the Fourier transform of its analytic signal representation is again a pulse sequence given by

S(w) = \/g %gé(w—n%T)

= \/ﬁZ(S(w—n,u), (5.4)

where pu 2 2% is the Fy parameter, §(-) the Dirac delta function, and n runs over the
integers. Multiplying S(w) by the vocal tract frequency response H(w) and then taking the
convolution with the frequency response W (w) of the window function yields the complex

spectrum of the short-time segment of voiced speech:
Y(w) = (S(w)H(w)) « W (w)
= [\/ﬁz H(np)o(w — nm] * W (w)
n=0

= \/ﬁz H(npu)W(w —np). (5.5)
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We will use as a model of the speech spectrum the approximation of its power spectrum

(Fig. 5.1):

Y (@)|[* = u (Z [Hm)|[*|W (@ = nw) |+ 3 B (0 i) H () W (w = ' i)W (w0 — nm)

n=0 n#n'
zﬂzHH(nu)HQHW(w—nu)HZ. (5.6)

This approximation is justified under the sparseness assumption that the power spectrum of
the sum of multiple signal components is approximately equal to the sum of the power spectra
generated independently from the components. The smaller the interferences between the
harmonics, where the cross term W*(w — n'p)W (w — nu) such that n # n' is sufficiently
smaller than HW(w — nu)H2, the higher the accuracy of this approximation. If we now
E

suppose the analysis window w(t) to be a Gaussian window, |W(w)|* can then be as well

written as a Gaussian distribution function with the frequency spread o:
2

W) = ¢21—m exp (_%) | (57)

From Eq. (5.6), one can see that with this model each frequency component power is not free

but determined at once through the spectral envelope function ||H(w)||?, each component

| to be a smooth

power being dependent on the rest of the components. As we want ||H (w)
and non-negative function of w and in order to enable a prompt application to the speech
synthesis method called “Composite Wavelet Model (CWM)” developed by our group [87],

we introduce the following Gaussian mixture function (see Fig. 5.2):

2 A M 0., W — pm)?
I 2030 2o (25220, 53)

with
M
> O =1 (5.9)
m=1

The scale parameter 1 determines the level of the spectrum model. From Eqgs. (5.6)—(5.8),

the speech spectrum can now be written as:

Iye :/&;MP (Lo
= 5m0 i [ % i—mexp (—("’“‘2;—2“”)2)] exp (—%)

N M
_ 77/~L9m N (w — nﬂ)z _ (n/ﬁ — pm)2
— Z Z e exp ( 503 o2 . (5.10)
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Figure 5.3 Compound model of spectral envelope and fine structure ||Y (w)

One notices from Eq. (5.10) that the spectral model we present here is a compound model
of two Gaussian mixtures each of which represents the spectral envelope and the spectral
fine structure (see Fig. 5.3).

So far we have only discussed voiced speech with a harmonic structure, but by making
the up to now constant o in Eq. (5.10) a free parameter, the model can also be used
to approximate reasonably an unvoiced speech spectrum. White noise is indeed generally
used as excitation source to synthesize unvoiced speech, but as its power spectrum is a
uniform distribution, if in Eq. (5.10) o becomes large enough such that the tails of adjacent
Gaussians cover each other, the harmonic structure disappears and the model appears as a
white spectrum. However, as the approximation given in Eq. (5.6) in this case becomes less
accurate, a more careful modeling for unvoiced speech should be investigated in the future.

The free parameters of the model are © = (i, 0,1, p1, -+, par, Vi, -+ > Var, 01, -+, Opr—1)7,
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and their optimal estimation from a real speech signal is the goal of the following subsection.

5.2.2 Parameter Optimization

Denoting by F'(w) the observed complex spectrum at a particular short-time segment of
speech, the problem we are solving is the minimization of some distortion measure between
I

nonnegative functions ||Y (w)||? and ||F(w)||?>. We will introduce here again as the distortion

measure the I divergence of ||Y (w)|* and || F(w)||*:

12 [ (I SOL - (o - o) e e

which henceforth allows us to derive an elegant parameter optimization algorithm. Since
the model ||Y (w)]]? is characterized by both the parameters for envelope and fine structures,
this optimization leads to a joint estimation of Fy and the spectral envelope.

Now as ||V (w)]|? is the sum over n and m of

yn’m(w) Iy w exp (_ (W — TL,U)Q _ (n,U/ — pm>2) | (5'12>

2wovy, 202 2v2

one must deal with a nonlinear simultaneous equation in order to find the global optimal
model parameters, which cannot be solved analytically. However, although any brute force
gradient search algorithms are always possible, the model parameters can be efficiently esti-
mated iteratively through the EM algorithm formulation as discussed in the following.

For any weight functions A, ,(w) such that
Vn,m,w: 0 < Apm(w) <1, (5.13)

and

3 Nmw) =1, (5.14)

one obtains the following inequation:

_ [ 2 lF@|* .
J—/OO (IIF@)H log 5=~ M (HF(W)” gnj%jyn,mw)))dw
) 2 |F(w) )
/_oo <||F<w)|| 1ogZ > Anm ynm((w <||F )| Zz%m ))

An.m (W

(@) || F (@)

[ (1l S st L
- (HF(w)H2 - ;;%,m(w)> )dw, (5.15)

A
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using Jensen’s inequality based on the concavity of the logarithm function such that:
logZyimi z Zyz log i, (5.16)
where
Vi: 0<y <1, Y yi=1 (5.17)

Denoting by Jy~ the upper bound of J, i.e., the right-hand side of the inequation (5.15),
equality J; = J holds if and only if

yn,m(w)

> Vimlw)

Eq. (5.18) is obtained by setting to zero the variation of the functional Jy" with respect to

Vn,Ym,Vw : Apm(w) = (5.18)

Anm(w). By looking at Jy, one can see that, if A, ,(w) is fixed, the minimization of J; w.r.t
the each element © in ©:

0= argénin N (5.19)
can be done analytically, which is impossible with J.

When A, ,(w) is given by Eq. (5.18) with arbitrary @, the original objective function J
is equal to Jy". Then, the parameter © that decreases J\ with A, ,,(w) fixed necessarily
decreases J, since the original objective function is always guaranteed by the inequation
(5.15) to be even smaller than the minimized J;. Therefore, by repeating the update of
Anm(w) by Eq. (5.18) and the update of ® by Eq. (5.19), the objective function, bounded
below, decreases monotonically and converges to a stationary point.

One notices, however, that the parameter update equation for ® cannot be obtained

analytically because of the second term in J; :

_/_OO <HF(W)H2 - ZZ%M) dw. (5.20)

More specifically, taking the integral of ), ,,(w), one obtains

[ XS v = 25 [ e (R T Y0 (s
=% T e (el 52)

from which we find that J5 is nonlinear in y, p,, and v,,. Since this term essentially amounts

to the sum of the heights of the sampled points of ||H(w)]||? with the interval of p, we shall
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find it most convenient to approximate it with the intergral of || H(w)||?>. Approximating the

Gaussian integral with the Riemann sums with subintervals of equal length of pu, that is,

1 W — pm)? 1 np — pm)>
/ \/%V exp (-%) dw =~ ILLZ \/ﬁy exp (—% s (523)

one obtains

1 (np—pm)*\ 1
AR ) ) &= 24
zn: Vo, ( v, Z 524

since the left-hand side of Eq. (5.23) is 1. Substituting Eq. (5.24) into Eq. (5.22), it is
shown that

/OO YN Vemlw)do ~ 3 % — . (5.25)

Therefore, it became apparrent that the second term of the I divergence (and J;") depends
very weakly on u, p,, and v,,,. The update equation for the parameters except for n can thus

be obtained approximately by simply minimizing

/_ N [F@PI> " M (w) log A””"SZ)JZJ()M) | dw. (5.26)

Now the parameter update equations obtained through Eq. (5.19) for p, pm, 0m, o and

vy, are derived as follows:

(4) - 0
o] e 0 , (5.27)
N M 1 1 o ,
a Z%rﬂ 2_:1 (O-(i—l)2 + 1/,(72_1)2> /oo )\nm(w)HF(w)H dw,

S
3
>
|
L= s
N
[]=

nf T @) | F )|l

Vm ’I’LIO — 0
A 1 al o 2
in2 == 3 [ Am@|F@)
m n=0"Y —>




Chapter 5 Joint Estimation of Spectral Envelope and Fine Structure 83

Z% /_ Z A (@)|| F (@) || dew

S5 [ AP P

n=0 m=1""

S5 [ A @F@ @ - )

o — | n=0m=1"" (5.29)

S [ rm@lFe)fa

n=0m=1" "

0L = (5.28)

1/2

1/2

> (= p2)" [ M) [F)

—00

= T (5.30)
3 / A ()| F(@) |l
n=0"Y X

\/%/m |F () e
D = —oo . (5.31)

i i O xp ( () — pv(f%))2>
3

21/7(? 2

where the superscript ¢ refers to the iteration cycle. Some examples of the estimated envelope

| H (w)||* with M =15 can be seen in Fig. 5.4.

5.3 Experimental Evaluations

5.3.1 Single Voice Fjy Determination

To confirm its performance as a F{y extractor, we tested our method on 10 Japanese speech
data of male (‘myi’) and female (‘fym’) speakers from the ATR speech database and chose the
well-known Fj extractor “YIN”[25] for comparison. All power spectra were computed with
a sampling rate of 16kHz, a frame length of 32ms and a frame shift of 10ms. The spectral
model was made using N+1=60 Gaussians, and the envelope model was made using M =15
Gaussians. The number of free parameters is thus 3 + 15 x 3 = 48. The initial values of
were set to 47Hz, 94Hz and 141Hz, respectively, and among these conditions, the converged
parameter set that gave the minimum of J was considered as the global optimum. The
initial values of 6,, were determined uniformly, and o and v,, were initialized to 31Hz and

313Hz, respectively. For an Fj estimation task, we defined two error criteria: deviations over
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Figure 5.4 Observed power spectra of voiced (top) and unvoiced (bottom) speech and the

corresponding spectral envelope estimates.

5% and 20% from the hand-labeled Fj reference as fine and gross errors, respectively. The
former criterion shows how precisely the proposed analyzer is able to estimate Fy and the
latter shows the robustness against the double/half pitch errors. The areas where reference
Fys are given by zero were not considered in the computation of the accuracy. As a second

|2 on the

evaluation, we took the average of the cosine measures between [|Y (w)||* and || F'(w)
whole analysis interval to verify how well the choices of the distortion measure to minimize
and of the model for expressing actual speech power spectra are. These results can be
seen in Table 5.1. The numbers in the brackets in Table 5.1 are the results obtained with
YIN. The source code was kindly provided to us by its authors. One can verify from the
results that our method is as accurate as YIN when it comes to roughly estimate Fy and
significantly outperforms YIN for precise estimation. Thus, our method would be especially

useful for situations in which a highly precise Fj estimate is required, which is exactly the

case in the spectral envelope estimation algorithms that use Fj estimates. We should note
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41

Figure 5.5 A spectrogram of a female speech (top) and a gray-scale display of the spectral

envelope estimates (bottom).

however that the parameters used for YIN may not do it full justice. The results seem to
be rather good for a frame-by-frame algorithm, which encourages us to embed this envelope
structured model into the parametric spectrogram model proposed in [?, ?] to exploit the

temporal connectivity of speech attributes for a further improvement.

5.3.2 Synthesis and Analysis

We evaluate here the accuracies of spectral envelope estimation. To do so, we need to use
speech signals whose true spectral envelope is known in advance as the experimental data.
For this we purpose, we created several synthetic speech signals. The synthetic signals were

made using three types of linear filter: all-zero filter, all-pole filter and pole-zero filter, and
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Table 5.1 Accuracies of Fy determination

Fy accuracy (%)
Speech File 5% L 20% Cosine (%)
myisdaOl | 98.4 (85.3)]98.6 (98.6) 96.7
myisda02 | 93.3 (82.6) | 97.8 (97.8) 98.0
myisda03 | 94.2 (79.9) (975 (96.9) 96.0
myisda04 | 98.0 (86.3) | 99.0 (95.1) 96.8
myisda05 | 93.7 (71.7)|97.8 (96.1) 95.9
fymsdadl | 97.2 (87.0) | 98.0 (98.0) 98.3
fymsda02 | 96.8 (88.5) | 98.1 (98.1) 97.6
fymsda03 | 954 (84.6)|98.5 (98.5) 98.2
fymsda0d | 97.0 (88.2) | 98.1 (98.1) 98.2
fymsda05 | 95.7 (86.5)|99.2 (98.5) 98.1

the input excitation. The input excitation we used here is a linear chirped single pulse signal,
whose Iy modulates linearly from 100Hz to 400Hz within 2 seconds. The characteristics of

the filters were chosen as follows:
All-zero (1):

H(z)=1—012""40322 40422 4022404277+ 0224+ 0.1277 4+ 0525,

All-zero (2):

H(z)=—=12+401z""403224012 24024 +042° - 022+ 08277+ 1.227%,
All-pole:
- 1
H(z)

T 1052 140422—0123+0324-032"5
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Pole-zero:

f]( ) —12401271'403224+01224022%4042"°—-0226 4082741228
z) = )
1—-052"14042"2—-0.12734+0.3274—-0.327°

We chose as the measure to assess the accuracy of the spectral envelope estimation the

“Spectral Distortion (SD)”, defined by

%; (logHH(wz')H — log || H(e™) \)2, (5.32)

where i refers to the index of the frequency-bin, ||H(e/*)| the true (reference) spectral
envelope and || H (w;)|| the spectral envelope estimate.

The experimental results are shown in Fig. 5.6. Fig. 5.6 (a), (b), (c) and (d) are the
results when testing with the data created respectively by all-zero (1), all-zero (2), all-pole
and pole-zero. Each graph shows the transitions of SD values within two seconds during
which the Fjy of the input excitation modulates from 100Hz to 400Hz. One sees from these
graphs that as the Fj of the input gets higher, conventional methods such as 40-order LPC
and LPC cepstrum tend to obtain poorer results. This is perhaps because the envelope
estimates descend down into the space between the partials for high F,. The accuracies of
the envelope estimates obtained by the proposed method does not seem to become poor even
in high Fy. This is obviously because the proposed method tries to estimate the spectral fine
structure at the same time. On the other hand, the 14-order LPC envelope is too smooth to

make a good fit to the true envelope.

5.3.3 Analysis and Synthesis

We compared through a psychological experiment the processing capacity and the intel-
ligibility of the synthesized speech restored from the parameters obtained via the proposed
and LPC analyzers. The parameters extracted via the proposed analyzer were transformed
to a synthesized speech using the *CWM method [87]. As a test set, we used speech data of
5 vowels (/a/, /i/, /u/, /e/, /o/) and 40 randomly chosen words uttered by a female speaker
excerpted from the same database. Analyses were done with a sampling rate of 16kHz, a

frame shift of 10ms and a frame length of 32ms for the proposed method and 30 ms for the

*CWM synthesizes speech by spacing composite Gabor functions, transformed from a Gaussian mixture

envelope, by a pitch period interval.
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Table 5.2 Preference score(%) of the synthe-
sized speech generated by CWM[87] using the

parameter estimates of the proposed model.

listener | vowel | word

A 60 84
B 60 83
C 40 68
D 80 80
E 60 95
F 80 96
G 100 100
H 40 64
I 80 94
J 60 88

Ave 66 83
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LPC. The dimension of the parameters for the proposed model and the LPC’s were both set
to 45. For the LPC analysis, the Fys were extracted via the supplementary Fj extraction
tool included in the Snack Sound Toolkit. Each synthesized speech used for the evaluation
was excited with an estimated vocal tract characteristic by a pulse sequence at intervals of
a different pitch period from the original one. The pitch periods were modified to 80% and
120% of the pitch periods obtained from the original speech. We let 10 listeners choose the
one they thought was more intelligible and obtained a preference score of the results via
the proposed analyzer. The preference score, shown in Table 5.2, shows that the processing
capacity and the intelligibility of the synthesized speech generated through the proposed
analyzer are higher than that from through LPC analyzer.

5.4 Summary of Chapter 5

In this chapter, we formulated the estimation of Fy and the spectral envelope as a joint
optimization of a composite function model of the spectral envelope and the fine structure,
and confirmed through experiments the effectiveness of this method. Encouraged by the

results, we are planning to apply this idea to Harmonic-Temporal Clustering in the future.
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Figure 5.6 Comparison of the accuracies of spectral envelope estimation between the proposed
method and the conventional methods. Each graph shows the transitions of SD values during

two seconds.



Chapter 6

Parameter Optimization of Sinusoidal

Signal Model

6.1 Introduction

The approaches of the preceding chapters are based on the approximate assumption of
additivity of the power spectra (neglecting the terms corresponding to interferences between
frequency components), but it becomes usually difficult to infer Fys when two voices are
mixed with close Fys as far as we are only looking at the power spectrum. In this case
not only the harmonic structure but also the phase difference of each signal becomes an
important cue for separation. Moreover, having in mind future source separation methods
designed for multi-channel signals of multiple sensory input, analysis methods in the complex
spectrum domain taking into account the phase estimation are indispensable.

After McAulay et al. [71] showed that the sinusoidal signal model could be applied to
Analysis-by-Synthesis systems to obtain high-quality synthesized speech, the range of appli-
cation of this model has widened to Text-To-Speech synthesis, speech modification, coding,
etc. In particular, as the possibility to generate high-quality synthesized speech shows that
the sinusoidal signal model represents extremely well acoustic signals such as speech and
music, we can have high expectations for its application to source separation.

Independently of the situation of application, the common point of this framework (signal
analysis using sinusoidal signal model) is that the most important problem resides in how
to accurately estimate the parameters of the sinusoidal signal model, and this estimation
accuracy is directly related to the performance of every application. The sinusoidal signal

model used by McAulay et al. is the superposition of K complex sinusoids which are assumed

92
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to have constant frequency and amplitude:
K
s(t) = ZAkej‘““t, t € (—o00,00), (6.1)
k=1

where u, and Ay represent respectively the frequency and complex amplitude of the k-th
sinusoidal component. In addition, the arguments arg(Ay) represent the phases at time ¢t = 0
(initial phase). If we denote the target analytic signal on the short-time analysis interval

t € [=T,T] by y(t), and if we assume that it can be expressed as
y(t) = st) +e(t), te[-T,T], (6.2)

where €(t) is a Gaussian white noise €(t) ~ N(0,%) with ¥ = 121, then the problem is
to obtain the maximal likelihood parameters @ = {us, ax, o },. In this case, as €(t) ~

N(0,3), the log-likelihood of © can be written

/T (1 1 1
O U —
T & ory 202

and finally the solution of the minimization of the L? norm error corresponds to the maximal

y(t) —s(t)

2) dr, (6.3)

likelihood parameter:

A T 2
0= argmin/ Hﬂ(t) —s(t)|| dt (6.4)
e J-r
. > ~ 2
= argmln/ Hw(t) <y(t) - s(t)> H dt, (6.5)
0 J-w
where w(t) is the rectangular window
1 [tj=T
w(t) = : (6.6)
0 [t|>T

As shown in Eq. (6.1), the sinusoidal signal model depends linearly on Ay, but non-linearly
on i, and thus it is straightforward to analytically obtain the maximum likelihood solution
for Ax when py; is fixed, but even when Ay is fixed the maximum likelihood solution for
cannot be obtained analytically. This point is the essence of the difficulty of the parameter
optimization of the sinusoidal signal model, and methods to obtain the maximum likelihood
solution for p; have been the subject of intensive research for many years in the area of
statistical signal processing [71, 84, 98, 34, 118, 6, 17, 5, 99, 22, 57, 43].

In McAulay et al. [71], in order to obtain the estimation of the parameters @ = {p, A},

a simple method is used which consists in repeating K times the operation of determining
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the frequency, amplitude and phase of the peak element maximizing the discrete power spec-
trum density (periodogram) of the target signal and of subtracting this peak element from
the signal. The fact pointed out by Rife et al. [83, 81, 82| that the frequency giving the
maximum value of the periodogram of a single sinusoid is a maximum likelihood estimator
and that this estimator is an unbiased estimator is one argument for the validity of the above
frequency estimation method as an approximate solution of Eq. (6.5). Considering that (1)
the peaks of the discrete periodogram do not necessarily correspond to the maximal values
of the original continuous periodogram, (2) when there are several frequency components
the above theory does not stand anymore because of the interferences between frequency
components, (3) when several frequency components are close to each other it happens that
the detection of each peak can not be done correctly because of the energy dispersion, it
is natural to hope for the development of an estimation method with a higher efficiency
than the above simple frequency estimation method can be expected. In such a perspec-
tive, methods [98, 34, 118, 6, 17, 5] trying to obtain a more efficient parameter estimation
by not directly considering the peak frequency as an estimation value but by looking for
the maximal point of a curve interpolating several points in the neighborhood of the peak
have been used particularly often recently for their simplicity. However, these methods still
do not solve the problems (2) and (3) mentioned above, and as they only give, similarly
to McAulay et al.’s method, an approximate solution of (6.5), zero-padding and window
function design methods to increase the accuracy of this approximation are the main object
of their discussions [17, 5|. Meanwhile, non-linear optimization methods such as gradient
search methods (e.g., steepest descent or Newton’s method), and methods based on sta-
tistical sampling (Gibbs sampler or Markov chain Monte-Carlo (MCMC) method) are also
proposed to search numerically for the solution of Eq. (6.5) [1, 99, 22, 57, 43].

While the method of McAulay et al. is a mixture of K pure tone signals, one can also
consider in the same way the case of an analytic signal which is the superposition of K
harmonic signals (signal composed of N harmonic components, where the n-th harmonic

component’s frequency is n times the fundamental frequency py):

s() 2 N T Apae L e (—o0,00). (6.7)

k=1 n=1

This model is often used for 1ch source separation when the target mixed signal is only
composed of harmonic signals [22, 57, 43]. Eq. (6.7) with N = 1 corresponds to assuming
the same model as Eq. (6.1), and McAulay et al.’s model is thus a special case of Eq. (6.7).
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However, as in this model each sinusoid’s frequency does not have its own degree of freedom
but is constrained to be a multiple nu; of the fundamental frequency, obtaining the max-
imum likelihood solution for u; becomes even harder than in McAulay et al’s model. For
example, some methods from the first type presented above try to estimate u; based on peak
extraction, but it then becomes necessary to rely on ad hoc threshold setting to determine
to which harmonic component of which harmonic signal the extracted peak belongs, and the
discussion on the obtained maximum likelihood solution for u; becomes complicated. For
that reason, the source separation approaches which used this model are most often from
the second type (gradient search and sampling methods)[22, 57, 43]. However, this kind of
numerical computation is often beset with local optimum problems. A global minimum for
Eq. (6.5) is not guaranteed to be obtained unless, in the case of the gradient search method
the iterative computation is led to convergence for an infinity of initial points, or in the case
of the stochastic sampling an infinite number of trial is performed. For that reason, the
problem is to know if the search for the solution can be performed with a low computation
cost (the lower the computation cost, the more searches can be performed from different
initial parameter conditions), but as for now only brute force numerical computations such
gradient search method and sampling method have been proposed.

As explained above, albeit the sinusoidal signal model represents extremely well acoustic
signals such as speech and music, room was left for discussion on how to estimate its pa-
rameters. Against this background, the goal of this chapter to is derive a new optimization

algorithm to obtain the maximum likelihood parameter of the sinusoidal signal model.

6.2 Abstract and Organization of Chapter 6

The parameter optimization algorithm for sinusoidal signal model, proposed in this section,
is based on a principle of the iterative method that uses an auxiliary function. This principle

was inspired by the essential idea of EM algorithm. Let ®(®) be the objective function one

wants to minimize with respect to its parameters @ = (04, --- ,0;), and define by ®*(©, m)
the auziliary function of ®(®), and m = (my, -+ ,my) the auziliary parametersif ®*(©, m)
satisfies

(©) < T (O,m). (6.8)

®(®) can then be decreased monotonically by the iteration consisting of the two steps:

minimization of the auxiliary function with respect to the auxiliary parameters m, and as
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well with respect to the parameters ©.

In the next section, we introduce the sinusoidal signal model and the objective function
that we will deal with through this chapter. We show the principle of the auxiliary function
method in Section 6.4, and derive the auxiliary function from the Feder’s lemma in Subsection
6.4.2. As one sees that it is still impossible to obtain analytically the update equation for
the F{ parameter i, we show in Subsection 6.4.3 that one can derive a further auxiliary
function by introducing a theorem for concave functions. This auxiliary function enables us

to derive analytically the update equation for uy as will be mentioned in Subsection 6.4.4.

6.3 Problem Setting

6.3.1 Pseudoperiodic Signal Model

Consider as the time-varying acoustic signal the sum of pseudoperiodic signal models given
in an analytic signal representation by

s(t) = ZZAkﬁn(t)ejn(”“(t), t € (—o0,00), (6.9)

k=1 n=1

where the instantaneous phase 6 () of the fundamental component, and the instantaneous
complex amplitude Ay ,(t) of the n'* are the unknown parameters. ju(t) = 6;(t) amounts
to the instantaneous Fy and ag,(t) = |Ag,(t)| the instantaneous amplitude, which are both
assumed here to change gradually over time. These are the free parameters that one wants

to estimate, which we denote for convenience by ©:

Now letting y(t) be the observed signal of interest, we assume the following model:
y(t) = s(t) + n(t), te (—o0,00), (6.11)

where n(t) is a Gaussian white noise. The maximum likelihood estimate of ® can thus be

obtained by minimizing the L? norm of the error signal in ¢t € (—o0, 00):

[ [y = sto

We now show that this time domain objective can be equivalently defined in the time-

2

dt. (6.12)

frequency domain. As short-time Fourier transform (STFT) is one of the most popular ways
of time-frequency decomposition, we show the following lemma, which gives us the objective

function in the time-frequency domain by the Gabor transform (STEFT).
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6.3.2 Objective Function Defined on Gabor Transform Domain

Lemma 1 (L? norm in STFT domain). The time-frequency components of y(t) and s(t)
by Gabor transform is by definition given by

Gy(w,) 2 (y(w), va(w)) (6.13)

Galw, 1) 2 (s(w), velw))

7
u€R

(6.14)

u6R7
where 1,+(u) is the Gabor function, which is a nonorthogonal basis used to measure the
component of frequency w at time t, and defined as the product of the complex sinusoid with

frequency of w and the Gaussian window centered at time t:
ww,t<u) — efd(uft)2+jw(u7t)’ (615)

where d is the time spread parameter of the Gaussian window, that can be chosen arbitrarily.

Though trivial, we then have

/ Hy(t) —s(t)H dt:n/ / HGy(w,t) —Gs(w,t)H dwdt, (6.16)
where n 1s a constant that depends neither on w nor on t.

Proof. By definition, G, (w,t) can be written as

Gy 1) = (y(w) Yualw)) (6.17)
- / Z y(u)is ,(u)du (6.18)
_ / (e mietu=t gy, (6.19)
— / h y(u)e Mttt g —jwn gy, (6.20)
— eﬂjy [y(u)e*f““*t)z} ; (6.21)

G, can as well be written as Gy (w,t) = j‘”tﬁ[s(u)e_d(“‘t)Q}u. Therefore,

8 8
8 8

/Z /Z HGy(w,t) - Gs(w,t)H2dwdt = Z /Z ejwtﬁKy(u) B s(u))e—d(u—tﬂ]u 2dwdt
-/ /_OO 7| (e - S(U)>e*d(“*t)2]u it

(y(u) - s(u)>e_d(”_t)2 ‘2dudt

—0o0

83

/
/
/
/ Hy(u) - S(U)H2 /Z e 2= 4, (6.22)

—00
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The equality in the third line follows from the Parseval’s theorem. Using the result of the

Gaussian integral, one obtains

h —2d(t-u?qy — [ 6.23
/_ K . (6.23)

which immediately proves that

/_Z /: |Gt = Gt )| dwatt = \/2%/: lutw) — sw)"au. (6:24)

O]
One sees from this result that minimization of Eq. (6.12) is equivalent to minimizing
o oo 2
/ / HGy(w,t) — Gyw, )| dwdt. (6.25)
Recall that G4(w,t) is the Gabor transform of s(¢), such that, from Eq. (6.9),
o K N
s(w, t) / ZZA’“ (u)eInor (W) gmdu=t)* —je(u=t) 4y, (6.26)
k=1 n=1

d(u=t)*~jw(u=1) ig |ocalized only around time

As the dominant part of the Gabor function e~
t, the result of the integral in Eq. (6.26) depends heavily on the portion of fi(u) and
A (u) near t. Recalling that we have assumed that the instantaneous phase 6 (u) and the
instantaneous complex amplitude Ay, () change gradually over time, approximating 6 (u)

and Ay ,(u) by zero and first order Taylor series expansions around time ¢:

() = 6c(t) + ue(t) (u — 1) (6.27)

may not affect significantly the result of Eq. (6.26). u(t) 2 6, (t) is the instantaneous Fy.

Gs(w,t) can then be written as

 (w—npug(1)?

Go(w, t) = Ty (6.29)

]~
WE
=

o~
Il
-
3
Il
MR

where Ay, (t) = ka(t)ejnek(t)/w /2d.
In the case of discrete-time observations, we shall consider as the problem of interest the

minimization of

/_Z |Gt - Gs(w,t)H2dw, (6.30)
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with respect to

0, = {9k7 {Ak,n}lgnSN} (6.31)

1<k<K
at each discrete time point. The problem can thus be summarized as follows.

We model the acoustic signal by a stationary sinusoidal model

K N
s(t) =) ) Apne?™, t € (—00,00), (6.32)

k=1 n=1
where the Fjy y1z, and the complex amplitude Ay, of the n'™® partial are the unknown param-
eters. These are the free parameters corresponding to the instantaneous features at t = 0,

that one wants to estimate, which we denote for convenience by ©:

© = { {Akn}1con | (6.33)

1<k<K

Letting y(t) be the observed signal of interest, the problem we are solving is to estimate

the instantaneous feature © in y(t) near ¢ = 0. This can be achieved by finding ® that

minimizes
0o K N ( : 2
w—np
©(©) = / Y(w) =D > Agpem a0 || du, (6.34)
- k=1 n=1
where Ay, = ﬁ, d is the time spread parameter of the Gaussian window, and Y (w) the

simplified notation of G (w,0) (we shall emphasize that it is not meant to be the Fourier
transform of y(¢)). From the next section, we will derive the parameter optimization algo-

rithm that finds the maximum likelihood estimate of ©.

6.4 Parameter Optimization Algorithm

6.4.1 Auxiliary Function Method

The parameter optimization algorithm we propose in this chapter is based on a principle
called the auziliary function method, which was inspired by the idea of the EM algorithm.
We first define the auxiliary function and then show the lemma for the iterative algorithm,

the auxiliary function method.

Definition 1 (Auxiliary function). Let ®(®) be the objective function that one wants to
minimize with respect to the parameter @ = (©4,---,0;). We then define (O, m) as the
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auziliary function of ®(O), and m = (mq,--- ,my) as the auziliary parameter if ®*(0©,m)
satisfies
B(©) < 0" (0,m), (6.35)
or
®(©) =min®* (0, m). (6.36)

Lemma 2 (Auxiliary function method). Denoting by ®(©) the objective function, and
by ®1(O,m) the auziliary function of ®(O), then the objective function ®(O) can be de-
creased monotonically by minimizing ®* (0, m) iteratively with respect to m = (my, -+ ,my)

and with respect to ©¢,--- ,0;:

m = argmin ®* (6, m) (6.37)
\V/i, @)1 = argmin (I)+ (@1, te 7(:31'—17 @i, s ,@], m) (638)
O,

If ®(©) is bounded below, then the parameter © converges to a stationary point.

Proof. Suppose we set the parameter to an arbitrary value O, We will prove that d(0)
necessarily decreases after the update Eq. (6.37) and Eq. (6.38). From Eq. (6.37), one
obtains

(0 = o+ (O M), (6.39)
and it is obvious from Eq. (6.38) that
(OO, M) = ot(O,m). (6.40)
By definition, one sees from Eq. (6.35) that
(O, M) = ¢(O). (6.41)
Therefore, we can immediately prove that
3O =700 M) = dt(O,m) = B(O). (6.42)
O

Having in mind applying this method to some optimization problem, it is important to
design an auxiliary function such that the update equations for both the auxiliary parameter
and the model parameters can be obtained analytically. It should be emphasized here that

the EM algorithm can be considered as a special case of this method.
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6.4.2 Inequality for L? norm

One possible auxiliary function of Eq. (6.34) can be made using the inequality for L?

norm suggested for example by Feder et al. [39].

Lemma 3 (Inequality for L? norm). If some complex function m;(z) satisfies

1

vz, Zml(x) = me(m) =1, (6.43)

i=1

then
I

| Hym -3

and the equality holds if and only if

2

dz, (6.44)

dr < Zﬁi | mex)y(x) — i)

s:(z) + Bi (y(x) - i si(x))] . (6.45)

B; 1s an arbitrary constant such that

I
> Gi=1 (6.46)

0<Bi<1, ie{l, - I} (6.47)

Proof. We prove that the minimum of the right-hand side with respect to m;(x) is equal to

the left-hand side using the variational method. Consider here the functional

dz — /_ h Mx) (Z m’(x) — 1) dz  (6.48)

where the second term is the Lagrange multiplier term corresponding to the condition Eq.

1

2S5 [ |mtont) - s

Tm 22 5 )

(6.43). The variation of J[m] with respect to m;(t) is given as

8.Jm] = il /_ Z (85];?]

which should be 0 at the minimum point. In order to let this be identically 0, one must solve

8J[m] _ .
e 0. Hence, setting

> dm;dz, (6.49)

dJm] 1
am* 5,0

(@) (mi(@)y(a) = si(x)) = ) (6.50)
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to 0, one obtains
1
mi(r) = ——= | BiA(x *(x)s;(x) ). 6.51
(x) Hme< (2) + ¥ (2)si(x)) (6.51)
From Eq. (6.43),

Therefore,
2) = [|y(@)]|* — (@) D i) (6.53)

Substituting this result into Eq. (6.51), the extreme value is determined uniquely as:

si(z) + @( i si@ )] (6.54)

=1

m;(z) =

One immediately notices that the sign of equality in Eq. (6.44) holds when m;(x) is given by
this result. Whether this extreme value is the minimum solution or not can be shown easily
by checking that the Hessian of J[m| with respect to m(x), given by d1ag( lly )”2 o IIy(ﬁl)Il2 ),
is obviously positive definite. O]

. (w=npug)® C :
Putting S ,(w) £ Apne” W for simplicity of notation, then by the Lemma 3 and from
Eq. (6.34) we have the following inequality:

B(©) — /_: Y (w) —iiskm(w) dw
< ig ﬂin /:: Hmkﬂn(u))Y(w) - Skm(w)Hde, (6.55)

where G, € (0,1), ka Ben = 1. The sign of the equality holds when

Sk (@) + Bem (Y(@ - > sk,n(m)] : (6.56)

Let ®*(©,m) be the right-hand side of Eq. (6.55). By Definition 1, ®* (@, m) is an auxiliary

Min(w) = ——

function of the objective ®(®), and my ,(w) is an auxiliary parameter, respectively. Eq.
(6.56) corresponds to the update equation for Eq. (6.37) in Lemma 2.
This inequality implies that L? norm of the error between the observed signal and the

sinusoidal model is the lower limit of the weighted sum of L? norm of each error between
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an arbitrarily decomposed component my, ,(w)Y (w) and the single sinusoid S, (w). As the
auxiliary parameter my ,(w) acts as sort of a filter that decomposes the observed signal, we
will henceforth call it a decomposing filter. Eq. (6.56) implies that letting my ,,(w)Y (w) be
the sum of the {k,n}" sinusoid and the portion of the error between the observed signal
and the sinusoidal model is said to be the “optimal” way of separating Y (w).

By Lemma 2, we consider next to minimize ®*(©,m) with respect to ®. As ®*(©,m)

can be written as

(@, m) =
ZZ%/W <|mk7n(w)Y(w)H2+HSk,n(w)H2—2e Ll R A (w )Y*(w)]>dw»

(6.57)

from which we see that the integral of the second term inside the parenthesis can be calculated

straightforwardly using the Gaussian integral:
/ 1S (@) o = v/2rd]| A (6.58)

Hence, this term does not depend on ug. Eq. (6.57) can thus be written as follows:
K N
PY(®m) =vomd 3 Z

+iiﬁm /_Oo <||mk,n<w)Y(w)H?—2e—(°’ ' Re| A my, (w )Y*(w)])dw. (6.59)

k=1 n=1

2

One notices from Eq. (6.59) that one still cannot obtain analytically the update equation
for pp because py appears inside the exponential. In the next subsection, we will derive
another auxiliary function that enables the analytical expression of the update equation for

11k, using the property of exponential function.

6.4.3 Theorem on Differentiable Concave Functions

Not being able to obtain analytically the update equation for yu; is because of the nonlinear
part exp(— %) in Eq. (6.59). To further derive another auxiliary function such that
the update equation for yu; can be obtained analytically, we focused on two points: —e™
is a continuously differentiable concave function, and we have the following theorem about

continuously differentiable concave function.
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Lemma 4 (Inequality on differentiable concave functions). Let f(z) be a real function

of x that is continuously differentiable and concave. Then, for any point a € R,

f(@) = fle) + (. — o) f'(a), (6.60)
where f'(a) = di(z)

dz lz=a’

Proof. By definition, for any two points z,« € R and for any real number « € (0, 1), if

faz+ (1= 9)a) 2 /(@) + (1 =/ (a), (6.61)
then f(x) is said to be a concave function. This inequality can be rewritten as

f(he+ (1 =)a) = f()
Y

2 f(z) = f(a). (6.62)
Since vz + (1 — y)a = a + y(x — a),

fa+v(e—a) - f(@)
(o - )= 2 f(x) - f(@) (6.63)

As f(z) is assumed to be differentiable, when v — 0,
fla+r@=—a)) = f(@)
lim = (). (6.64)

=0 y(zr — «)

Substituting this expression into Eq. (6.63), one obtains

(r —a)f'(a) 2 f(z) = f(a). (6.65)

Since —e™” is a differentiable concave function, using Lemma 4 we have

—e " S —e 4 (z—a)e (6.66)
for any point a € R. Replacing z with e £ and o with a real function apn(w), then
—n 2 —_ 2
o e (B ) e, oo

From Eq. (6.59) and Eq. (6.67),
K N

2
{ VP S—— (% _ @hn(w)) }] dw. (6.68)

2

(O, m) §\/27rd

S5

k=1

—_

Y

K

5 T Yin()]* + 2Re A ()Y ()]
1

3
Il
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Denoting by &)Jr(@,m,a) the right-hand side of this inequation, 5+(®,m,a) can also be

considered as an auxiliary function of ®(®) because

®(0) < dH(O,m) < OT(O,m, ). (6.69)
In such case, both my ,(w) and oy ,(w) are the corresponding auxiliary parameters. Equality
®(©) = (O, m, a) holds if and only if my,,(w) is given by Eq. (6.56) and o, (w) by

nlis) = ) (6.70

6.4.4 Update Equations for Sinusoidal Parameters

There are two advantages worth mentioning of deriving this auxiliary function. One is
that this enables the analytical expression of the update equation for the Fj parameter puy,
allowing a complex-spectrum-domain EM-like multipitch estimation.

Setting to 0 the partial derivative of (5*(@, m, o) with respect to pu:

&’)+ N 1 o) — —
0 (@, m, Oé) _ Z / e_o‘k*”(w)Re [Ak,nmz,n(w)Y* (w)} de’ (6_71)

a:uk n—1 ﬁk,n d
if
N 2 fo%)
> / e~ mn@Re | Ay i, (@)Y ()] dw £ (6.72)
n=1 kn J—oo

then one obtains

/ —ekn(@Re [Ak,nmz,n (W)Y*(W)} wdw
N _ (6.73)

Z ﬁk / —akn(WRe [Ak,nm]:,n (W)Y* (wﬂ dw

Secondly, the so far constant d can be regarded as a free variable d,, for each £, n sinusoidal

\\Mz

component and its update equation can be derived analytically. The ML estimate of dj,
itself is not important to us as its true value is already known, but by updating dj ,, in parallel
to the other parameters, we expect dj,, to play a similar role to the variance parameter in
GMM, which often helps other parameters getting out of local optima during the parameter
learning. The update equation for dy,, is given as

2/3
[2 emorn@Re [Akmmz’n(w)Y*(w)} (w— nuk)de

din = 6.74
’“’ arlAu? o
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Figure 6.1 An illustration of the proposed parameter optimization algorithm
We should mention also that the update equation for Ay, can be derived analytically.

Setting to 0 the partial derivative of 5*(@, m, ) with respect to A

9Pt (@,m)  V2rdAy,
aAz,n ﬂk,n

ﬁk,n —00

one immediately obtains

@) pre()y (@)do. (6:70)

1 o
A = / { — el
" V2rd J -

The amplitude and the starting phase of the each sinusoidal component can be expressed

‘Ak7n| and @y, = arg(Ak,n), respectively.

using Ay, as ayn,

6.4.5 Overview of the Algorithm
We summarize here the global structure of the algorithm for the optimization of the

sinusoidal signal model parameters. The transitions between the objective functions of each
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step of the iteration are represented in Fig. 6.1.

Step 0 Initial setting of {1, { Akn}r1<n<n fr<r<k-
Step 1 Update my, ,(w) through Eq. (6.56).
Step 2 Update e~ (@) through Eq. (6.70).
Step 3 Update Ay, through Eq. (6.76)

Step 4 Update puy through Eq. (6.73) and go back to Step 1.

6.5 Experimental Evaluation

6.5.1 Convergence Properties of the Algorithm

The goal of this subsection is to compare the dependency on the initial parameter and the
convergence speed of the gradient search method and the proposed method. The gradient
search method-based parameter estimation method we use here as a comparison (hereafter
simply called gradient method) is based on the Jinachitra’s method [57] and composed of
three steps, the update of my,(w) through Eq. (6.37), the update of Ay, through Eq.
(6.76) and the decrease through steepest descent update of u; through Eq. (6.59). From
the comparison of this method to the proposed method, we show the effectiveness of the
pitch frequency estimation method proposed in this chapter in terms of ability to avoid local
solutions.

In this comparative experiment, a signal which parameters are already known (synthetic
signal) is analyzed. Specifically, two periodic signals (with pitch frequencies 207Hz and
200Hz) composed of 10 harmonic components, with each component’s amplitude and phase
determined by random generation, were added together to create a mixed signal. The interval
of definition for the random generation of the amplitude and phase of the n-th harmonic
component were respectively [%, %) and [0,27). In the sinusoidal signal model, we set K = 2
and N = 10. A Gabor transform with diffusion parameter d = 0.067 was performed on
this synthetic signal (16kHz sampling frequency) to obtain the short-time complex spectrum
Y (w).

The courses of the update of the pitch frequencies py, ps as they are updated at each step
through the proposed method and the gradient method, starting from various initial param-

eter conditions, are shown in Fig. 6.2 and Fig. 6.3 (the update pattern of the parameters
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Figure 6.2 Course of the pitch frequency update for the proposed method

except the pitch frequencies is omitted). The transitions of the update values of py and ps
corresponding to the same iterative computation are shown in each figure respectively in
the upper and lower part with the same color and same line type. The initial value for the
amplitude Ay, was set to 0.

One sees from Fig. 6.2 and Fig. 6.3 that the gradient method often gets trapped into
stationary points different from the true values for initial values of pq, s which are not
sufficiently close to the true values (270Hz0 270Hz), while the proposed method converges
quickly from any initial points in a large interval to the true values. The result of this
simulation is one illustration of the fact that the proposed method outperforms the previous
works using gradient methods in terms of ability to avoid local solutions and convergence

speed.

6.5.2 1ch Blind Source Separation of Concurrent Speech

Next, we confirm here the basic performance of our method for 1ch blind source separation.

We use the ATR B-set speech database to build the mixed signals by adding together the
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Figure 6.3 Course of the pitch frequency update for the steepest descent method

waveforms of utterances from two male speakers, two female speakers, or a male speaker and
a female speaker.

For all the speech data the sampling rate was 16kHz, and the frequency analysis was done
using a Gabor transform with a frame interval of 10ms. As in the preceding subsection,
the diffusion parameter was set to 0.067. The number of harmonic components N of each
harmonic signal of the sinusoidal signal model was set to 30.

The overview of the algorithm used here is as follows: starting from a sinusoidal signal
model with an initial number K of harmonic signals equal to 10, in the process of the iterative
estimation of the parameters, if the pitch frequency parameters of several harmonic signal
models (1) come closer than a fixed value or (2) see their ratio become almost integer, the
harmonic signal with the lowest pitch frequency only is kept and the other discarded. After
convergence, the two harmonic signals with the largest total power are kept and parameter
estimation is performed once again. The two harmonic signals thus obtained eventually are
the separated signals. The initial values for u; are obtained by finding all the frequencies
giving a minimum or a maximum of the real part or the imaginary part of the complex

spectrum of the observed mixed signal, and selecting the 10 frequencies which correspond
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to the largest power. The procedure described above estimates the separated signals on
each short-time window (frame), but we do not determine here to which source the signal
separated at each frame correspond. In this experiment, in order to check the basic source
separation performance in the situation where this source determination would be dealt with,
we determine to which source the separated signals correspond by looking at their proximity
to each signal prior to the mixing.

Under the above conditions, an example of actual results of the separation of the mixed
signal shown in Fig. 6.4 is shown in Fig. 6.5. After separation performed on the mixed signal
of the male speaker A and the female speaker B (with a SNR of -0.3dB seen from the male
speaker A), the SNRs for the speakers were respectively 7.2dB and 6.4dB (improvement of
7.5dB and 6.1dB), after separation performed on the mixed signal of the female speaker A
and the female speaker B (with a SNR of 1.5dB seen from the female speaker A), the SNRs
for the speakers were respectively 6.0dB and 4.8dB (improvement of 4.5dB and 6.3dB), after
separation performed on the mixed signal of the male speaker A and the male speaker B
(with a SNR of -0.3dB seen from the male speaker A), the SNRs for the speakers were
respectively 4.8dB and 4.3dB (improvement of 5.1dB and 4.0dB). As in our method the
difference between the pitch frequencies of the two speakers is clue for the source separation,
the fact that the separation accuracy on mixed signal with speakers of the same gender is
slightly lower than the accuracy on mixed signals with speakers of different gender is a result
which corresponds to what we expected.

As the method presented in this chapter estimates the parameter independently for each
frame, it happens quite often that the phase change of the separated signals is not continuous
or the amplitude of varies abruptly. In the future, if a coordinated parameter estimation
accross several adjacent frames could be performed, we shall expect a substantial reduction

of the musical noise and an improvement of the SNR.

6.6 Summary of Chapter 6

In this chapter, focusing on the fact that the essential difficulty of the single tone frequency
estimation or the fundamental frequency estimation, which are at the core of the parameter
estimation problem for the sinusoidal signal model, comes from the non-linearity of the
sinusoidal signal model in the frequency parameter, we introduced a new iterative estimation

algorithm using an auxiliary function. Contrary to the power spectrum domain multi-pitch
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Figure 6.4 Utterance by a female speaker (a), a male speaker (b) and their mized signal (c).

analysis methods discussed in the preceding chapters, this method does not assume that
there is no interference between the components of different sources of between the harmonic
components of a same source, and could become, depending on the accuracy of the parameter
estimation, a very accurate method for the separation of frequency components which are
close to each other.

In the present implementation, we derived the update equation of the fundamental fre-
quency by transfering the objective function to the STFT domain, using the fact that through
Parseval equality the L? norm of the error defined in the time domain is equal to the L? norm
of the error in the STFT domain. From the analogy with the performance of the multipitch
analysis methods in the power spectrum domain presented in the preceding chapters, one can
think that it is highly probable that a higher performance could be obtained by performing
the parameter update in the time-frequency domain obtained through constant Q filterbank.
We thus plan to concentrate heavily in the future on investigating the possibility to obtain a
formulation for which convergence is guaranteed and to derive parameter update equations

in this domain.
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Figure 6.5 Separated signals corresponding to the female and the male speaker.



Chapter 7

Conclusion

The objective of this paper was to propose a unified methodological framework, in which
one can handle (1) source separation, (2) multipitch estimation, (3) estimation of the number
of sources, (4) estimation of the continuous temporal trajectories of Fys and amplitudes, and
(5) spectral envelope estimation, at the same time.

We introduced in Chapter 2 a method called “Harmonic Clustering”. The method searches
for the optimal spectral masking function and the optimal Fj estimate for each source by
performing the source separation step and the Fy estimation step iteratively. In Chapter 3,
we generalized the Harmonic Clustering method and then reformulated it from a Bayesian
point of view. This Bayesian reformulation enabled us to derive a model selection criterion,
that leaded to estimating the number of sources. We confirmed through experiments the
effectiveness of the two techniques introduced in Chapter 3: multiple Fj estimation and
source number estimation.

In Chapter 4, based on Bregman’s grouping cues, we proposed a new methodology to
estimate simultaneously the spectral structure of each source on the whole time-frequency
domain, which we called the “Harmonic-Temporal Clustering (HTC)”. Through experimen-
tal evaluations on the Fj estimation of mixed speech signals and music signals, we showed
that our method’s accuracy outperforms the previous state-of-the-art methods of each of
these areas.

As Fj estimation and spectral envelope estimation could be considered as “chicken and
egg” problems, we formulated in Chapter 5 the estimation of Fj and the spectral envelope
as a joint optimization of a compound model of the spectral envelope and the fine structure.

We found through experiments a significant advantage of jointly estimating Fy and spectral

113
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envelope in both Fj estimation and spectral envelope estimation.

Taking into account the fact that it becomes usually difficult to estimate Fys or to sepa-
rate frequency components that are close to each other only based on the power spectrum,
we considered that not only the harmonic structure but also the phase difference of each
signal could be an important cue for separation. The main topic of Chapter 6 was the
development of a non-linear optimization algorithm to obtain the maximum likelihood pa-
rameter of the sinusoidal signal model. We introduced a new iterative estimation algorithm
using an auxiliary function, eventually allowing a complex-spectrum-domain EM-like multi-
pitch estimation, which was inspired by the idea of the EM algorithm. Through simulation
experiments, we showed that this parameter optimization algorithm outperformed existing
gradient descent-based methods in the ability to avoid local solutions and the convergence
speed. We also confirmed the basic performance of our method through 1ch speech separa-

tion experiments on real speech signal.
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