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Abstract—This paper proposes a multipitch analyzer called the
harmonic temporal structured clustering (HTC) method, that
jointly estimates pitch, intensity, onset, duration, etc., of each
underlying source in a multipitch audio signal. HTC decomposes
the energy patterns diffused in time-frequency space, i.e., the
power spectrum time series, into distinct clusters such that each
has originated from a single source. The problem is equivalent to
approximating the observed power spectrum time series by su-
perimposed HTC source models, whose parameters are associated
with the acoustic features that we wish to extract. The update
equations of the HTC are explicitly derived by formulating the
HTC source model with a Gaussian kernel representation. We
verified through experiments the potential of the HTC method.

Index Terms—Computational acoustic scene analysis, harmonic
temporal structured clustering (HTC), multipitch analyzer.

I. INTRODUCTION

WE HAVE been working on a new method for compu-
tational acoustic scene analysis having in mind, for

example, a music content description system, a new equalizer
system enabling volume and bass/treble controls for each
separate sound source, a music information retrieval (MIR)
system, and a precise acoustic environment [background music
(BGM), phone ringing, interfering speech, etc.] detector for
a wide range of speech applications. This paper describes a
new multipitch analyzer that jointly estimate acoustic features
such as pitch, onset, duration, energy, spectral, and temporal
envelopes of each underlying source in a multipitch acoustic
signal.

While the standard level of the numerous conventional mul-
tipitch analyzers has been considered to be far from practical
use, recent pioneering ideas, e.g., graphical model-based [1],
filterbank-based [2], nonparametric Kalman filtering-based
[3], [4], multiagent-based [5], cochlear filtering-based [6], and
parametric signal and spectrum modelings-based approaches
[7]–[11] have brought remarkable progress to the practical
step. Most of these methods take two major steps to resolve
the problem: they start with a separation or a pitch feature
extraction of concurrent sources at each short-time segment
(frame) and then find the most likely overall pitch trajectories
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Fig. 1. Wavelet spectrogram of real performed music signal ranging from T

to T in time direction and from X to X in frequency direction.

along time. In auditory scene analysis (ASA), these two pro-
cesses in human audition are generally called “segregation”
and “integration,” respectively.

It is quite obvious that the more accurate the segregation
process, the more reliable the result of the integration process.
On the other hand, we hope to know, if possible, the pitches
and the spectral component powers at preceding and succeeding
frames to estimate a high-precision result of the segregation
process at the current frame assuming they change gradually
over time. Therefore, these two processes should be done es-
sentially in a cooperative way and not independently with suc-
cessive estimations for even more reliable results. This belief
has led us to formulate a unified estimation framework for the
two-dimensional structure of time-frequency power spectra, in
contrast to the conventional strategy. The method that is pre-
sented in this article formulates the problem as a localization and
shape detection of distinct spectrogram portions in the acoustic
scene (time-frequency space), which essentially amounts to the
estimation of pitch contour, onset, duration, and timbre feature
of each sound source.

II. FORMULATION

Consider an observed power spectrum time series
(see Fig. 1), where and are log-frequency and time, defined
on a domain of definition

(1)

The problem of interest is to decompose this observed pattern
into sequential spectral streams, i.e., clusters, each of which
is assumed to have originated from a single distinct source ac-
tivation. This problem is an unsupervised categorization of the
energy density at each coordinate .
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Fig. 2. Profile of the kth HTC source model q (x; t;���) ((19)).

The observed energy density at each coordinate
has not necessarily originated from a single component

in a single source but is in the general case rather a mixture
of the energy patterns generated from other components or
different sources. Thus, it is natural to assume that the energy
density has an unknown fuzzy membership to the th
source, introduced as a spectral masking function .
Approximately assuming that observed power spectral densities
are the sum of the independent power densities generated from
underlying sources, which is true in the expectation sense (if we
assume the phase of every component is uniformly random),

must satisfy

(2)

Therefore, denotes the decomposed spectral
density of the th source, which we will refer to as the th
cluster. We may wish to decompose such that all
clusters are temporally continuous and also have a harmonic
structure, if we assume all sources are periodic signals and
their components evolve gradually over time. Let us define
here , governed by parameter vector , that charac-
terizes the typical spectrogram of a single source (a graphical
representation can be seen in Fig. 2). Note that the class of the
sources mentioned here, in general, includes not only periodic
signals but also nonperiodic signals such as white/pink noises,
drum sounds or any others, as far as those spectrograms can
be modeled with a suitable expression. Using , we
are now able to assess a “goodness” of the partitioned cluster

with the Kullback–Leibler (KL) divergence
of and

(3)

with

(4)

The condition given as (4) makes the distortion measure (3) non-
negative. In the case of discrete-time observations, the distortion
measure is still given by (3) where the integral is replaced by the
sum over all discrete points of and . Now one notices that as

and become closer, (3) approaches
zero. Hence, one can choose as the global cost function of the

clustering to minimize w.r.t. and , the sum over of
the above measure

(5)
The unknown variables being and , the optimization we

are solving is summarized as

(6)

In order to find the optimal and , we shall find it most con-
venient to recursively optimize and while keeping the other
variable fixed as there is no analytical solution to (6). As each
iteration necessarily decreases , which is bounded below,
and gradually converge to a stationary point. Note, however,
that with this procedure and do not always converge to a
global optimum but possibly to a local optimum.

The optimal when is fixed can be obtained by finding
the extreme value of

(7)

where is a Lagrange undetermined multiplier. The partial
derivative of the integrand w.r.t. is thus given as

(8)

Setting it to zero, one obtains

(9)

From (2) and (9), we have

(10)

Substituting (10) in (9), one finally obtains the optimal spectral
masking function for a fixed as

(11)

Substituting (11) in (5), it becomes clear that during this clus-
tering we are also iteratively decreasing the KL divergence be-
tween the whole observed spectrogram and the sum of

over

(12)

Therefore, this clustering is understood as a geometric op-
timal approximation of using the model .
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Note that this result proves without using Bayes rules the con-
vergence of the expectation-maximization (EM) algorithm, as
one regards as missing data and as a complete
data pdf . The correspondence to the EM algorithm
becomes much clearer by comparing the result of (11) and the
terms in that depends on

(13)

with the function, given by

This discussion implies that practically the same procedure
as the EM algorithm can be used even though and

are not pdf’s.
With fixed membership degree updated by the

E-step (11), the parameter , on the other hand, should be
updated by the M-step

(14)

depending on the specific form of . The update equa-
tion for will be given in Section V after is intro-
duced. We will call this approach “harmonic temporal structured
clustering (HTC)” in the particular case where is as-
sumed to have a harmonic structure.

The HTC procedure is summarized as follows. The input
to the system is an observed (known) signal, characterized by
its spectrogram , where and are log-frequency and
time. The membership degree of th source/stream is
unknown (spectral masking function). On the other hand, the
spectrogram of the th source can be modeled by a function

, where is the set of model parameters. These
are the unknown variables that we want to estimate. The HTC
method works by iteratively updating the estimates of: 1)

with fixed by (11) and 2) with fixed.

III. HTC MODEL

A. Model Representation

In this section, we will introduce the HTC source model
. Let us assume through the rest of this paper that all

sources are periodic signals having smooth power envelopes.
Supposing the pitch contour during a single source activation is
expressed with a polynomial (imagine vibrato or glissando)

(15)

a cutting plane of at particular time represents a
harmonic structure of pitch frequency (see Fig. 3).

Fig. 3. Cutting plane of q (x; t;���) at time t.

Given the pitch contour in th HTC source model, the
contour of the th partial is . Now let the fre-
quency spread of each harmonic component be approximated by
a Gaussian distribution function when the spectra are obtained
by1 the wavelet transform (constant transform) using Gabor-
wavelet basis function. The accuracy of this approximation is
investigated through a numerical computation in Appendix I.
Denoting by the power envelope of the th partial (pre-
sumed to be a function that is normalizable since has
to satisfy (4)), such that

(16)

then the normalized energy density of the th partial in the th
HTC source model is given as a multiplication of and a
Gaussian distribution centered at

(17)
where denotes the frequency spread of every partial, and
is the relative energy of the th partial, satisfying

(18)

Therefore, the power density of the th HTC source model
as a whole (see Fig. 2) can be written as

(19)
where indicates the total energy of the th source. The sum
of a number of the HTC source models is
supposed to be a model for the observed overall spectrogram

.
Let us now discuss how we should model the power enve-

lope function . In the general case where one does not
know in advance what the sources are, it is perhaps wise not to
use a physically oriented model for based only upon a
particular sound production mechanism. It is thus important to
introduce for as generic a model as possible.

What we hope to choose for is a function that is
temporally continuous, nonnegative, having a time spread from

1Having music applications in mind, since usually the musical notes are
equally spaced on a log-frequency scale, there is a need to use a transform
that has a variable window length characteristic. In particular, it is difficult
to distinguish the sources of lower notes with short-time Fourier transform
spectra, for example, that has a fixed window length across all frequencies. This
is one of the reasons we chose to use wavelet transform as a front-end for HTC.
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Fig. 4. Power envelope function U (t) [(20)].

minus to plus infinity (assuming the Gabor-wavelet basis as the
mother wavelet) and adaptable to various curves. Furthermore,
it should satisfy (16). We came up with a function satisfying all
these requirements, given as

(20)

is the center of the forefront Gaussian, that could be consid-
ered as an onset time estimate, the weight parameter for
each kernel, that allows the function to have variable shapes. To
satisfy (16), must only be normalized to unity

(21)

The particularity of this function is that the centers of the
Gaussian function kernels are spaced by a distance proportional
to the common diffusion parameter with a proportion-
ality coefficient , which we henceforth set to 1 (see Fig. 4).
This tying ensures the smoothness of the curve by preventing
adjacent kernels to be separated from each other. also
works as a parameter to make a linear stretch of in
the time direction allowing to express various durations of
sources. Moreover, by forbidding switches in the position of
the kernels, it reduces the singularity of the system, improving
the optimization perspectives.

All the parameters of the HTC model are listed in Table I.

B. Subclustering

While the representation of , the HTC source
model, has been introduced, we are not yet able to obtain the
analytical solution for (14) for each parameter in . However,
as the HTC source model is specified as the sum of the sub-
source model

(22)

where

(23)

the problem could be equivalently simplified by further breaking
each cluster down into -labeled subclusters, associated
with the subsource model .

Introducing now another masking function that
decomposes the th partitioned cluster into the

th subcluster and satisfies for all and

we have the Jensen’s inequality for all , as shown in (24) at the
bottom of the page, and equality holds when

(25)

The proof is omitted since it can be easily obtained by following
the same way as in Section II. This means that if and only if

is given by (25), is minimized to
the global cost function . One notices that obtaining
parameter update equations through seems much easier than
(14) since the summation over , , and no longer appears
inside the logarithm function. After making with the
update of by (25), one can indirectly decrease the
objective function by decreasing through an update of .
This is because is always guaranteed by the inequation (24) to
be even smaller than . Decreasing w.r.t. can be done
by increasing (26), as shown at the bottom of the next page.

The HTC procedure in the particular case where the HTC
source model is given by (22) is again summarized as follows.
The masking function , among the total en-
ergy density for each subcluster is unknown. On the
other hand, the HTC subsource model for the subcluster energy
density is , where is the set of model parame-
ters (pitch, spectral envelope, temporal envelope, intensity, har-
monicity, cf. Table I). The HTC works by iteratively updating
the estimates of

1) (E-step) by

(27)

2) (M-step) using .

(24)
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TABLE I
PARAMETERS OF THE HTC SOURCE MODEL

With this procedure, converges to a stationary point as well as
with the procedure described in Section III.

The philosophy we adopt in the HTC is to approximate a
source spectrogram in a real environment as closely as possible
by a mathematically simple and compact model characterized
by meaningful parameters rather than to try to make a perfect fit
by an extremely complex model whose parameters are no longer
meaningful.

IV. EXTENSION TO MAP AND THE USE OF PRIORS

Keeping only the terms depending on in (12) and taking the
opposite, one defines the following function to maximize w.r.t.

:

(28)

Using this function and letting be

(29)

one can derive the likelihood of the parameter

(30)

where Dirac delta ensures that the density is zero if

(31)

The parameter given by

(32)

ensures that we obtain a probability measure where is the
Gamma function. One can indeed see this probability as the
joint probability of all the variables following a multi-

nomial-like distribution of parameter . This way
of presenting the problem such that

(33)

enables us to extend it as a maximum a posteriori (MAP) esti-
mation problem and to introduce prior distributions on the pa-
rameters as follows, using Bayes theorem

(34)

This optimization can be performed by iteratively updating
by (27) and using .

Prior distribution works as a penalty function that tries to keep
the parameters within a specified range. By introducing such a
prior distribution on , it becomes possible to prevent subhar-
monic (half-pitch) errors, as the resulting source model would
usually have a harmonic structure with zero power for all the odd
order harmonics, which is abnormal for speech and for many
instruments. A prior distribution on , on the other hand,
helps to avoid overfitting many source models to the observed
power envelope of a single source, as the resulting individual
source models in this case would often have abnormal power
envelopes.

For this purpose, we apply the Dirichlet distribution as the
prior distribution, which is explicitly given by

(35)

(36)

(26)
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Fig. 5. Three-dimensional and top views of the observed power spectrum time series (top and bottom left) and the optimized HTC source models (top and bottom
right).

where and are the most preferred “expected” values of
and such that and , , and

regulate the strength of the priors. When and are zero,
and become uniform distributions. The max-

imum value for and are taken respectively when
and for all and if and .

The choice of this particular distribution allows us to give an
analytical form of the update equations of and . The
joint prior distribution is now given by

(37)

Denoting by , and the Lagrange multipliers for ,
and , respectively, the update equation of (M-step)

that is guaranteed to increase can be derived by

finding the extreme value of (38), as shown at the bottom of the
page.

V. PARAMETER UPDATE EQUATIONS

Having music applications in mind, let us assume here that
all pitch contours are zero-order polynomials: and
each partial stream in the HTC source model has the same power
envelope (only a single power envelope function is assumed in
the HTC source model): , for the purpose of re-
ducing the dimensionality of the features to extract. From (23),
logarithmic subsource model is given by

(39)

(38)
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Fig. 6. Estimates of� , � ,Y � (top), and the reference MIDI data displayed
in piano-roll form (bottom).

Setting to zero the partial derivative of (38), the update equation
of each parameter at M-step of the th iteration is derived as
follows (see appendix for its derivation):

(40)

(41)

(42)

(43)

(44)

(45)

(46)

where denotes the subcluster densities

The superscript refers to the iteration cycle. Note that the
update equations of the higher order coefficients
of the pitch trajectory model can all be derived as well as ,
if necessary.

Note, however, that the update (40)–(46) do not ensure the
maximization in the M-step but guarantee the increase of

. This way of performing the updates is referred to as

Fig. 7. Accuracy �=! � 100 (percent) of the result for each time spread pa-
rameter d ranging from 1 to 40 when ! is set to 2� � 100 (top) and 2� � 800
(bottom) rad/s.

the coordinate descent method [12] and the corresponding opti-
mization procedure is called the expectation-constrained maxi-
mization (ECM) algorithm [13].

VI. RELATION WITH PREFEST [10] AND

OUR PREVIOUS WORK [11]

A cutting plane of the HTC source model at a particular time
gives a similar representation to the harmonic structure model
introduced by Goto in [10] and followed independently by our
previous work described in [11]. Goto used a tone model, a har-
monic structure model represented by a Gaussian mixture, and
tried to model an observed short-time power spectrum by the
mixture of a large enough number of the tone models densely
spaced by a fixed interval. He then used the EM algorithm frame
by frame for estimating the MAP mixture weights of the tone
models to measure pitch likelihoods from an observed power
spectrum. In our previous work described in [11], on the other
hand, we started with a formulation based on the clustering
principle using a harmonic structured Gaussian mixture cluster
model in order to try to directly estimate each mean parameter,
the pitch estimate itself. The source spectrogram model intro-
duced in the HTC method designs the overall smooth temporal
evolution of the spectral structure model introduced by us and
Goto.

VII. EXPERIMENTAL EVALUATION

A. Conditions

To verify the performance of the HTC method, we evaluated
pitch estimation accuracies with a set of real performed music
signals excerpted from the RWC music database [14]. The first
23 s of each music signal data were used for the evaluation.
We implemented a GUI editor to create a ground truth data
set of pitch sequences (a screenshot of the GUI editor can be
seen in Fig. 9). Since the RWC database also includes a sup-
plement MIDI file associated with each real-performed music
signal data, we created each ground truth data set with the GUI
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Fig. 8. Graphical representations of (62) with d = 10 (top) and d = 40

(bottom) when ! is set to 2� � 100 rad/s together with the fitted Gaussians.

Fig. 9. Screenshot of the GUI editor we implemented to create the ground truth
data set of note pitches, onsets, and durations. The note events of the supplement
MIDI data included in the RWC database, which are not temporally aligned with
the corresponding real performed signal data, are displayed as rectangular ob-
jects over the spectrogram of the real performed signal. We are then able to edit
the rectangular objects to align carefully the onset and offset times according to
the background spectrogram.

by adjusting the onset and offset times of each MIDI file with
a spectrogram image for a background. The list of the exper-
imental data sets and the time average of the number of con-
current sources, the total number of the frames for all pitches
divided by the number of the frames, are shown in Table II.

The Power spectrum time series was analyzed by the wavelet
transform (constant analysis) using Gabor-wavelet basis
functions with a time resolution of 16 ms for the lowest
frequency subband on an input signal digitalized at a 16-kHz
sampling rate. To speed up the computation time, we set the time
resolution across all the subbands equally to 16 ms. The lower
bound of the frequency range and the frequency resolution were
60 Hz and 12 cents (where 12 cents amount to one octave),
respectively. The initial parameters of
for the HTC source models were automatically determined by
picking the 60 largest peaks in the observed spectrogram of 400
consecutive frames (6.4 s). After the parameters converged, the
source model, whose energy per unit time given by
was smaller than a threshold, was considered to be silent. The
experimental conditions are shown in detail in Table III.

We chose2 “PreFEst” [10] for comparison, as it is one of
the most frequently cited works dedicated to multipitch anal-
ysis. Since PreFEst extracts only the most dominant pitch tra-
jectory and does not include a specific procedure of estimating
the number of sources, we included intensity thresholding as
well for the pitch candidate truncation.

As the HTC method generates pitch, onset time and offset
time with continuous values, we quantize them to the closest
note and the closest frame number in order to match with the
format of the reference. Using the hand-labeled ground truth
data as references, pitch accuracies were computed by

where

number of the total frames of the voiced part;

number of deletion errors;

number of insertion errors;

number of substitution errors.

B. Results

A typical example of the pitch, onset, and offset estimates
on a particular test data is shown in Fig. 6 together with the
hand-labeled ground truth data. The optimized model and the
observed power spectrum time series are shown with 3-D and
grayscale displays in Fig. 5.

To validate the performance of the proposed method, we com-
pared the highest accuracy of the HTC method with that of the
PreFEst among all the thresholds that were tested, which also
shows the limit of the potential capability. The highest accura-
cies of PreFEst and HTC among all the thresholds we tested are
shown in Table IV together with the number of insertion, dele-
tion, and substitution errors, respectively. Comparing these ac-
curacies between PreFEst and HTC, HTC outperforms PreFEst
for most of the data, which verifies its potential.

The workstation used to perform the experiments had a Pen-
tium IV processor with 3.2-GHz clock speed and 2-GB memory.
With our implementation with the conditions listed in Table III,

2Note that we implemented for the evaluation only the module called
“PreFEst-core,” a frame-wise pitch likelihood estimation, and not included the
one called “PreFEst-back-end,” a multiagent-based pitch tracking algorithm.
Refer to [10] for their details.
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TABLE II
LIST OF THE EXPERIMENTAL DATA EXCERPTED FROM RWC MUSIC DATABASE.[14]

TABLE III
EXPERIMENTAL CONDITIONS

the computational time for analyzing an acoustic signal of 25.6-s
length was about 2 min. In most cases, the parameters of the
HTC source models converged within less than 100 iteration
cycles.

We also compared the HTC performances with different con-
ditions: the time range of an analyzing spectrogram segment of
100, 200, and 400 frames, and the number of the HTC source
models of 15, 30, and 60, respectively. Comparative results are
shown in Table V. From the results, one can see that the larger
the time range of a spectrogram segment, the higher the accura-
cies. This shows that the domain of definition of should be as
large as possible for a higher performance of the HTC.

VIII. DISCUSSION OF THE POTENTIAL APPLICATIONS

A. Sound Source Segregation

It should be emphasized that the HTC method can also be
used to extract a portion of the power spectrum time series as-
sociated with a single source by

(47)

where is the optimized model parameter vector. Using a de-
coding technique (such as the inverse wavelet transform, phase
vocoder, etc.) to reconstruct acoustic signals from the power
spectrum time series, the HTC also enables the separation of
sources.

B. Audio Coding

Since must be a good approximation to the
observed power spectrum time series where is the optimal
model parameter vector, the residual power spectrum

(48)

may be effectively compressed by the well-known Huffman en-
coding. As the original power spectrum can be restored with the
residual and the optimized parameter vector, our method is thus
also expected to be used as an effective audio coding application
if acoustic signals can be intelligibly reconstructed from power
spectra. However, its effectiveness over traditional lossless and
lossy coding techniques will need to be evaluated in future in-
vestigations.

IX. CONCLUSION

We established a new framework for multipitch anal-
ysis based upon two-dimensional geometric modeling and
estimation of the distinct spectral streams localized in the
time-frequency space, the acoustic scene, and investigated
through experiments its effectiveness over the conventional
method, PreFEst.

The method described in this paper still has many interesting
issues to consider, e.g., estimation of the number of note events
without relying on heuristic thresholding, further precise mod-
eling of pitch contour, and the inharmonicity factor parameter
and a further investigation on its application.

APPENDIX I
JUSTIFICATION FOR THE ASSUMPTION OF THE FREQUENCY

SPREAD BEING A GAUSSIAN DISTRIBUTION

Denoting by and a given signal and its Fourier
transform, we define the Fourier transform pair as follows:

(49)

(50)

Denoting by the wavelet basis function

(51)

where is the analyzing wavelet. and refer to the scale
and shift parameters, which have the dimensions of period and
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TABLE IV
ACCURACIES OF THE PREFEST [10] AND THE HTC

TABLE V
COMPARISON OF THE HTC PERFORMANCES WITH DIFFERENT RANGES OF A SPECTROGRAM SEGMENT AND THE NUMBER OF SOURCE MODELS

time, respectively. Based on the above definitions and the gen-
eralized Parseval’s theorem, the continuous wavelet transform
is defined in the frequency domain as an inner product between

and , the Fourier transform of

(52)

Denoting by the Fourier transform of such that

(53)

then the wavelet transform amounts to an inverse Fourier trans-
form of the subband-filtered spectrum

(54)

Let us now consider the very simple case where is a sinu-
soidal wave and see how the frequency spread at a certain time
slice of the wavelet scalogram is given by. Letting be an
analytic signal with an angular frequency of and with an am-
plitude of

(55)

its Fourier transform is then given by

(56)

where denotes the Dirac delta function. Substituting (56)
into (54), one immediately obtains

(57)

Its power is thus given by

(58)

from which we obviously see that does not depend
on and is thus uniform over time.

Now, if we choose for a Gabor function of frequency 1
rad/s with time spread

(59)

is then a Gaussian function centered at 1 rad/s

(60)

is thus a Gaussian subband filter with center fre-
quency of rad s. Substituting (60) into (58), the power den-
sity in the period domain is given explicitly as

(61)

The density in the log-frequency domain such that
at a particular time slice of is thus given

as

(62)

which is obviously not a Gaussian distribution function.
In order to justify the assumption made in the HTC source

model (Section III) that the frequency spread of the wavelet
power spectra is close to a Gaussian distribution, we will now
investigate through a numerical computation how much the
mean parameter of the Gaussian distribution that best approx-
imates the above function with regard to the KL-divergence
criterion deviates from the true frequency . Denoting by
the Gaussian distribution model of the mean parameter

(63)
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the KL divergence between and is defined as

(64)

with

(65)

The optimal , that is supposed to be here the estimate of , can
thus be computed by finding the extreme value of . Setting to
zero the partial derivative of with respect to , which is given
as

(66)

one obtains

(67)

Since it is impossible to obtain analytically both the integrals
in the numerator and denominator in (67), we give numerical
results for when is set to 100 and 800 rad/s,
respectively. Fig. 7 shows the accuracy 100 (%) of the
result for each time spread parameter ranging from 1 to 40.
When , the value we chose in the experiment described
in Section VII, the accuracy for both 100 (%) with

100 and 800 were around 100.002 (%). This nu-
merical result shows that the assumption of the frequency spread
being a Gaussian distribution may not necessarily affect criti-
cally the result of the pitch estimations. Graphical representa-
tions of (62) with and can be seen in Fig. 8,
from which one is able to see how each of them is close to a
Gaussian distribution.

APPENDIX II
DERIVATION OF THE PARAMETER UPDATE EQUATIONS

We will show in this section how the parameter update
(40)–(46) were derived.

Energy: : From (4), one immediately obtains

(68)

Constant Term of the Pitch Contour: : Setting to zero
the partial derivative of w.r.t.

(69)

one obtains

(70)

As we find that the denominator of the above is equal to (68),
one finally obtains

(71)

Onset Time: : Setting to zero the partial derivative of
w.r.t.

(72)

one obtains

(73)

Relative Energy of the Harmonics: : Setting to zero
the partial derivative of w.r.t.

(74)

one obtains

(75)

From (75) and (18), the Lagrange multiplier is given ex-
plicitly as

(76)

which finally gives us the following:

(77)
Coefficients of the Power Envelope Function: : Setting

to zero the partial derivative of w.r.t.

(78)

one obtains

(79)

From (79) and (21), the Lagrange multiplier is given ex-
plicitly as

(80)



KAMEOKA et al.: MULTIPITCH ANALYZER BASED ON HTC 993

which finally gives us the following:

(81)
Duration: : Setting to zero the partial derivative of

w.r.t.

(82)

can be rewritten in the form (a quadratic equation)

(83)

where

with , from which one finally obtains

(84)

Frequency Spread of Partial Distributions: : Setting to
zero the partial derivative of w.r.t.

(85)

one obtains

(86)
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