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ABSTRACT

This paper presents a new sparse representation for acous-
tic signals which is based on a mixing model defined in the
complex-spectrum domain (where additivity holds), and al-
lows us to extract recurrent patterns of magnitude spectra that
underlie observed complex spectra and the phase estimates
of constituent signals. An efficient iterative algorithm is de-
rived, which reduces to the multiplicative update algorithm
for non-negative matrix factorization developed by Lee under
a particular condition.
Index Terms— Sparse signal representation, non-negative

matrix factorization, sparse coding, data-driven approach

1. INTRODUCTION

The use of sparse representations including sparse coding
(SC) [1] and non-negative matrix factorization (NMF) [2]
in acoustic signal processing has gradually increased in re-
cent years. Given a set of observed vectors, the goal is to
find a set of basis vectors such that any observations can
be succinctly represented as a linear combination of a small
number of ‘active’ bases. While SC enforces the sparseness
of basis activations by incorporating a sparsity cost in the
objective function, NMF achieves sparseness as a result of
a side effect caused by non-negativity constraints. Unlike
certain other unsupervised basis learning techniques such as
principal component analysis (PCA) and independent compo-
nent analysis (ICA), the particularity of SC and NMF is that
recurrent patterns underlying the observations are considered
good bases owing to the sparse nature of the decompositions.
[3]–[6] were among the first to apply this concept to an audio
processing problem, and since then, NMF, in particular, has
been applied extensively with considerable success to various
problems including automatic music transcription, monaural
source separation, speech denoising, bandwidth expansion,
audio classification and speech dereverberation [7].
One reason for NMF being a powerful tool as regards ex-

tracting regularities or structural patterns from acoustic sig-
nals may be that the mixing model is defined in the magni-
tude spectrum domain. Because of the phase-invariant nature
of magnitude spectra, NMF is able to project all signals that
have the same spectral shape onto a single basis. This allows
us to represent a variety of acoustic phenomena efficiently
using a very compact set of spectrum bases. However, the
mixing model implicitly assumes the additivity of magnitude
spectra, which holds only approximately. Although attempts

are made to mitigate the non-additivity problem with respect
to NMF in certain recently published papers [8, 9], in these
papers the additivity of power spectra is only verified in a sta-
tistical sense on the assumption that the constituent signals
are Gaussian processes and perfectly independent. Another
drawback of NMF is that it cannot estimate the phase spectra
of underlying constituent signals, which certainly limits its
range of applications.
Within the framework of SC or semi-NMF we can con-

struct a mixing model defined in the time domain [10, 11] or
in the complex-spectrum domain. Such a mixing model is
valid in terms of defining an additive quantity as the basis,
namely, a waveform signal. However, as pointed out in [6]
because the phase coherence between frequency components
can be easily destroyed as a result of many factors, it is dif-
ficult to capture high-level structural elements from observa-
tions through the use of waveform/complex-spectrum bases.
In this paper, we present a new framework “Complex

NMF”, which offers the advantages of the NMF and SC
frameworks concurrently: Complex NMF, (1) is based on
a mixing model defined in the complex-spectrum domain
(where additivity holds), (2) can extract the recurrent patterns
of magnitude spectra that underlie the observed complex
spectra and the phase spectra of constituent signals, and (3)
can be performed with an efficient iterative algorithm, which
reduces to the multiplicative update algorithm developed by
Lee [2] under a particular condition.

2. PRINCIPLE OF COMPLEX NMF
2.1. Sparse representation model

We start with the basic assumption that the short-term Fourier
transform (STFT) of an arbitrary acoustic signal, Fx,t ∈ C,
consists ofK complex-valued elements

Fx,t =
K∑

k=1

ak,x,t =
∑

k

|ak,x,t|ejφk,x,t , (1)

where x and t are the frequency and frame indices, respec-
tively. Here, we factorize the modulus, |ak,x,t|, into the prod-
uct of nonnegative parameters,Hk,x and Uk,t,

|ak,x,t| = Hk,xUk,t, Hk,x ≥ 0, Uk,t ≥ 0, (2)
and assume ∑

x

Hk,x = 1 (k = 1, · · · ,K), (3)
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in order to avoid an indeterminacy in the scaling. We there-
fore arrive at the following mixing model

Fx,t =
∑

k

Hk,xUk,te
jφk,x,t . (4)

In this model, each element comprises a static magnitude
spectral shape Hk,x, a time-varying activation coefficient
Uk,t and a time-varying phase spectrum φk,x,t. Given an ob-
served spectrum Yx,t, the goal is to find a decomposition such
that Yx,t � Fx,t in which the basis activations are sparse.
This basically means that any observed complex spectrum
can be well represented using only a few active magnitude
spectrum bases each of which is paired with an arbitrary
phase spectrum. Combining the goal of a small reconstruc-
tion error with that of sparseness, we consider that the model
will allow us to extract the recurrent patterns of magnitude
spectra underlying observed spectra as with NMF and, si-
multaneously, the phase spectra of constituent signals. As
seen from Eq. (4), the model cannot be expressed in matrix
notation as with NMF and SC, it can clearly be considered a
new class of sparse representation model.

2.2. Problem setting

Given an observed complex spectrum, Yx,t ∈ C, we would
like to find the optimal estimates ofHk,x, Uk,t and φk,x,t. For
simplicity of notation let Y ≡ {Yx,t}X×T , F ≡ {Fx,t}X×T ,
H ≡ {Hk,x}K×X , U ≡ {Uk,t}K×T , φ ≡ {φk,x,t}K×X×T .
Now, we assume the following generative model

Yx,t = Fx,t + εx,t, (5)

where the reconstruction error εx,t is assumed to be complex
Gaussian white noise with mean 0 and variance σ2. The like-
lihood of θ = {H,U, φ} is thus given as follows:

P (Y |θ) =
∏
x,t

1
πσ2

exp
(
−|Yx,t − Fx,t|2

σ2

)
. (6)

We assume for convenience that the prior distributions
for H , U and φ are independent, which yields P (θ) =
P (H)P (U)P (φ), and that P (H) and P (φ) are uniform dis-
tributions. P (U) corresponds to the sparsity cost, for which a
natural choice is a generalized Gaussian prior

P (U) =
∏
k,t

1
2Γ

(
1 + 1

p

)
b

exp
(
−|Uk,t|p

bp

)
, (7)

where p and b are the parameters that determine the shape of
the distribution. When 0 < p < 2, P (U) becomes super-
Gaussian and promotes sparsity if the norm of U is bounded.
The likely values ofH , U and φ can thus be inferred from the
posterior density

P (θ|Y ) ∝ P (Y |θ)P (U). (8)

From Eqs. (3)–(8), we are thus led to solve the following
optimization problem:

minimize f(θ) ≡
∑
x,t

∣∣Yx,t − Fx,t

∣∣2 + 2λ
∑
k,t

|Uk,t|p

subject to
∑

x

Hk,x = 1 (k = 1, · · · ,K)

2.3. Iterative algorithm

We present an efficient algorithm that seeks to minimize f(θ).
The auxiliary function concept is utilized for our derivation,
similar to [2]. We use G(θ) to denote an objective function
that we want to minimize w.r.t. θ, and define an auxiliary
function of G(θ) as G+(θ, θ̄) if it satisfies

G(z) = min
z̄

G+(z, z̄). (9)

Theorem 1. G(θ) is non-increasing under the updates, θ̄ ←
argminθ̄ G+(θ, θ̄) and θ ← argminθ G+(θ, θ̄).

Proof: Assume that we set θ at an arbitrary value θ�. Let
θ̄�+1 = argminθ̄ G+(θ�, θ̄) and θ�+1 = argminθ G+(θ, θ̄�+1).
It is obvious that G(θ�) = G+(θ�, θ̄�+1). We deduce
from θ�+1 = argminθ G+(θ, θ̄�+1) that G+(θ�, θ̄�+1) ≥
G+(θ�+1, θ̄�+1) . By definition, from G+(θ�+1, θ̄�+1) ≥
G(θ�+1) we verify that G(θ�) ≥ G(θ�+1).

By iteratively updating θ and θ̄, G(θ) will converge to a
stationary point. We can apply this concept to the minimiza-
tion of f(θ) using the following theorem:

Theorem 2 (Auxiliary function). The function

f+(θ, θ̄) ≡
∑
k,x,t

∣∣Ȳk,x,t − Hk,xUk,te
jφk,x,t

∣∣2
βk,x,t

+ λ
∑
k,t

(
p|Ūk,t|p−2Uk,t

2 + 2|Ūk,t|p − p|Ūk,t|p
)
, (10)

with θ̄ = {Ȳ , Ū}, Ȳ ≡ {Ȳk,x,t}K×X×T , Ū ≡ {Ūk,t}K×T ,
is an auxiliary function for f(θ), if

∑
k Ȳk,x,t = Yx,t and

0 < p ≤ 2. βk,x,t can be any positive number satisfying∑
k βk,x,t = 1. f+(θ, θ̄) is minimized w.r.t. θ̄ when

Ȳk,x,t = Hk,xUk,te
jφk,x,t + βk,x,t

(
Yx,t − Fx,t

)
, (11)

Ūk,t = Uk,t. (12)

Proof: This follows from the following lemmas.

Lemma 1. With
∑

k Ȳk,x,t = Yx,t and for any βk,x,t > 0
such that

∑
k βk,x,t = 1,

∣∣Yx,t − Fx,t

∣∣2 ≤
∑

k

∣∣Ȳk,x,t − Hk,xUk,te
jφk,x,t

∣∣2
βk,x,t

. (13)

Proof: By adding the Lagrange multiplier term to the right-
hand side, and then taking the derivative w.r.t. Ȳ ∗

k,x,t and
setting it at zero, we obtain Eq. (11). Substituting this to
the right-hand side, we determine the minimum value of the
right-hand side, which is equal to the left-hand side of the
inequality.

Lemma 2. If 0 < p ≤ 2, for any Uk,t ∈ R and Ūk,t ∈ R,

|Uk,t|p ≤ p|Ūk,t|p−2

2
Uk,t

2 + |Ūk,t|p − p|Ūk,t|p
2

. (14)
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Proof: Regarding |Uk,t|p as the function of Uk,t, the right-
hand side of the inequality amounts to a convex quadratic
function that is tangent to |Uk,t|p at argument Uk,t = ±Ūk,t.

As the update rule for θ̄ is shown in Eqs. (11), (12), we
only need to derive the update rule for θ. Although it is neces-
sary to take account of the normalization condition for Hk,x

and solve the Lagrange dual problem, here we simply de-
scribe a convenient approach, which consists of solving the
unconstrained minimization of f+(θ, θ̄) w.r.t. Hk,x and pro-
jecting its solution onto the constraint space. Differentiating
f+(θ, θ̄) partially w.r.t. Hk,x and Uk,t, and setting them at
zero, we obtain update rules for Hk,x and Uk,t:

Hk,x =

∑
t

Uk,t

βk,x,t
Re

[
Ȳ ∗

k,x,te
jφk,x,t

]
∑

t

Uk,t
2

βk,x,t

, (15)

Uk,t =

∑
x

Hk,x

βk,x,t
Re

[
Ȳ ∗

k,x,te
jφk,x,t

]
∑

x

Hk,x
2

βk,x,t
+ λp|Ūk,t|p−2

. (16)

We note that these updates are guaranteed to provide the min-
imum value for each coordinate because it is obvious from an
inspection of their second derivatives. Next, we derive the up-
date rule for φk,x,t. By using c to denote the terms that do not
depend on φk,x,t, f+(θ, θ̄) can be simply written as follows

f+(θ, θ̄) = c − 2
∑
k,x,t

|Ak,x,t| cos(φk,x,t − Ck,x,t),

where Ak,x,t = Ȳk,x,tHk,xUk,t/βk,x,t and

cos Ck,x,t =
Re

[
Ȳk,x,t

]
|Ȳk,x,t| , sin Ck,x,t =

Im
[
Ȳk,x,t

]
|Ȳk,x,t| .

f+(θ, θ̄) is obviously minimized when cos(φk,x,t−Ck,x,t) =
cos φk,x,t cos Ck,x,t + sin φk,x,t sin Ck,x,t = 1, that is,
cos φk,x,t = cos Ck,x,t and sin φk,x,t = sin Ck,x,t. This
leads to the update formula for ejφk,x,t

ejφk,x,t =
Ȳk,x,t

|Ȳk,x,t| . (17)

Substituting Eq. (17) into Eqs. (15), (16), we notice that the
non-negativity of Hk,x and Uk,t is preserved if we start with
non-negative initial conditions forHk,x and Uk,t.

2.4. Condition for equivalence to NMF

The iterative algorithm presented in 2.3 reduces to the Lee’s
multiplicative update algorithm [2] under a particular condi-
tion. Let us consider a particular situation where we fix the
value of φ, from the beginning of the iteration, at

ejφk,x,t =
Yx,t

|Yx,t| . (18)

Substituting this into Eq. (11),

Ȳk,x,t = Yx,t

[
Hk,xUk,t

|Yx,t| + βk,x,t

(
1 −

∑
n Hn,xUn,t

|Yx,t|
)]

.

Substituting this result and Eq. (18) into Eq. (15),

Hk,x ←

∑
t

[
Hk,xU2

k,t

βk,x,t
+ Uk,t

(
|Yx,t| −

∑
n

Hn,xUn,t

)]

∑
t

Uk,t
2

βk,x,t

.

As βk,x,t is a parameter that can be chosen arbitrarily subject
to βk,x,t > 0 and

∑
k βk,x,t = 1, the convergence of the

iterative algorithm is still guaranteed even if we change its
value in parallel withH and U in each iteration. If we decide
to replace the value of βk,x,t at each iteration by

βk,x,t =
Hk,xUk,t∑

n

Hn,xUn,t

, (19)

the update formula forHk,x leads eventually to

Hk,x ← Hk,x

∑
t

Uk,t|Yx,t|∑
t

Uk,t

∑
n

Hn,xUn,t

, (20)

which amounts to Lee’s multiplicative update rule for the
Frobenius norm criterion. We obtain the same conclusion for
Uk,t, if λ = 0. Based on this analysis, we can conjecture that

(1) the present algorithm works as efficiently and stably as
the Lee’s NMF algorithm,

(2) updating βk,x,t according to Eq. (19) is somewhat more
effective than fixing it at a constant value, and

(3) we can stabilize the algorithm by running NMF at the
beginning of the iteration, which can be performed sim-
ply by fixing the value of φ at Eq. (18).

The iterative algorithm is summarized as follows:

1. Initialize H , U and φ.
2. Update θ̄ = {Ȳ , Ū} according to Eqs. (11), (12).
3. Update θ = {H, U, φ} according to Eqs. (15), (16),
(17) and Hk,x ← Hk,x/

∑
n Hn,x.

4. Update β according to Eq. (19) and return to 2.

3. EXPERIMENTS
In this section we report some results for speech data ex-
cerpted from the ATR B-set speech database. The aim of the
experiments was to determine whether Complex NMF has an
effect as with NMF to extract the underlying patterns of mag-
nitude spectra from audio data. All speech data were monau-
ral and sampled at 16kHz. STFT was computed using a Han-
ning window that was 32ms long with a 16ms overlap. p and
λwere set at p = 1.2，λ =

∑
x,t |Yx,t|2/K1−p/2×10−5. The
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Fig. 1. Magnitude spectrogram of speech A

Fig. 2. 10 patterns of magnitude spectra and their activation patterns

algorithm was run for 30 iterations. H and U were initialized
with random values and φk,x,t was initially set at arg(Yx,t).
For the first experiment we tested Complex NMF, with

K = 10, on a single voice signal from a female speaker
(“speech A”). Fig. 1 shows the spectrogram of speech A. The
patterns of magnitude spectra discovered by using Complex
NMF can be seen in Fig. 2 along with the corresponding ac-
tivation patterns. As shown in Fig. 2, harmonic structures are
vividly captured inH even without any prior knowledge.
For the second experiment we tested Complex NMF with

K = 30 on a mixed voice signal (see Fig. 3). The mixed
speech data was created by adding speech data from another
female speaker (“speech B”) to speech A. In this experiment,
the aim was to ascertain whether each of the estimated pat-
terns of magnitude spectra corresponds to a single-voice spec-
trum. We selected the pattern of magnitude spectrum that was
closest to the true spectrum of each speaker per frame and
then concatenated the framewise signals, each of which we
constructed using the selected pattern and the corresponding
activation coefficient and phase spectrum to synthesize the
whole signal stream. If the synthesized signal contains two
voices, it may suggest that the model is overfitting the obser-
vation. In contrast, if the synthesized signal does not sound
like speech, it may suggest that the model is underfitting the
observation. Seen in this light, we calculated SNR to see how
well each speech signal could be restored based on the above
procedure. As a result, we obtained 4.3dB and 4.0dB for the
two speakers, which constituted an improvement from 0.87dB
and -0.87dB, respectively. This result suggests that each es-
timated pattern of magnitude spectrum corresponds fairly ap-
propriately to a single voice spectrum. The restored speech
signal corresponding to speech A can be seen in Fig. 4.
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Fig. 3. Magnitude spectrogram of mixed speech
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Fig. 4. Synthesized signal corresponding to speech A

4. CONCLUDING REMARKS
We developed a new framework for the sparse representation
of acoustic signals. We named it “Complex NMF” (which
may appear contradictory since the term “complex” con-
flicts with the term “non-negative” and the decomposition is
no longer a matrix factorization), because, in common with
NMF, it has the ability to generate non-negative matrices H
and U , and is different in that the input matrix Y is assumed
to be a complex matrix and it also generates a third-rank
complex-valued tensor ejφk,x,t . As Complex NMF is capable
of estimating the phase spectra of constituent signals, future
work will include its extension to the formulation for micro-
phone array processing. Motivated by [12], we also want to
investigate a general class of the prior structure suited to the
model introduced in this paper.
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