
Ab t tAbstractAbstract

Thi t t ti f ti i l l ith f ti t i f t i ti (NMF) d l dThis paper presents a new sparse representation for acoustic signals algorithm for non-negative matrix factorization (NMF) developed p p p p p g
based on a mixing model defined in the complex spectrum domain

g g ( ) p
by Lee et albased on a mixing model defined in the complex-spectrum domain by Lee et al. 

(where additivity holds): Even though the terms “complex” and “non-negative” may seem(where additivity holds): Even though the terms complex  and non negative  may seem 
t fli t ith h th d th d iti i lto conflict with each other and the decomposition is no longer a p g
matrix factorization we named this framework “Complex NMF”matrix factorization, we named this framework Complex NMF , 
because it shares with NMF the ability to generate non-negative

Thi ll t t t i tt f it d t th t
because it shares with NMF the ability to generate non negative 

t i d hil th i t t i i d t bThis allows us to extract recurring patterns of magnitude spectra that matrices  and    , while the input matrix     is assumed to be a g p g p
underlie observed complex spectra and the phase estimates of

, p
complex matrix and the algorithm also generates a third rankunderlie observed complex spectra and the phase estimates of complex matrix and the algorithm also generates a third-rank 

constituent signals An efficient iterative algorithm is derived which complex-valued tensorconstituent signals. An efficient iterative algorithm is derived, which 
d d ti l diti t th lti li ti d t

complex valued tensor                 .
reduces under a particular condition to the multiplicative updatep p p

1 Introduction 2 Research objective1. Introduction 2. Research objective

Sparse representation D l f k th t tl ff d t fSparse representation Develop new framework that concurrently offers advantages of 
Given a set of observed vectors the goal is to find a set of basis

p y g
NMF-based and Sparse coding/Semi-NMF -based acoustic modeling*Given a set of observed vectors                 , the goal is to find a set of basis 

t h th t b ti b i tl t d
NMF based and Sparse coding/Semi NMF  based acoustic modeling
S i NMFvectors                  such that any observations can be succinctly represented variety of acousticAllows to project all signals
Semi-NMF*y y p

as a linear combination of a small number of “active” bases
variety of acoustic 
phenomena with

Allows to project all signals 
that have the same spectral(Ding et al., 2006)as a linear combination of a small number of active  bases. phenomena with  

compact set of
that have the same spectral 
shape onto a single basis

( g et a , 006)
(Le Roux et al., 2008)[11]

I NMF f k
compact set of 

t l b
shape onto a single basis(Le Roux et al., 2008)[11]

In NMF framework, spectral bases,
Assume mixing model defined in magnitude domain

p

d ( )
Assume mixing model defined in magnitude domain.

Sparse coding (SC) (Olshausen et al., 1996)[1] sparse Model can be optimized by efficient algorithm.p g ( ) ( , )[ ] sparse Model can be optimized by efficient algorithm.
Magnitude spectra are assumed additive →inaccurate modelingMagnitude spectra are assumed additive. →inaccurate modeling

f ( )
Phase information are discarded. →limits the range of applicationNon-negative matrix factorization (NMF) (Lee et al., 1999)[2] becomes sparse as a
Phase information are discarded. limits the range of applicationg ( ) ( , )[ ] becomes sparse as a 

result of a side effect th it d(or other measure) result of a side effect 
d b h NMF model th magnitude 

t b i
( )

caused by the non- NMF model spectrum basis
negativity constraints Observed magnitude spectrogram activation ofnegativity constraints Observed magnitude spectrogram activation of

th basis
[multiplicative update algorithm] guarantees convergence to a stationary point

th basis
[multiplicative update algorithm] guarantees convergence to a stationary point

Ob d t frequencyObserved spectrogram      frequency

ti Static magnitude spectrum templatestime Static magnitude spectrum templates
Time ing ti tion oeffi ient

NMF li d t di i bl
Time-varying activation coefficients

NMF applied to audio processing problemspp p g p
parts based decomposition ofparts-based decomposition of 

h lmagnitude spectrogram on sparse SC/Semi-NMF model th complex magnitude spectrogram

at
io sparse SC/Semi NMF model p

spectrum basis

ct
iv

a

Music transcription [3 4] Ob d l

p
activation of

Magnitude

Ac

Music transcription [3,4]

1 h ti
Observed complex spectrogram activation of

th basisMagnitude 
spectrum bases1ch source separation [5]

p p g th basis
spectrum basesp

Speech denoising
Optimized model #Bases: 10

Speech denoising
d d h frequencyOptimized model     #Bases: 10Bandwidth expansion frequencyp

Audio classification timeAudio classification time

Dereverberation [7] Static complex spectrum templatesDereverberation [7]

etc
Static complex spectrum templates
Time a ing acti ation coefficientsRecurring spectraletc. Time-varying activation coefficientsRecurring spectral

patternspatterns

3 C l NMF ( d l)3. Complex NMF (model)p ( )

Model Objective functionModel Objective function

Assume that the short term Fourier transform (STFT) of an acoustic Given a set of observations the goal is to findAssume that the short-term Fourier transform (STFT) of an acoustic Given a set of observations                                                    , the goal is to find 
signal is composed of complex-valued elements: the optimal estimate ofsignal is composed of     complex valued elements: the optimal estimate of

(1) Model reconstruction accuracy(1) Model reconstruction accuracy
Generative model: wherefrequency Generative model: where

( and are independent if )
frequency

ti (       and          are independent if                       )time

Each constituent is assumed to have a magnitude spectrum whichEach constituent,       , is assumed to have a magnitude spectrum which 
is constant up to the gain over time: (likelihood)p g (likelihood)

Gain at frame (2) Sparsity of basis activations

l d d
Gain at frame ( ) pa y o ba a a o

Normalized magnitude As we want to achieve as parsimonious a representation as possible, we would g
spectrum template:

p p p ,
like the ’s to be sparsespectrum template: like the       s  to be sparse. 

and a time-varying phase spectrum: This basically means that any observed complex spectrum should beand a time varying phase spectrum: This basically means that any observed complex spectrum should be 
ell ep esented sing onl a fe acti e magnit de spect m baseswell represented using only a few active magnitude spectrum bases 

each of which is paired with an arbitrary phase spectrum.each of which is paired with an arbitrary phase spectrum.

(prior)
P d d l h i d

(prior)
Complex NMF modelProposed model th magnitude

b
Complex NMF modelg

spectrum basis
Generalized Gaussian distribution (GGD)Observed complex 

p
activation of Generalized Gaussian distribution (GGD)Ob d o p

spectrogram th basis promotes sparsity when andspectrogram promotes sparsity when                 and 
th f i b d dthe norm of      is bounded

frequency MAP (Maximum A Posteriori) estimation problem leads to...frequency
time

MAP (Maximum A Posteriori) estimation problem leads to...
time

Cannot be expressedCannot be expressed 
in matrix notation! Static magnitude spectrum templatesin matrix notation!

new class of sparse a ag ud p u p a
Time-varying gains & phase spectra

new class of sparse 
t ti d l Time varying gains & phase spectrarepresentation model



4 C l NMF ( l ith )4. Complex NMF (algorithm)4. Complex NMF (algorithm)

Utilizing auxiliary function concept Update formulae Non negativities are preserved if we start withUtilizing auxiliary function concept Update formulae Non-negativities are preserved if we start with
Definition. Step 1) non-negative initial conditions.Definition.

i ili f ti f th bj ti f ti
Step 1) non negative initial conditions.

is an auxiliary function of the objective function        
if it satisfiesif it satisfies                            . 

Theorem 1 (Auxiliary function method)Theorem 1 (Auxiliary function method).
is non-increasing under the updatesis non increasing under the updates                           

andand 

ProofProof
Assume that we set at an arbitrary value Let (P j ti t th t i t )Assume that we set at an arbitrary value . Let

d
(Projection onto the constraint space)

and                                     .
( j p )

It is obvious that We deduceIt is obvious that                             . We deduce
f th t Step 2)from                                      that                    Step 2)

By definition from. By definition, from                            
if th twe verify that                       .y

Theorem 2 (Auxiliary function for Complex NMF). Condition for equivalence to NMF with Frobenius norm criterioneo e ( y o o o p ) Condition for equivalence to NMF with Frobenius norm criterion
We assume a particular situation:We assume a particular situation:

Update formulaUpdate formula
ffor       :

with is anwith                                                                  is an
auxiliary function for ifauxiliary function for       , if

Update formulaUpdate formula
for       :

ProofProof

(1) By differentiating the Lagrangian(1) By differentiating the Lagrangian is a parameter that can be What if we update itis a parameter that can be 
chosen arbitrarily subject to

What if we update it 
at each ite ation b ?chosen arbitrarily subject to at each iteration by ?y

partially w.r.t. and setting it at zero, wepartially w.r.t.        and setting it at zero, we 
determine the minimum valuedetermine the minimum value                  . 

(2) amounts to a convex Reduces to Lee’s multiplicative(2) amounts to a convex 
d ti f ti th t i t t t t

Reduces to Lee s multiplicative 
d t f l f F b iquadratic function that is tangent to        at update formula for Frobenius q g

argument
p

norm criterion!argument            . norm criterion!

5 Experiments5. Experiments

Conditions Convergence of Complex NMF algorithmActivationsConditions
S h d t t d f ATR B t h

Convergence of Complex NMF algorithm
Speech data: excerpted from ATR B-set speech p p p
database monaural and sampled at 16kHzdatabase, monaural and sampled at 16kHz
STFT t d i H i i d th t bj i f iSTFT was computed using Hanning window that was 

t ti
objective functionp g g

32ms long with 16ms overlap. reconstruction32ms long with 16ms overlap. error
sparsenessp

Iteration #: 30 Iteration #Iteration #: 30 Iteration #
Initialization: randomInitialization: random

M it d t t How did we obtain the separate signals?Magnitude spectrum atoms How did we obtain the separate signals?

The magnitude spectrum atom closest to the true Optimized model
The aim of the experiments was

g p
spectrum was selected for each frame and the

p
The aim of the experiments was 
to determine whether Complex

spectrum was selected for each frame, and the 
framewise signals each of which we constructedto determine whether Complex 

NMF h i il l t NMF th
framewise signals, each of which we constructed 

i th l t d t d th diNMF has, similarly to NMF, the using the selected atom and the corresponding 
effect of extracting recurring activation coefficient and phase spectrum, wereg g
spectral patterns underlying the

activation coefficient and phase spectrum, were 
concatenated to synthesize the whole signal streamspectral patterns underlying the 

observed audio data
concatenated to synthesize the whole signal stream.

observed audio data.

Speech 1 Reconstructed 1
Complex NMF

p

0 87dB 4 3dB
Complex NMF

0.87dB 4.3dB

Mixed speechMixed speech

Speech 2 Reconstructed 2Speech 2 Reconstructed 2

0 87dB 4 0dB-0.87dB 4.0dB
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