Abstract

This paper presents a new sparse representation for acoustic signals
based on a mixing model defined In the complex-spectrum domain
(where additivity holds):
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This allows us to extract recurring patterns of magnitude spectra that
underlie observed complex spectra and the phase estimates of
constituent signals. An efficient iterative algorithm is derived, which
reduces under a particular condition to the multiplicative update

algorithm for non-negative matrix factorization (NMF) developed

by Lee et al.

Even though the terms “complex” and “non-negative” may seem
to conflict with each other and the decomposition is no longer a
matrix factorization, we named this framework “Complex NMF”,

because It shares with NMF the ablility to generate non-negative

matrices H and U, while the

Input matrix Y Is assumed to be a

complex matrix and the alqorlthm also generates a third-rank

complex-valued tensor Z; , =

ejqb

1. Introduction

@®Sparse representation

Given a set of observed vectors Y1, - Y7 , the goal is to find a set of basis
vectors hq,---,h; such that any observations can be succinctly represented
as a linear combination of a small number of “active” bases.
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sSparse coding (SC) (Olshausen et al., 1996)[1] & sparse
minimize ||Y — HUJ|% + X sparse(U) w.r.t. H, U
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lNon negatlve matrIX faCtOrlzathn (NMF) (Lee et al., 1999)[2] U becomes Sparse as a :

. result of a side effect

| ~ caused by the non-
subject to Vi ; hg >0, Vi¢ ujr >0 . negativity constraints

minimize ||Y — HUHF (or other measure)
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®NMF applied to audio processing problems
-> parts-based decomposition of

2. Research objecti

@ Develop new framework that concurrently offers advantages of

NMF-based and Sparse cod

INng/Semi-NMF*-based acoustic modeling

x Semi-NMF
(Ding et al., 2006)
(Le Roux et al., 2008)[11]

Allows to project all signals
that have the same spectral
shape onto a single basis

» compact set of

s In NMF framework,

— X spectral bases

Assume mixing model defined in magnitude domain.

Model can be optimized by efficient algorithm.

Magnitude spectra are assumed additive. —inaccurate modeling
Phase information are discarded. —limits the range of application

variety of acoustic
phenomena with
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3. Complex NMF (model)
®Model #®0Objective function
Assume that the short-term Fourier transform (STFT) of an acoustic Glven a set of observations Y = {Yk t\l < k<K, 1<t<T}, the goal IS to find
signal iIs composed of I complex-valued elements: the optimal estimate of § = {H U, ,qﬁk 4
- (1) Model reconstruction accuracy
@ =Za,(:’,l. G | del: Y., = F h ~ N (0, 0%)
frequency P enerative moadel: Y = Pkt + €+ Where €k c\Y, 0 o
time (€kt and €x o are independent if (k,t) # (K',1))
Each constituent, a,({i)t, IS assumed to have a magnitude spectrum which Yis — Fryl?
IS constant up to th(g)gain 0\(/Q)r ti(rr;e: ; N » P(Y[0) = [T —; exp ( k,t ~ k,t ) (likelihood)
t/ ‘%Z,t| — sz Utz (Vk,inz > O,Vithtz > 0),
(%) | 4 Lo~ . . L
|ak7t Gain at frame # (2) Sparsity of basis activations
Normalized magnitude | As we want to achieve as parsimonious a representation as possible, we would
e spectrum template: v, " H{ = 1 Ilk_e_fhf__l_f_,z(f’_S_ tobesparse.
k :
and a time-varying phase spectrum: . This basically means that any observed complex spectrum should be
(4) (4) . well represented using only a few active magnitude spectrum bases
arg(a,. Y= O : S . .
. each of which Is paired with an arbitrary phase spectrum.
- v N 1 ( |Ut(7l) p) ( )
7 p prior
Proposed model i th magnitude Complex NMF model 1 + Z_j)b bp
spectrum basis

Observed complex activation of
spectrogram ( f zth basis

Q? ~ F Z_H Uein
ffequipr;g/(% Vi HO > 0, Vi, U > 0

Cannot be expressed

IN matrix notation! : :
> new class of sparse Static magnitude spectrum templates

representation model Time-varying gains & phase spectra
- Y

Generalized Gaussian distribution (GGD)

—> promotes sparsity when 0 < p < 2 and
the norm of H is bounded

MAP (Maximum A Posteriori) estimation problem leads to...
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4. Complex NMF {

<"}UtI|IZ|ng auxiliary function concept '@*Update formulae i Non-negativities are preserved if we start with i
Definition. Step 1) # < argmin f+(9’ g) / non-negative initial conditions.
G*(0,0) is an auxiliary function of the objective function G(6) 9(.) B ( ““““““ (“) “““““““““““““““““““““““““
., . . o . + — 12 {/
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Theorem 1 (Auxiliary function method). (i) - ](61 (i) k ]({7’1 ! (D) k(zt)
G(0) is non-increasing under the updates 6 < argmin G* (6, 0) Hy” | OE , Up 7 < H(;)Q , ekt 5 (’Z-)|
and 0 « inGT(0,0). 0 t ko (%) |P—2 kt
argmin G (6, 0) > = > e + |0
— Proof b Pkt ko Tkt
Assume that we set § at an arbitrary value 0.. Let Hlii) — H,i“/z Hlin) (Projection onto the constraint space)
f¢+1 = argming G1(6,,0) and 0y, 1 = argming G*(0,0,41) . n
It is obvious that G(6,) = G*(0,,60,41) . We deduce _ .
from 0,1 = argming G+(0,0,.1) that G+ (8,,0p.1) > Step 2) 6 <— argmin [ (0, 0)
Gt (041, 00+41). By definition, from GF(6,41,0,.1) > N e @ W
G(641) we verify that G(8y) > G(6r41). V)« HUM e 4 80 (Yiy — Fioy), 0 U
Theorem 2 (Auxiliary function for Complex NMF). #®Condition for equivalence to NMF with Frobenius norm criterion
£4(0,0) = | H(i)U(i)ejqb;fl ’ We assume a particular situation: v, e ol _ kit |
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— Proof t
(1) By differen’Fiating .the.Lag(r.?ggian | By} is a parameter that can be What if we update it 0
S % —kzt B H(z)Ut(Z)ejqﬁk,t +oy (Z ch(jft) _ ijt) chosen a(r}:))itrarily Subj(e)Ct to at each iteration by 6](;1 , Z};(”);](”) ?
7 ' \v4 e 1,VZ ' - 0, 1). k ¢
partlally w.rt. %" and setting it at zero, we o 2;6“ kit € (01 n
determine the minimum value |Yx,: — .
Z UMY o
(2) p|UP~2U? + (2 — p)|U|P amounts to a convex k.t Reduces to Lee’s multiplicative
quadratic function that is tangent to |U|? at H(Z) — H update formula for Frobenius
argument U = +1 >0 S a0 oo anteron
gument U = +U. U .Uy norm criterion!
5. EXperiments
®Conditions ~ Actvations @®Convergence of Complex NMF algorithm
aSpeech data: excerpted from ATR B-set speech S5V [ R S S MWE . . . . .

2 .

15 \ objective function '

1| reconstruetion =

database, monaural and sampled at 16kHz

aSTFT was computed using Hanning window that was
32ms long with 16ms overlap.
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np=12 A=) |Y,"/] “P/2 % 10~ N | sparseness
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mlteration #: 30
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= [ = 30 Magnitude spectrum atoms

Iteration #

How did we obtain the separate signals?

The magnitude spectrum atom closest to the true
spectrum was selected for each frame, and the
framewise signals, each of which we constructed
using the selected atom and the corresponding
activation coefficient and phase spectrum, were
concatenated to synthesize the whole signal stream.

The aim of the experiments was
to determine whether Complex CTT T T T T T T T T T T T TTTT T
NMF has, similarly to NMF, the
effect of extracting recurring
spectral patterns underlying the
observed audio data.
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