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1 Introduction

For many applications in statistical signal process-
ing, a statistical model in which a short-time signal is
assumed to be a set of samples drawn from a zero-mean
stationary Gaussian process is very often employed.
In the frequency domain, this assumption amounts to
considering that each frequency component of the sig-
nal is generated according to a zero-mean circular com-
plex normal distribution with a different variance. The
variance of the distribution in this context is usually
called the power spectral density (PSD). The maxi-
mum likelihood estimation problem under this statisti-
cal model involves determining the PSD estimate from
an observed signal, which is shown to be equivalent to
minimizing a divergence measure called the Itakura-
Saito (IS) divergence between the sample power spec-
trum and the PSD of the assumed stochastic process
[1]. While the solution is obvious when no modeling
constraints are imposed on the PSD, it is generally
necessary to develop an appropriate optimization algo-
rithm according to this criterion when the PSD is as-
sumed to have a certain structure that can be described
using a small number of parameters (for example, using
an all-pole model or non-negative matrix factorization
model). However, for some classes of parametric mod-
els the cost function is sometimes numerically difficult
to optimize, due to the highly non-convex nature of the
divergence function. For example, as reported in [2],
it has been found in practice to be prone to numerical
instability and local minima during optimization when
applied as a goodness-of-fit criterion for non-negative
matrix factorization (NMF).

In this paper, we focus on another divergence mea-
sure between two non-negative functions, called the I-
divergence [3], which has several remarkable features.
Firstly, Csiszar showed in [3] that under non-negativity
constraints, the only discrepancy measure consistent
with certain fundamental axioms such as locality, regu-
larity and composition-consistency is the I-divergence.
Secondly, according to the results obtained in NMF-
based single channel source separation tasks under
many different model-fitting criteria [4], the use of the
I-divergence has been found to provide the best perfor-
mance. This should indicate that the stochastic pro-
cess assumption underlying the I-divergence is describ-
ing the actual statistics of audio signals well. Thirdly,
it is mathematically convenient to derive optimization
algorithms for particular classes of parametric spec-

trum models such as those introduced in [5,6]. Here,
one intriguing question arises: What kind of stochastic
process are we implicitly assuming when we choose to
use the I-divergence as a spectral distortion measure?
The objective of this paper is to answer this question.

2 Review of Itakura-Saito Divergence

In this section, we briefly review the way in which the
IS divergence is derived from the stationary Gaussian
random process assumption. Let = (xq,--- ,xI)T €
R’ be a real vector of a discrete-time signal, that is
assumed to have been drawn from a zero-mean Gaus-
sian random process  ~ N (0,X). The Fourier trans-
form of x, given by z Fx ¢ C!, follows a zero-
mean multivariate complex normal distribution with
covariance matrix FXFH, where F' € C™*! is the dis-
crete Fourier transform matrix. If we assume station-
arity (and circularity), the covariance matrix 3 be-
longs to the class of nonnegative definite symmetric
Toeplitz circulant I x I dimensional matrices. ¥ is
then shown to be exactly diagonalized by F' so that
we obtain FXFHY = diag(\y, -+, A7) where Ay, -+, Ar
are the eigenvalues of 3, corresponding to the power
spectral densities (PSDs). This indicates that each el-
ement of z, z; (1 < i < I), independently follows a
zero-mean complex normal distribution with variance
Ait zi ~ Nc(0,;). Now, suppose that we are given
a Fourier component, z. We consider the maximum
likelihood estimation of A on the basis of the genera-
tive model z ~ Ng(0,\). By differentiating the log-
likelihood Lar(\) = —log mA — |2|? /X with respect to A
and setting the result at zero, we determine the maxi-
mum likelihood estimator A = |z|? and hence we obtain
La(]2]?) > Ly (N). By subtracting the right-hand side
of this inequality from the left-hand side, we obtain a
non-negative measure:

2 2
La((ef?) — In(3) = B -

|22
log——-1>0, (1)
A
which is equal to the IS divergence [1]. This quantity
is shown to reach 0 only when X\ = |z|2.

3 Complex Poisson Distribution

We propose a probability density function of a com-
plex number z, called the complex Poisson distribu-
tion, mention some of its properties, and then show
that this distribution leads to the I-divergence in the
same way that we derived the IS divergence from the
complex normal distribution in the previous section.
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Fig. 1 Tllustration of how the density function changes ac-
cording to the parameter settings: (left) (X, p)=(5,1), (middle)
(A, p)=(10,1), and (right) (A, p)=(10%,2).
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Definition 1 (Complex Poisson Distribution). The
complex Poisson distribution is a density function of
a circular complex random variable z defined over the
support z € D ={z € C | |z|P € N} such that

pe—)\ |Z|p—2)\\z\p
2 (|z|p)!

where A € RZ% and p € R>% are the parameters char-
acterizing its distribution. We use the notation

fz(z;)Hp) = (2)

(3)

to indicate that a complex-valued random variable z
follows a complex Poisson distribution.

z ~ cPois(A, p),

Fig. 1 is an illustration of the complex Poisson dis-
tributions with different parameter settings. In the
following we show several important properties related
to the proposed circular distribution.

Property 1. The integral of f. over the support D is

/ faz A p)dz = 1. (4)
D

Property 2. If z follows a complex Poisson distri-
bution z ~ cPois(\,p), then k = |z|P € N follows a
Poisson distribution with mean \:

Nee=A
k!
Property 3. If z follows a complex Poisson distribu-
tion such that z ~ cPois(A, p), the qth-order moments

defined by Bn.m = E[z"2*™] [7], where n and m are
natural numbers such that ¢ = n + m, are given by

_fHuy, (n=m)

where //5 denotes the fractional moment of order £ > 0
of the Poisson distribution with mean \.

k ~ (5)

(6)

Example 1. It follows from Property 8 that the mean
E[z] and the variance V[z] of z ~ cPois(A,p) are

_[MEx (=1
0, V[z]{)\ (p=2)"

Property 4. The mazimum likelihood estimation of A
under the generative model z ~ cPois(\,p) is equiva-
lent to the problem of minimizing the I-divergence be-
tween |z|P and X.

El2] (7)

B R SR

Proof: This can be easily confirmed by consider-
ing only the terms involving X in the log-likelihood,
Lp(A) = =X + |z|Plog A, which is maximized when
A = |efP. Thus, Lp(|z[P) > Lp(A). Subtracting the
right-hand side of this inequality from the left-hand
side gives a non-negative measure

|21

Lp(12P) — Lp() = |#lP log =

= (2" =X2) =0, (8)

which is equal to the I-divergence. O

4 Construction of Stationary Process

Given a set consisting of Fourier components z
(21,...,21)T, let us assume that each component
has been generated independently according to z; ~
cPois(A;, p). The probability of z being generated is

I

f=(z:hp) =]]

i=1

pe ™ [P A
27 (|z:P)! 7

(9)

where A = {\;}1<i<7. We can easily show from what
kind of probability distribution the time-domain sig-
nal, z = FH2, is supposed to have been generated un-
der this assumption. Since the (inverse) Fourier trans-
form is a unitary transform, we know that |det F'| = 1.
The density function of x can thus be described in
terms of f, such that fu(x; A\, p) = fo(Fx; A, p).

It is important to note that when p = 2, A corre-
sponds to the PSD of the assumed stochastic process
(see Example 1), in which case the maximum likeli-
hood estimation of A can be understood as the prob-
lem of fitting the PSD to the sample power spectrum
{|zi|*}1<i<s under the I-divergence criterion.

5 Conclusion

In this paper, we proposed a new probability density
function of a circular complex random variable, men-
tioned some of its properties, and showed that this dis-
tribution can be used to construct a stochastic process
that supports the use of the I-divergence as a well-
founded spectral distortion measure. By using this
stochastic process, we should be able to build a well-
defined audio signal processing framework, allowing for
the introduction of all kinds of spectrum models which
behave well with respect to the I-divergence criterion.
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