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1 Introduction

For many applications in statistical signal process-
ing, a statistical model in which a short-time signal is
assumed to be a set of samples drawn from a zero-mean
stationary Gaussian process is very often employed.
In the frequency domain, this assumption amounts to
considering that each frequency component of the sig-
nal is generated according to a zero-mean circular com-
plex normal distribution with a different variance. The
variance of the distribution in this context is usually
called the power spectral density (PSD). The maxi-
mum likelihood estimation problem under this statisti-
cal model involves determining the PSD estimate from
an observed signal, which is shown to be equivalent to
minimizing a divergence measure called the Itakura-
Saito (IS) divergence between the sample power spec-
trum and the PSD of the assumed stochastic process
[1]. While the solution is obvious when no modeling
constraints are imposed on the PSD, it is generally
necessary to develop an appropriate optimization algo-
rithm according to this criterion when the PSD is as-
sumed to have a certain structure that can be described
using a small number of parameters (for example, using
an all-pole model or non-negative matrix factorization
model). However, for some classes of parametric mod-
els the cost function is sometimes numerically difficult
to optimize, due to the highly non-convex nature of the
divergence function. For example, as reported in [2],
it has been found in practice to be prone to numerical
instability and local minima during optimization when
applied as a goodness-of-fit criterion for non-negative
matrix factorization (NMF).

In this paper, we focus on another divergence mea-
sure between two non-negative functions, called the I-
divergence [3], which has several remarkable features.
Firstly, Csiszár showed in [3] that under non-negativity
constraints, the only discrepancy measure consistent
with certain fundamental axioms such as locality, regu-
larity and composition-consistency is the I-divergence.
Secondly, according to the results obtained in NMF-
based single channel source separation tasks under
many different model-fitting criteria [4], the use of the
I-divergence has been found to provide the best perfor-
mance. This should indicate that the stochastic pro-
cess assumption underlying the I-divergence is describ-
ing the actual statistics of audio signals well. Thirdly,
it is mathematically convenient to derive optimization
algorithms for particular classes of parametric spec-
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trum models such as those introduced in [5, 6]. Here,
one intriguing question arises: What kind of stochastic
process are we implicitly assuming when we choose to
use the I-divergence as a spectral distortion measure?
The objective of this paper is to answer this question.

2 Review of Itakura-Saito Divergence

In this section, we briefly review the way in which the
IS divergence is derived from the stationary Gaussian
random process assumption. Let x = (x1, · · · , xI)T ∈
RI be a real vector of a discrete-time signal, that is
assumed to have been drawn from a zero-mean Gaus-
sian random process x ∼ N (0,Σ). The Fourier trans-
form of x, given by z = Fx ∈ CI , follows a zero-
mean multivariate complex normal distribution with
covariance matrix FΣF H, where F ∈ CI×I is the dis-
crete Fourier transform matrix. If we assume station-
arity (and circularity), the covariance matrix Σ be-
longs to the class of nonnegative definite symmetric
Toeplitz circulant I × I dimensional matrices. Σ is
then shown to be exactly diagonalized by F so that
we obtain FΣF H = diag(λ1, · · · , λI) where λ1, · · · , λI

are the eigenvalues of Σ, corresponding to the power
spectral densities (PSDs). This indicates that each el-
ement of z, zi (1 ≤ i ≤ I), independently follows a
zero-mean complex normal distribution with variance
λi: zi ∼ NC(0, λi). Now, suppose that we are given
a Fourier component, z. We consider the maximum
likelihood estimation of λ on the basis of the genera-
tive model z ∼ NC(0, λ). By differentiating the log-
likelihood LN (λ) = − log πλ−|z|2/λ with respect to λ
and setting the result at zero, we determine the maxi-
mum likelihood estimator λ = |z|2 and hence we obtain
LN (|z|2) ≥ LN (λ). By subtracting the right-hand side
of this inequality from the left-hand side, we obtain a
non-negative measure:

LN (|z|2) − LN (λ) =
|z|2

λ
− log

|z|2

λ
− 1 ≥ 0, (1)

which is equal to the IS divergence [1]. This quantity
is shown to reach 0 only when λ = |z|2.

3 Complex Poisson Distribution

We propose a probability density function of a com-
plex number z, called the complex Poisson distribu-
tion, mention some of its properties, and then show
that this distribution leads to the I-divergence in the
same way that we derived the IS divergence from the
complex normal distribution in the previous section.

- 813 -

1-Q-25(e)

日本音響学会講演論文集 2011年3月



Real part

Im
a

g
in

a
ry

 p
a

rt

-20 -10 0 10 20
-20

-10

0

10

20

Real part

Im
a

g
in

a
ry

 p
a

rt

-20 -10 0 10 20
-20

-10

0

10

20

Real part

Im
a

g
in

a
ry

 p
a

rt

-20 -10 0 10 20
-20

-10

0

10

20

Fig. 1 Illustration of how the density function changes ac-
cording to the parameter settings: (left) (λ, p)=(5, 1), (middle)
(λ, p)=(10, 1), and (right) (λ, p)=(102, 2).

Definition 1 (Complex Poisson Distribution). The
complex Poisson distribution is a density function of
a circular complex random variable z defined over the
support z ∈ D = {z ∈ C | |z|p ∈ N} such that

fz(z; λ, p) =
pe−λ

2π

|z|p−2λ|z|p

(|z|p)!
, (2)

where λ ∈ R≥0 and p ∈ R>0 are the parameters char-
acterizing its distribution. We use the notation

z ∼ cPois(λ, p), (3)

to indicate that a complex-valued random variable z
follows a complex Poisson distribution.

Fig. 1 is an illustration of the complex Poisson dis-
tributions with different parameter settings. In the
following we show several important properties related
to the proposed circular distribution.

Property 1. The integral of fz over the support D is∫
D

fz(z;λ, p)dz = 1. (4)

Property 2. If z follows a complex Poisson distri-
bution z ∼ cPois(λ, p), then k = |z|p ∈ N follows a
Poisson distribution with mean λ:

k ∼ λke−λ

k!
. (5)

Property 3. If z follows a complex Poisson distribu-
tion such that z ∼ cPois(λ, p), the qth-order moments
defined by βn;m := E[znz∗m] [7], where n and m are
natural numbers such that q = n + m, are given by

βn;m =
{

µ′
q/p (n = m)

0 (n ̸= m)
, (6)

where µ′
ξ denotes the fractional moment of order ξ > 0

of the Poisson distribution with mean λ.

Example 1. It follows from Property 3 that the mean
E[z] and the variance V[z] of z ∼ cPois(λ, p) are

E[z] = 0, V[z] =
{

λ2 + λ (p = 1)
λ (p = 2) . (7)

Property 4. The maximum likelihood estimation of λ
under the generative model z ∼ cPois(λ, p) is equiva-
lent to the problem of minimizing the I-divergence be-
tween |z|p and λ.

Proof: This can be easily confirmed by consider-
ing only the terms involving λ in the log-likelihood,
LP(λ) = −λ + |z|p log λ, which is maximized when
λ = |c|p. Thus, LP(|z|p) ≥ LP(λ). Subtracting the
right-hand side of this inequality from the left-hand
side gives a non-negative measure

LP(|z|p) − LP(λ) = |z|p log
|z|p

λ
− (|z|p − λ) ≥ 0, (8)

which is equal to the I-divergence.

4 Construction of Stationary Process

Given a set consisting of Fourier components z =
(z1, . . . , zI)T, let us assume that each component
has been generated independently according to zi ∼
cPois(λi, p). The probability of z being generated is

fz(z;λ, p) =
I∏

i=1

pe−λi

2π

|zi|p−2λ
|zi|p
i

(|zi|p)!
, (9)

where λ = {λi}1≤i≤I . We can easily show from what
kind of probability distribution the time-domain sig-
nal, x = F Hz, is supposed to have been generated un-
der this assumption. Since the (inverse) Fourier trans-
form is a unitary transform, we know that |det F | = 1.
The density function of x can thus be described in
terms of fz such that fx(x; λ, p) = fz(Fx; λ, p).

It is important to note that when p = 2, λ corre-
sponds to the PSD of the assumed stochastic process
(see Example 1), in which case the maximum likeli-
hood estimation of λ can be understood as the prob-
lem of fitting the PSD to the sample power spectrum
{|zi|2}1≤i≤I under the I-divergence criterion.

5 Conclusion

In this paper, we proposed a new probability density
function of a circular complex random variable, men-
tioned some of its properties, and showed that this dis-
tribution can be used to construct a stochastic process
that supports the use of the I-divergence as a well-
founded spectral distortion measure. By using this
stochastic process, we should be able to build a well-
defined audio signal processing framework, allowing for
the introduction of all kinds of spectrum models which
behave well with respect to the I-divergence criterion.
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