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ABSTRACT

This paper proposes a Bayesian model for automatic mu-
sic transcription. Automatic music transcription involves
several subproblems that are interdependent of each other:
multiple fundamental frequency estimation, onset detec-
tion, and rhythm/tempo recognition. In general, simultane-
ous estimation is preferable when several estimation prob-
lems have chicken-and-egg relationships. This paper pro-
poses modeling the generative process of an entire music
spectrogram by combining the sub-process by which a mu-
sically natural tempo curve is generated, the sub-process
by which a set of note onset positions is generated based
on a 2-dimensional tree structure representation of music,
and the sub-process by which a music spectrogram is gen-
erated according to the tempo curve and the note onset po-
sitions. Most conventional approaches to music transcrip-
tion perform note extraction prior to structure analysis, but
accurate note extraction has been a difficult task. By con-
trast, thanks to the combined generative model, the present
method performs note extraction and structure estimation
simultaneously and thus the optimal solution is obtained
within a unified framework. We show some of the tran-
scription results obtained with the present method.

1. INTRODUCTION

Music transcription is the process of automatically convert-
ing a given audio signal into a musical score. Although
there are a number of viable ways of transcribing mono-
phonic music, polyphonic music still poses a formidable
challenge.

Several subproblems must be solved if we are to tran-
scribe polyphonic music automatically, namely source sep-
aration, multiple fundamental frequency estimation (the es-
timation of the fundamental frequencies of concurrent mu-
sical sounds), onset detection (the detection of the position
in the signal where each note begins), and rhythm recog-
nition (the estimation of the tempo, beat locations, and the
note value of each note). The difficulty is that these sub-
problems involve many ambiguities.
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An audio signal of a musical note typically consists of
many overtones, some of which usually overlap when mul-
tiple notes are played simultaneously. To detect which
notes are present at a certain time instant, we need to know
which musical note each frequency component belongs to.
Since this information is missing for the spectrum of a mix-
ture signal, there can be multiple interpretations of how the
spectrum of each sound should appear as well as which
pitches are present in the mixture. On the other hand, a
music performance often involves temporal fluctuation in
terms of both rhythm and tempo, which means performers
do not always play notes with a perfectly timed rhythm and
constant tempo. Since we cannot define a note value with-
out having a notion for tempo and vice versa, there can be
infinite interpretations regarding what the intended rhythm
was and how the tempo varied if both types of information
are missing.

Many methods have already been developed for poly-
phonic music transcription, most of which try to tackle the
problem by dealing with the abovementioned subproblems
separately [1]. However, the inherent difficulty of the mu-
sic transcription problem lies in the chicken-and-egg inter-
dependency between these subproblems [2]. Firstly, if the
given signal is already decomposed into individual notes, it
is a simple matter to detect their fundamental frequencies.
On the other hand, the decomposition of a given spectro-
gram into individual notes can be accomplished more accu-
rately when the fundamental frequencies of the concurrent
sounds are given. Also, if we know the fundamental fre-
quencies of all the underlying notes in the signal, they can
constitute very useful information for accurately estimat-
ing their onset times and vice versa. Furthermore, as the
onset times of notes are usually governed by the rhythmic
structure of a piece of music, the “chicken and egg” situ-
ation also applies to the detection of note onsets and the
determination of beat locations and tempo. If we know the
beat locations of a piece of music, then it is much easier
to detect the onset times of notes and vice versa, since the
inter-onset times are likely to be multiples or fractions of
the beat period.

Simultaneous estimation is generally preferable when
several estimation problems are interdependent. Thus, we
consider it necessary to introduce a unified model, which
could be used to jointly solve the problems of determining
the pitch and onset time of each musical note, the rhythm
and the overall tempo variation of a piece of music. In this
paper, we take a Bayesian approach (a generative model



approach) as in [3–6] to formulate and solve this simulta-
neous estimation problem.

2. GENERATIVE MODEL OF SPECTROGRAM
2.1 Overview

Motivated by the above, this paper proposes modeling the
generative process of an entire spectrogram of a piece of
music by formulating the following three sub-processes
and combining them into one process: (1) the sub-process
by which the tempo curve of a piece of music is gener-
ated, (2) the sub-process by which a set of note onset po-
sitions (in terms of the relative time) is generated based
on a 2-dimensional tree structure representation of music,
and (3) the sub-process by which a music spectrogram is
generated according to the tempo curve generated by sub-
process 1 and the set of note onset positions generated by
sub-process 2. In the following, we model sub-process 1 in
2.2, sub-process 2 in 2.3 and sub-process 3 in 2.4, respec-
tively. Our aim is to use this complete generative model to
explain how a given spectrogram is generated. The most
likely model parameters given the observation would then
give a musically likely interpretation of what is actually
happening in the spectrogram (i.e., a musical score). To
this end, we employ a Bayesian approach to infer the pos-
terior distributions of all the latent parameters. An approx-
imate posterior inference algorithm is derived, which is de-
scribed in Section 3.

2.2 Sub-process for generating tempo curve

The tempo of a piece of music is not always constant and in
most cases it varies gradually over time. If we use a 1 “tick”
as a relative time notion, an instantaneous (or local) tempo
may be defined as the length of 1 tick in seconds. Now
let us use µd to denote the real duration (in units of sec-
onds) corresponding to the interval between d and d + 1
ticks. Thus, µd corresponds to the local tempo and so the
sequence µ1, . . . , µD can be regarded as the overall tempo
curve of a piece of music. One reasonable way to ensure
a smooth overall change in tempo is to place a Markov-
chain prior distribution over the sequence µ1, . . . , µD that
is likely to generate a sequence µ1, . . . , µD such that µ1 ≃
µ2, µ2 ≃ µ3, . . . , µD−1 ≃ µD. Here, we assume a Gaussian-
chain prior for convenience:

µd|µd−1 ∼ N (µd; µd−1, (σµ)2) (d = 2, . . . , D), (1)

where N (x; µ, σ) ∝ e−
(x−µ)2

2σ2 . If we use ψd to denote
the absolute time (in units of seconds) corresponding to
d ticks, ψd can thus be written as ψd = ψd−1 + µd−1,
which plays the role of mapping a relative time in units
of ticks (integer) to an absolute time in units of seconds
(continuous value).

2.3 Sub-process for generating note onset positions

Here we describe the generative model of the set of some
number R of note onset positions S1, . . . , SR (in units of
ticks). Most people would probably agree that music has

1 Tick is a relative measure of time represented by the number of dis-
crete divisions a quarter note has been split into. So, if we consider 16
divisions per quarter note, for instance, the duration of 40 ticks corre-
sponds to two-and-a-half beats.

Figure 1. Generative model of a 2-dimensional tree struc-
ture representation of musical notes.

a 2-dimensional hierarchical structure. Frequent motifs,
phrases or melodic themes consist of a hierarchy that can
be described as time-span trees. In addition, polyphony of-
ten consists of multiple independent voices. That is, we
can assume that music consists of a time-spanning tree
structure and a synchronizing structure of multiple events
at several levels of a hierarchy. We would like to describe
this 2-dimensional tree structure representation of music in
the form of a generative model. This can be accomplished
by introducing a generative model that is conceptually sim-
ilar to the one proposed in [6].

Fig. 1 shows an example of the generative process of
four musical notes in one bar of 4/4. In this example, a
whole note is first split into two consecutive half notes.
We call this process “time-spanning.” Next, the former
half note is copied in the same location, thus resulting in
a chord of two half notes. We call this process “synchro-
nization.” A chord with an arbitrary number of notes can
thus be generated by successively employing this type of
binary production. Finally, the latter half note is split into a
quaver and a dotted quarter note via the time-spanning pro-
cess. This kind of generative process can be modeled by
extending the idea of the probabilistic context-free gram-
mar (PCFG) [7]. For simplicity, this paper focuses only on
Chomsky normal form grammars, which consist of only
two types of rules: emissions and binary productions. A
PCFG is a pair consisting of a context-free grammar (a
set of symbols and productions of the form A → BC or
A → w, where A, B, and C are called “nonterminal sym-
bols” and w is called a “terminal symbol”) and production
probabilities, and defines a probability distribution over the
trees of symbols. The parameters of each symbol consist
of (1) a distribution over rule types, (2) an emission distri-
bution over terminal symbols, and (3) a binary production
over pairs of symbols.

To describe the generative process shown in Fig. 1,
we must introduce an extension of PCFG. As we explain
later, we explicitly incorporate a process of stochastically
choosing either “time-spanning” or “synchronization” in
the binary production process. Fig. 2 defines the pro-
posed generative process of the set of the onset positions
of some number R of musical notes. In our model, each
node n of the parse tree corresponds to one musical note
(with no pitch information) and a pair consisting of the on-
set position Sn and duration Ln of that note is considered
to be a nonterminal symbol. We first draw a “switching”
distribution (namely, a Bernoulli distribution) ϕT over the
two rule types {EMISSION, BINARY-PRODUCTION} from a
Beta distribution. Next, we draw another “switching” dis-



Draw rule probabilities:
ϕT ∼ Beta(ϕT; 1, βT)
[Probability of choosing either of two rule types]

ϕN ∼ Beta(ϕN ; 1, βN )
[Probability of choosing either of two binary-production types]

For each duration l:
ϕB

l ∼ Dirichlet(ϕB
l ;βB

l )
[Probability of position at which segment of length l is split]

For each node n in the parse tree:
bn ∼ Bernoulli(bn; ϕT)
[Choose either EMISSION or BINARY-PRODUCTION]

If bn = EMISSION
Sr ∼ δSr,Sn

, Lr ∼ δLr,Ln

[Emit terminal symbol]

If bn = BINARY-PRODUCTION

ρn ∼ Bernoulli(ρn; ϕN)
[Choose either SYNCHRONIZATION or TIME-SPANNING]

If ρn = SYNCHRONIZATION
Sn1 ∼ δSn1 ,Sn , Sn2 ∼ δSn2 ,Sn

Ln1 ∼ δLn1 ,Ln , Ln2 ∼ δLn2 ,Ln

[Produce two copies of note n]

If ρn = TIME-SPANNING
Sn1 ∼ δSn1 ,Sn , Sn2 ∼ δSn2 ,Sn+Ln1

Ln1 ∼ δLn1 ,Ln−Ln2

Ln2 ∼ Discrete(Ln2 ;ϕ
B
Ln

)
[Split note n into two consecutive notes n1 and n2]

Figure 2. The probabilistic specification of the present
generative model of a 2-dimensional tree structure rep-
resentation of musical notes. δ denotes Kronecker’s
delta. Thus, x ∼ δx,y means x = y (with prob-
ability 1). Bernoulli(x; y) and Beta(y; z) are defined
as Bernoulli(x; y) = yx(1 − y)1−x and Beta(y;z) ∝
yz1−1(1 − y)z2−1, where x ∈ {0, 1}, 0 ≤ y ≤ 1 and z =
(z1, z2), respectively. Discrete(x;y) and Dirichlet(y; z)
are defined as Discrete(x; y) = yx and Dirichlet(y; z) ∝∏

i yzi−1
i where y = (y1, . . . , yI) with y1 + · · · + yI = 1

and z = (z1, . . . , zI), respectively.

tribution ϕN over the two binary-production types {TIME-
SPANNING, SYNCHRONIZATION} similarly from a Beta dis-
tribution. Finally, we generate a discrete distribution ϕB

l =
(ϕB

l,1, . . . , ϕ
B
l,l) over the position l′ at which the segment

of duration l is split when BINARY-PRODUCTION is chosen.
The shapes of all the Beta distributions and the Dirichlet
distribution in our model are governed by concentration
hyperparameters: βT, βN and βB

1 , . . . , βB
D.

Given a grammar, we generate a parse tree in the fol-
lowing manner: start with a root node that has the desig-
nated root symbol, SRoot = 0 and LRoot = D where D
denotes the overall length of a piece of music in ticks. For
each nonterminal node n, we first choose a rule type bn us-
ing ϕT. If bn = EMISSION, we produce a terminal symbol
Sr with the value of Sn, namely the onset position of note
r. If bn = BINARY-PRODUCTION, we then choose a binary-
production type ρn using ϕN. If ρn = SYNCHRONIZATION,

we produce two nonterminal children n1 and n2 such that
Sn1 = Sn2 = Sn, Ln1 = Ln2 = Ln. This means that the
notes of the child nodes have exactly the same onset and
duration. If ρn = TIME-SPANNING, we produce two nonter-
minal children n1 and n2 with Sn1 = Sn, Ln1 = Ln−Ln2 ,
Sn2 = Sn + Ln1 where Ln2 is drawn from a discrete dis-
tribution ϕB

Ln
. Ln2 corresponds to the position at which

the segment of duration Ln is divided. We apply the pro-
cedure recursively to any nonterminal children and finally
obtain a sequence S1, . . . , SR corresponding to the onset
positions of R musical notes.

None of the notes r yet contains pitch information. We
assign a pitch index κr to each note r in the same way as
an ordinary cluster assignment process:

ϕK
r ∼ Dirichlet(ϕK

r ; αK), (2)

κr ∼ Discrete(κr;ϕK
r ), (3)

where Discrete(x; y) = yx (where y = (y1, . . . , yI) with
y1+ · · ·+yI = 1) and Dirichlet(y; z) ∝

∏
i yzi−1

i (where
z = (z1, . . . , zI)). The k-th element of ϕK

r defines how
likely each pitch index is to be chosen. It should be noted
here that the generative processes of Sr and κr should not
be considered independently, since harmony and rhythm
are in general interdependent of each other. An interesting
direction for future work is the joint modeling of these two
generative processes.

2.4 Sub-process for generating spectrogram

We now turn to describing the sub-process by which a mu-
sic spectrogram is generated. Here, we consider that a mu-
sic spectrogram is generated according to the tempo curve
and the set of note onset positions, that have been gen-
erated by the sub-processes described in 2.2 and 2.3. To
model a spectrogram of a musical audio signal, we make
the following assumptions about musical notes:

(A1) Each musical note has a static spectral profile char-
acterized by a particular pitch.

(A2) The magnitude spectrum of music at a certain time
instant is represented by a superposition of the spec-
tra of multiple musical notes.

(A3) The power of each musical note varies smoothly in
time in the interval between the onset and offset.

From assumption (A1), a magnitude spectrogram of a mu-
sical note r can be described as

Xω,t =
R∑

r=1

Hω,κrWr,t, (4)

where ω and t are frequency and time indices, respectively.
A set consisting of H1,k, . . . , HΩ,k ≥ 0 represents the
static spectrum of the k-th pitch and so a set consisting of
H1,κr , . . . ,HΩ,κr signifies the spectrum of note r. Wr,t ≥
0 denotes the power of note r at time t. As the assumptions
(A1) and (A2) do not always hold exactly in reality, an
actual music spectrogram Yω,t may diverge from the “ideal
model” Xω,t to some extent. One way to simplify this kind
of deviation process is to assume a probability distribution
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Figure 3. Power envelope Wr,t of musical note r.

on Yω,t with the expected value of Xω,t. Here, we assume
that Yω,t follows a Poisson distribution with mean Xω,t:

Yω,t ∼ Poisson(Yω,t; Xω,t), (5)

where Poisson(y; x) = xye−x/y!. It should be noted that
the maximization of the Poisson likelihood with respect to
Xω,t amounts to optimally fitting Xω,t to Yω,t by using
the I-divergence as the fitting criterion [3, 8]. To avoid any
indeterminacy in the scaling of Hω,κr and Wr,t, we assume∑

ω

Hω,k = 1 (k = 1, . . . ,K). (6)

Each spectral profile Hω,k must have the harmonic struc-
ture of a particular pitch. One way of ensuring this is to
assume a prior distribution over Hω,k so that it is likely to
generate a spectrum with a certain harmonic structure of
the k-th pitch. Here, we choose to place a Gamma prior
over Hω,k, namely

Hω,k ∼ Gamma(Hω,k; γH̄ω,k + 1, β), (7)

where Gamma(x; a, b) ∝ xa−1e−bx. The mode of this
prior distribution is given by H̄ω,k, which should be de-
fined such that it corresponds to the most likely spectral
profile for the k-th pitch. β determines the peakiness of
the density around the mode.

To incorporate assumption (A3) into Wr,t, we propose
describing Wr,t using a parametric model expressed as a
sum of Gaussians [8] (Fig. 3):

Wr,t =
M∑

m=1

Gr,m,t, (8)

Gr,m,t =
wrur,m√

2πφ
e−(t−(m−1)φ−τr)2/2φ2

,

where wr is the total energy of note r, and τr is the center
of the first Gaussian, which can be considered the onset
time of note r (in seconds). The centers of the Gaussians
are constrained so that they are equally spaced with the
distance φ, which is equal to the “standard deviation” of
all the Gaussians. ur,1, . . . , ur,M are weights associated
with the M Gaussians, which determine the overall shape
of the power envelope. To avoid any indeterminacy in the
scaling of wr and ur,m, we assume

∀r :
M∑

m=1

ur,m = 1. (9)

The number of consecutive Gaussians with non-zero weights
corresponds to the duration of the note, which we hope to
infer automatically from an observed spectrogram. To this
end, we choose to use a stick-breaking representation [9]
to describe the generative process of ur,1, . . . , ur,M :

Vr,m ∼ Beta(Vr,m; 1, βV
r ) (10)

ur,m = Vr,m

m−1∏
m′=1

(1 − Vr,m′), (11)

which contributes to sparsifying the Gaussian weights.
Now, recall that the onset position Sr (in ticks) of note

r is assumed to have been generated via the generative
process described in 2.3. The onset position τr of note r
should thus be placed near the absolute time into which Sr

is converted. Recall also that ψd, which can be considered
a function that takes a relative time d as an input and re-
turns the corresponding absolute time as an output, is also
assumed to have been generated (via the generative process
described in 2.2). Given Sr and ψd, we find it convenient
to write the generative process of τr as

τr ∼ N (τr; ψSr , (σ
τ )2). (12)

2.5 Expansion of generative process

We can describe an expanded version of the generative pro-
cess of Yω,t as

Cr,m,ω,t ∼ Poisson(Cr,m,ω,t; Hω,κrGr,m,ω,t)

Yω,t ∼ δ
(
Yω,t −

∑
r,m

Cr,m,ω,t

)
, (13)

by introducing an auxiliary variable Cr,m,ω,t. For conve-
nience of analysis, we use this generative process instead
of (5) in the following. Note that it can be readily verified
that marginalizing out Cr,m,ω,t reduces (13) to (5).

3. APPROXIMATE POSTERIOR INFERENCE
3.1 Variational Bayesian approach

In this section, we describe an approximate posterior in-
ference algorithm for our generative model based on vari-
ational inference. The random variables of interest in our
model are

H = {Hω,k}ω,k : spectrum of pitch k,
w = {wr}r : total energy of note r,
V = {Vr,m}r,m : shape of power envelope of note r,
τ = {τr}r : onset time (sec) of note r,
κ = {κr}r : pitch index assigned to note r,
ψ = {ψd}d : absolute time corresponding to d ticks,
µ = {µd}d : local tempo between d and d + 1 ticks,
S = {Sr}r : onset position of note r (in ticks),
L = {Lr}r : duration of note r (in ticks), and
ϕB, ϕT, ϕN, ϕK : rule probabilities,

which we denote as Θ. Our goal is to compute the poste-
rior p(Θ, C|Y ) where Y = {Yω,t} and C = {Cr,m,ω,t}
are sets consisting of observed magnitude spectra and aux-
iliary variables, respectively. By using the conditional dis-
tributions defined in 2.2, 2.3, 2.4, and 2.5, we can write the



joint distribution p(Y,Θ, C) as

p(Y,H,w, V, τ, κ, ψ, µ, S, L, ϕB , ϕT , ϕN , ϕK , C)
= p(Y |C)p(C|H,w, V, τ, κ)p(H)p(V )p(w)

p(τ |ψ, S)p(ψ|µ)p(µ)p(κ|ϕK)p(ϕK)

p(S,L|ϕB , ϕT , ϕN )p(ϕB)p(ϕT )p(ϕN ), (14)

but to obtain the exact posterior p(Θ, C|Y ), we need to
compute p(Y ), which involves many intractable integrals.

We can express this posterior variationally as the solu-
tion to an optimization problem:

argmin
q∈Q

KL(q(Θ, C)∥p(Θ, C|Y )), (15)

where KL(·∥·) denotes the Kullback-Leibler (KL) diver-
gence between its two arguments. Indeed, if we let Q be
the family of all distributions over Θ and C, the solution to
the optimization problem is the exact posterior p(Θ, C|Y ),
since KL divergence is minimized exactly when its two
arguments are equal. Of course, solving this optimization
problem is just as intractable as directly computing the pos-
terior. Although it may appear that no progress has been
made, having a variational formulation allows us to con-
sider tractable choices of Q in order to obtain principled
approximate solutions.

For our model, we define the set of approximate distri-
butions Q as those that factor as follows:

Q =
{
q : q(C)q(H)q(w)q(V )q(τ, ψ, µ)q(κ)

q(S,L)q(ϕK)q(ϕB)q(ϕT)q(ϕN)
}
. (16)

We admit that this is a strong assumption. Its validity and
how it affects the parameter inference result must be inves-
tigated in the future.

3.2 Coordinate ascent

We now present an algorithm for solving the optimization
problem described in (15) and (16). Unfortunately, the op-
timization problem is non-convex, and it is intractable to
find the global optimum. However, we can use a sim-
ple coordinate ascent algorithm to find a local optimum.
The algorithm optimizes one factor in the mean-field ap-
proximation of the posterior at a time while fixing all the
other factors. The mean-field update equations for the vari-
ational distributions are given in the following form:

q(Cω,t) = Multinomial(Cω,t; Yω,t,f
C
ω,t), (17)

q(Hω,k) = Gamma(Hω,k; ξH
ω,k, ζH

ω,k), (18)

q(wr) = Gamma(wr; ξw
r , ζw

r ), (19)

q(Vr,m) = Beta(Vr,m; ξV
r,m, ζV

r,m), (20)

q(τ , ψ, µ) = N (χ; ξχ, ζχ), (21)
q(κr) = Discrete(κr; fκ

r ), (22)

q(ϕK
r ) = Dirichlet(ϕK

r ; ξK
r ), (23)

q(Sr, Lr) = Discrete(Sr, Lr; fSL
r ), (24)

q(ϕB
l ) = Dirichlet(ϕB

l ; ξB
l ), (25)

q(ϕT ) = Beta(ϕT ; ξT , ζT ), (26)
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(b) Detected beat locations along with the estimate of Wr,t

(c) Score transcribed with the proposed method

Figure 4. Transcription result obtained with the proposed
method applied to Morzart: Piano Sonata No. 11 in A ma-
jor, K. 331/300i under the situation where τ1, . . . , τR are
given. In (b), the red and green lines indicate the estimates
of bar lines and the positions of beat locations obtained
with the present method, respectively.

q(ϕN ) = Beta(ϕN ; ξN , ζN ), (27)

where

χ =

τ
ψ
µ

, ξχ =

ητ

ηψ

ηµ

, ζχ =

 ντ ντψ ντµ

ντψ νψ νψµ

ντµ νψµ νµ

.

(25)–(27) are performed only when we want to learn the
rule probabilities. (24)–(27) can be updated using the inside-
outside algorithm. The update formulas of the variational
parameters are all given in analytical form, but they are
omitted here owing to space limitations.

4. EXPERIMENTAL RESULTS

We now present experimental results obtained with our
proposed model. We first conducted a preliminary experi-
ment to confirm that our model can transcribe a score (ap-
propriately estimate the note values of musical notes, beat
locations, and the tempo of a music piece) when the on-
set times of all the musical notes (namely, τr’s) are given.
We then show an example of transcription results obtained
using the complete model directly from an audio spectro-
gram.

For the first experiment, we used a few piano record-
ings (RWC-MDB-C-2001 No. 26, 27, 30) excerpted from
the RWC music database [12]. The data were the first 10 s,
mixed down to a monaural signal and resampled to 16 kHz.
The constant-Q transform was used to compute spectro-
grams where the time resolution, the lower bound of the
frequency range, and the frequency resolution were set at
16 ms, 30 Hz and 12 cents, respectively. In this experi-
ment, all the values τ1, . . . , τR were given manually. The
hyperparameters and initial parameters were set at K =
74,M = 40, φ = 3, αH

ω,k = βH
ω,kH̄ω,k+1, βH

ω,k = 500, αw
r =



(a) Detected beat locations along with the estimate of Wr,t

(b) Score transcribed with the proposed method

Figure 5. Transcription result obtained with the proposed
method applied to Morzart: Piano Sonata No. 11 in A ma-
jor, K. 331/300i. In (a), the red and green lines indicate
the estimates of bar lines and the positions of beat loca-
tions obtained with the present method, respectively. In
(b), the red, green and blue circles indicate the deletion
errors, pitch errors and octave errors, respectively.

βw
r = 0, βV

r,m = 10e−m/8/
∑

m′ e−m′/8, στ = 2, σψ =
1, σµ = 0.5, αr,k = 2, βT = 1, βN = 2. The initial values
of Hω,k and H̄ω,k were set at the value obtained with the
non-netaive matrix factorization [13] applied to the mag-
nitude spectrogram of the piano excerpts from the RWC
musical instrument sound database [11]. We set the res-
olution of the relative time at 4 ticks per quarter note. D
and the initial values of ψd were set at the values obtained
with [10]. The algorithm was run for 10 iterations. After
convergence, we took the expected values of the posteriors
and regarded them as the parameter estimates.

Fig. 4 shows an example of the score we obtained when
we applied the present method to Mozart’s Sonata (RWC-
MDB-C-2001 No. 26). As can be seen from this example,
the note values and the beat locations were appropriately
estimated. We also confirmed that reasonably good results
were obtained for other recordings such as Chopin’s Noc-
turne No. 2 in E♭-maj, Op. 9 (RWC-MDB-C-2001 No. 30).

For the second experiment, we applied our method with-
out providing any information about τ . The experimental
conditions were the same as above except that we assumed
that τ was unknown. Fig. 5 shows an example of the esti-
mates of Wr,t (namely, the power envelope of note r) and
the score obtained with the present method applied to the
same data in Fig. 5. The result showed that many octave
errors had occurred. This kind of error often occurs when
there is a mismatch between a spectrum model and an ac-
tual spectrum. The validity of the assumptions we have
made about the spectra of musical sounds in 2.4 must be
carefully examined in the future.

5. CONCLUSION

This paper proposed a Bayesian model for automatic mu-
sic transcription. Automatic music transcription involves
several interdependent subproblems: multiple fundamental
frequency estimation, onset detection, and rhythm/tempo
recognition. To circumvent the chicken-and-egg problem,

we modeled the generative process of an entire music spec-
trogram by combining the sub-process by which a musi-
cally natural tempo curve is generated, the sub-process by
which a set of note onset positions is generated based on
a 2-dimensional tree structure representation of music, and
the sub-process by which a music spectrogram is gener-
ated according to the tempo curve and the note onset po-
sitions. Thanks to this combined generative model, the
present method performs note extraction and structure esti-
mation simultaneously and thus an optimal solution is ob-
tained within a unified framework. We described some of
the transcription results obtained with the present method.
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