

Abstract: This paper presents a novel BSS approach that simultaneously performs an estimation of the number of sources, source separation based on the sparseness of speech, and

permutation alignment, based on Bayesian nonparametric approach.

1. Introduction

Blind source separation (BSS)

- Technique for separating sources only from microphone inputs
- Potential applications include hands-free teleconference system and automatic meeting transcription system

Motivation and objective

- It is often difficult to pre-specify the exact number of all possible sources present in real environments.
- **e.g.)** In meeting situations, # of speakers can change during the meeting or loud, unexpected noise such as door slamming can occur.
- → When # of sources is unknown, we shall always consider underdetermined case (# of microphones < # of sources)
- One successful approach for underdetermined BSS involves utilizing "*sparseness" of speech [1]
- * T-F components of speech are near zero across most of T-F bins
- To exploit the sparseness of speech, mixing model must be represented in T-F domain
- → Permutation alignment problem needs to be solved

We propose BSS approach that simultaneously performs (1) estimation of # of sources, (2) source separation based on sparseness of speech, and (3) permutation alignment.

2. Mixing Model

Blind separation of infinitely many sparse sources Hirokazu Kameoka^{1,2}, Misa Sato¹, Takuma Ono¹, Nobutaka Ono³, Shigeki Sagayama¹ ¹ The University of Tokyo, ² NTT Communication Science Laboratories, ³ National Institute of Informatics

$$\hat{q}(A) = \prod_{k,\omega} \mathcal{N}_{\mathbb{C}}(\boldsymbol{a}_{k,\omega}; \boldsymbol{m}_{k,\omega}, \Gamma_{k,\omega})$$
$$\hat{q}(S) = \prod_{\omega,t} \mathcal{N}_{\mathbb{C}}(\hat{s}_{\omega,t}; \mu_{\omega,t}, \sigma_{\omega,t}^2)$$
$$\hat{q}(Z) = \prod \text{Discrete}(z_{\omega,t}; \boldsymbol{\phi}_{\omega,t})$$

 $^{\omega,t}$

 $\hat{q}(V) = \prod \text{Beta}(v_k; \gamma_{k,0}, \gamma_{k,1})$ $\hat{q}(C) = \prod \text{Discrete}(c_k; \boldsymbol{\psi}_k)$ $\hat{q}(\boldsymbol{\rho}) = \text{Dirichlet}(\boldsymbol{\rho}; \zeta_1, \dots, \zeta_I)$

References

- [1] O. Yılmaz, S. Rickard, "Blind separation of speech mixtures via time-frequency masking," IEEE Trans. Signal Process., vol. 52, no. 7, pp. 1830–1847, 2004. [2] Y. Izumi, N. Ono, S. Sagayama, "Sparseness-based 2ch BSS using the EM algorithm in reverberant environment," in Proc. WASPAA, pp. 147–150, 2007. [3] J. Sethuraman, "A constructive definition of Dirichlet priors," *Statistica Sinica*, vol. 4, pp. 639–650, 1994. [4] T. S. Ferguson, "A Bayesian analysis of some nonparametric problems," Annals of Statistics, vol. 1, no. 2, pp. 209–230, 1973. [5] H. Sawada, S. Araki, S. Makino, "Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment," *IEEE Trans. ASLP,* vol. 19, no. 3, pp. 516–527, 2010.
- [6] E. Vincent, R. Gribonval, C. F´evotte, "Performance measurement in blind audio source separation," IEEE Trans. ASLP, pp. 1462–1469, 2006.

