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ABSTRACT

This paper deals with the problem of underdetermined blind
source separation (BSS) where the number of sources is un-
known. We propose a BSS approach that simultaneously
estimates the number of sources, separates the sources based
on the sparseness of speech, and performs permutation align-
ment. We confirmed experimentally that reasonably good
separation was obtained with the present method without
specifying the number of sources.

Index Terms— Underdetermined blind source separa-
tion, sparseness, Dirichlet process, variational inference

1. INTRODUCTION

Blind Source Separation (BSS) is a technique for separating
out individual source signals from microphone inputs when
the transfer characteristics between sources and microphones
are unknown. BSS is potentially useful for the development
of such applications as hands-free teleconference systems and
automatic meeting transcription systems. In meeting situa-
tions, for instance, it is likely that the number of participants
(speakers) will change during the meeting or a loud, unex-
pected noise such as a door slamming will occur in the room.
Thus, it is often difficult to pre-specify the exact number of
all possible sources present in real environments. Many con-
ventional BSS algorithms are designed to use the number of
sources as the input when performing separation, and most of
these algorithms do not work well if the assumed and actual
numbers of sources are not the same. This paper presents a
novel BSS algorithm that allows the number of sources to be
inferred along with the separation.

To estimate the unknown mixing matrix and source sig-
nals solely from observed signals, we must make some as-
sumptions about the sources, and formulate an appropriate
optimization problem based on criteria designed according to
those assumptions. For example, if the observed signals out-
number the sources, we can employ independent component
analysis (ICA) [1], which estimates the separation matrix (the
inverse of the mixing matrix) such that the independence of
the source estimates is maximized. However, to achieve a
BSS algorithm that works without assuming the number of
sources, we shall always consider an underdetermined case
where there are fewer observations than sources. In an under-
determined case, there are an infinite number of solutions for

source signals even if the mixing process is known. The in-
dependence assumption is too weak to allow us to determine
a unique solution and so directly applying ICA will not work
in this case. In underdetermined situations, we typically need
a stronger assumption than independence.

One successful approach for underdetermined BSS in-
volves utilizing the sparse nature of speech [2–6], which re-
lies on the fact that the time-frequency components of speech
are near zero across most of the time-frequency bins. Since
the time-frequency components of speech rarely overlap each
other even when multiple speakers are speaking simultane-
ously, the main focus of this approach is how to design a
time-frequency mask with which we can extract only the
components of target speech from the mixture.

The signals observed at each microphone can be mod-
eled as a convolutive mixture of source signals. To exploit
the sparse nature of speech, we must convert it to a time-
frequency representation. If we assume the use of a short-
time Fourier transform (STFT) to obtain a time-frequency
representation with a frame length sufficiently longer than
the length of the impulse response from a source to a micro-
phone, an observed signal can be approximated fairly well
by an instantaneous mixture in the frequency domain. BSS
based on this observation model is called frequency domain
BSS. While frequency domain BSS allows for a fast imple-
mentation compared with BSS that uses a time domain con-
volutive mixture model, it requires us to solve an additional
problem called the permutation alignment problem. That is,
we must group together the separated components of different
frequency bins that are considered to originate from the same
source in order to construct a separated signal.

Motivated by the above, this paper proposes a novel BSS
approach that simultaneously performs (1) an estimation of
the number of sources, (2) source separation based on the
sparseness of speech, and (3) permutation alignment.

2. MIXING MODEL

We first consider a situation where K source signals are cap-
tured by M microphones. Here, let ym(ω, t) ∈ C be the
short-time Fourier transform (STFT) component observed at
the m-th microphone, and sk(ω, t) ∈ C be the STFT com-
ponent of the k-th source. 1 ≤ ω ≤ Ω and 1 ≤ t ≤ T are
the frequency and time indices, respectively. If we assume
that the length of the impulse response from a source to a mi-
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crophone is sufficiently shorter than the frame length of the
STFT, the observed signal can be approximated fairly well by
an instantaneous mixture in the frequency domain:

y(ω, t) =
K∑

k=1

ak(ω)sk(ω, t) + n(ω, t), (1)

where y(ω, t) = (y1(ω, t), . . . , yM (ω, t))T. ak(ω) =
(ak,1(ω), . . . , ak,M (ω))T is the frequency array response
for source k, which is assumed to be time-invariant. n(ω, t)
is assumed to comprise all kinds of components that can-
not be expressed by the instantaneous mixture representation
(e.g., background noise and reverberant components).

We now exploit the sparseness of speech and assume that
only one source is active in each time-frequency bin. By us-
ing zω,t ∈ {1, . . . ,K} to denote the (unknown) active source
index at time-frequency bin (ω, t), (1) can be rewritten as

y(ω, t) = azω,t(ω)s(ω, t) + n(ω, t). (2)

Notice that the superscript k is dropped from sk(ω, t) in (2) as
it is no longer necessary since we are assuming sk(ω, t) = 0
for k ̸= zω,t. Namely, s(ω, t) signifies the component of an
active source at time-frequency bin (ω, t). For convenience
of notation, we hereafter use subscripts to indicate ω and t.

3. GENERATIVE MODEL

3.1. Generative process of observed signals
Here we describe the generative process of an observed signal
on the basis of (2). Let us assume that the noise component
nω,t follows a complex normal distribution with mean 0 and
covariance Σ(n)

ω . Then, from (2), yω,t is also normally dis-
tributed such that

yω,t|a1:K,ω, sω,t, zω,t ∼ NC(yω,t;azω,t,ωsω,t, Σ(n)
ω ), (3)

conditioned on a1:K,ω = {a1,ω, . . . , aK,ω}, sω,t and zω,t,
where NC(x; µ, Σ) ∝ exp(−(x − µ)HΣ−1(x − µ)).

3.2. Mixture of infinite sparse sources
We do not usually obtain any information about which source
is active at each time-frequency bin. Thus, we regard zω,t as a
latent variable and consider describing its generative process.
If the number of sources is K, it would be natural to assume
that the probability of choosing an index zω,t from the set
of source indices, {1, . . . ,K}, can be described as a discrete
distribution

zω,t|π ∼ Discrete(zω,t; π), (4)

where Discrete(x;y) = yx (with y = (y1, . . . , yK) and∑K
k=1 yk = 1). The k-th element of π defines how likely

the source index k is to be chosen. Since we do not also have
any information about π, we consider describing its genera-
tive process using a “symmetric” distribution. For the conve-
nience of the following analysis, we assume that π has been
generated from a symmetric Dirichlet distribution

π ∼ Dirichlet(π;α0/K, . . . , α0/K), (5)

where Dirichlet(y; z1, . . . , zK) ∝
∏K

k=1 yzk−1
k . The shape

of the Dirichlet distribution is governed by a concentration
hyperparameter α0.

Thus far, we have considered the case of a finite number
K of sources. It can be shown that the limit of the above
generative processes (3), (4) and (5) as K goes to infinity can
be described explicitly as

π ∼ GEM(π; α0), (6)
zω,t|π ∼ Discrete(zω,t;π), (7)

yω,t|a1:∞,ωsω,t, zω,t ∼ NC(yω,t; azω,t,ωsω,t, Σ(n)
ω ). (8)

GEM(π; α0) is called the stick-breaking process [7], which is
known as a constructive definition of the Dirichlet process [8]
and is given by

vk ∼ Beta(vk; 1, α0), (9)

πk = vk

k−1∏
l=1

(1 − vl), (10)

where Beta(y; z1, z2) ∝ yz1−1(1−y)z2−1. π ∼ GEM(π;α0)
produces exponentially decaying weights in expectation. This
means that the source with a larger index will be less likely
to be active and thus simple models with fewer sources are
favored, given observations.

3.3. Mixture of Direction-of-Arrivals (DOAs)
We describe here the generative process of the frequency re-
sponse ak,ω of the mixing system.

So far we have treated ak,ω as an independent parameter
across ω. If the index k indicates an identical source across
ω, ak,ω will have a certain structure that can be described
using the property of acoustic wave propagation. We thus
expect that incorporating an appropriate constraint into ak,ω

would help solve the permutation alignment problem through
parameter inference. If each source is assumed to be located
far from the microphones so that the signal can be treated ap-
proximately as a plane wave, the interchannel time difference
between the microphones depends only on the direction of
arrival (DOA) of the source. Since the time delay between
two microphones corresponds to the phase difference of the
frequency response of the microphone array, the complex ar-
ray response can be expressed explicitly by using the DOAs
of the source. Specifically, with M = 2 microphones, the
complex array response for a source at direction θ such that
0 ≤ θ < 2π is defined as a function of ω depending on θ

ℓθ,ω =
[

1
eȷωD cos θ/C

]
, (11)

where ȷ is the imaginary unit, D [m] is the distance between
the two microphones, and C [m/s] is the speed of sound. If
the DOA θk of source k is known, the frequency response
ak,ω should be equal to ℓθk,ω . However, due to such factors
as the plane wave assumption and the narrowband instanta-
neous mixture approximation, the actual frequency response
ak,ω may diverge from the “ideal frequency response” ℓθk,ω



Fig. 1. Plate notation of the present generative model.

to some extent. One way to simplify the process of this kind
of deviation is to assume a probability distribution on ak,ω

with the expected value of ℓθk,ω . Here, we assume for con-
venience that ak,ω is generated from a complex normal dis-
tribution with mean ℓθk,ω. Note that we do not usually obtain
any information about which direction each source is ema-
nating from. Thus, we regard the DOA of each source as
a latent variable and further consider describing its genera-
tive process. As explained in detail below, the entire gener-
ative process of ak,ω can then be described as a “mixture of
DOAs”.

Let us now introduce a discrete set of N possible direc-
tions, ϑ1, . . . , ϑN , which are all assumed to be constants.
For instance, consider defining ϑn as ϑn = (n − 1)π/N ,
(n = 1, . . . , N) (dividing π in N equal angles). We assume
that each source is emanating from one of these directions.
First, we consider the generative process of the DOA θk of
source k. For each source k, an index ck of direction is drawn
according to a discrete distribution ρ = (ρ1, . . . , ρN )

ck|ρ ∼ Discrete(ck; ρ). (12)

By using ck, θk is then given as

θk = ϑck
. (13)

As with 3.2, we assume that ρ has been generated from a
symmetric Dirichlet distribution

ρ ∼ Dirichlet(ρ; β0/M, . . . , β0/M). (14)

As mentioned above, the frequency response ak,ω is assumed
to be generated from a complex normal distribution, given ck,

ak,ω|ck ∼ NC(ℓθk,ω, Σ(a)
ω ), (15)

where Σ(a)
ω denotes the covariance of the complex normal dis-

tribution. The entire generative model is described in Fig. 1.

4. APPROXIMATE POSTERIOR INFERENCE

In this section, we describe an approximate posterior infer-
ence algorithm for our generative model based on variational
inference. The random variables of interest in our model are

A = {ak,ω}k,ω : complex array response for source k,
S = {sω,t}ω,t : component of active source at (ω, t),
Z = {zω,t}ω,t : index of active source at (ω, t),
V = {vk}k : stick breaking proportion,
C = {ck}k : index of direction for source k,
ρ = (ρ1, . . . , ρN ) : mixture weight for each DOA,

which we denote by Θ. Our goal is to compute the poste-
rior p(Θ|Y ) where Y = {yω,t}ω,t is the set consisting of
observed multichannel signals. By using the conditional dis-
tributions defined in 3.2 and 3.3, we can write the joint distri-
bution p(Y, Θ) as

p(Y,A, S, Z, V, C, ρ)
= p(Y |A,S, Z)p(Z|V )p(V )p(A|C)p(C|ρ)p(ρ), (16)

but to obtain the exact posterior p(Θ|Y ), we must compute
p(Y ), which involves many intractable integrals.

We can express this posterior variationally as the solution
to an optimization problem:

argmin
q∈Q

KL(q(Θ)∥p(Θ|Y )), (17)

where KL(·∥·) denotes the Kullback-Leibler (KL) divergence
between its two arguments. Indeed, if we let Q be the fam-
ily of all distributions over Θ, the solution to the optimization
problem is the exact posterior p(Θ|Y ), since KL divergence
is minimized when its two arguments are exactly equal. Of
course, solving this optimization problem is just as intractable
as directly computing the posterior. Although it may appear
that no progress has been made, having a variational formu-
lation allows us to consider tractable choices of Q in order to
obtain principled approximate solutions.

For our model, we define the set of approximate distribu-
tions Q to be those that factor as follows:

Q =
{
q : q(A)q(S)q(Z)q(V )q(C)q(ρ)

}
. (18)

To define q(A), q(V ) and q(C), we need to construct dis-
tributions on the infinite sets {v1, v2, . . .}, {a1,ω, a2,ω, . . .}
and {c1, c2, . . .}. For this approach to be tractable, we trun-
cate the variational distribution at some value K∗ by setting
q(vK∗ = 1) = 1. The mixture proportions πk for k > K∗

will thus be zero, and we can ignore ak,ω and ck for k > K∗.
In practice, we set K∗ at a sufficiently large integer. It is im-
portant to emphasize that truncating the variational distribu-
tion does not mean that the true posterior itself is truncated.
As the truncation level K∗ becomes larger, the approxima-
tions to the true posterior become more accurate.

We now present an algorithm for solving the optimization
problem described in (17) and (18). Unfortunately, the opti-
mization problem is non-convex, and it is intractable to find
the global optimum. However, we can use a simple coordinate
ascent algorithm to find a local optimum. The algorithm opti-
mizes one factor in the mean-field approximation of the pos-
terior at a time while fixing all other factors. The mean-field
update equations for the variational distributions are given in
the following form:

q̂(A) =
∏
k,ω

NC(ak,ω; mk,ω, Γk,ω), (19)



Fig. 2. SDRs obtained with conventional and present methods
with different K and K∗ settings.

q̂(S) =
∏
ω,t

NC(sω,t; µω,t, σ
2
ω,t), (20)

q̂(Z) =
∏
ω,t

Discrete(zω,t; ϕω,t), (21)

q̂(V ) =
∏
k

Beta(vk; γk,0, γk,1), (22)

q̂(C) =
∏
k

Discrete(ck; ψk), (23)

q̂(ρ) =
∏
k

Dirichlet(ρ; ζk,1, . . . , ζk,M ). (24)

5. EXPERIMENT

We evaluated the performance of the proposed method in
terms of source separation ability.

We used a stereo speech signal with a sampling rate of
16kHz as a test signal, which we obtained by mixing three
speech signals [9] (two female and one male speakers) us-
ing a measured room impulse response [10] (in which the
distance between the microphones was 5 cm and the rever-
beration time was 0 ms). The three sources were spaced 30
degrees apart. To compute the STFT components of the ob-
served signal, the STFT frame length was set at 64 ms and a
Hamming window was used with an overlap length of 16ms.
Σ(n)

ω and Σ(a)
ω were set respectively at I and 10−1.5 × I . M

was set at 180. All the variational parameters were initial-
ized randomly. The variational inference algorithm was run
for 100 iterations. After convergence, each separated sig-
nal was obtained by multiplying µω,t by ϕk,ω,t. We chose
Sawada’s method described in [11] as a comparison. In this
method, the number of sources must be specified manually.
The following results report the performance in terms of the
Signal-to-Distortion Ratio (SDR) [12]. The SDR is expressed
in decibels (dB), and a higher SDR indicates superior quality.

The present method was tested with various settings of the
truncation level K∗. As for Sawada’s method, it was tested
with various settings of the assumed number K of sources.
Fig. 2 shows the average SDRs obtained with Sawada’s and

the present methods with various K and K∗ settings. As ex-
pected, the performance of the present method improves with
increasing K∗, while that of Sawada’s method deteriorates
significantly when the assumed number of sources departs
from the actual number.

6. CONCLUSION

This paper aimed at developing a BSS algorithm that works
well even when the number of sources is unknown and pro-
posed a novel BSS approach that simultaneously performs an
estimation of the number of sources, source separation based
on the sparseness of speech, and permutation alignment. We
confirmed experimentally that reasonably good separations
were obtained with the present method without specifying the
number of sources.
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