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Abstract
This paper introduces our ongoing work on generative model-
ing of speech fundamental frequency (F0) contours for estimat-
ing prosodic features from raw speech data. The present F0

contour model is formulated by translating the Fujisaki model,
a well-founded mathematical model representing the control
mechanism of vocal fold vibration, into a probabilistic model
described as a discrete-time stochastic process. The motivation
behind this formulation is two fold. One is to derive a general
parameter estimation framework for the Fujisaki model, allow-
ing for the introduction of powerful statistical methods. The
other is to construct an automatically trainable version of the
Fujisaki model so that in future it can be used to develop a statis-
tical speaking style conversion system or incorporated into ex-
isting text-to-speech synthesis systems to improve the natural-
ness and intelligibility of computer-generated speech. We also
briefly introduce a generative model of F0 contours of singing
voice developed under the same spirit.
Index Terms: speech F0 contour, Fujisaki model, generative
model, hidden Markov model, EM algorithm

1. Introduction
Prosody aids the listener in interpreting an utterance by group-
ing words into larger information units and drawing attention
to specific words. It also plays an important role in conveying
various types of non-linguistic information such as the identity,
intention, attitude and mood of the speaker. Since the voice fun-
damental frequency (F0) contour is an important acoustic cor-
relate of many prosodic constructs, modeling and analyzing F0

contours can be potentially useful for many speech applications
such as speech synthesis, speaker identification, speech conver-
sion and dialogue systems, in which prosodic information plays
a significant role.

An F0 contour consists of long term pitch variations over
the duration of prosodic units and short term pitch variations in
accented syllables. The former usually contribute in phrasing
while the latter contribute in accentuation during an utterance.
These two types of pitch variations can be interpreted as the
manifestations of two independent movements by the thyroid
cartilage. The Fujisaki model [1] is a well-founded mathemati-
cal model that describes an F0 contour as the sum of these two
contributions. This model is known to approximate actual F0

contours of speech surprisingly well when the model parame-
ters are chosen appropriately, and its validity has been shown
for many, typologically diverse languages. For this reason, and
thanks to the intuitive association of the model parameters with

the mechanical factors in the control mechanism of phonation,
the Fujisaki model has been widely used with notable success
to design F0 contours for synthesizing natural speech. Since
a prosodic feature in speech is predominantly characterized by
the levels and timings of the phrase and accent components, one
important challenge is to solve an inverse problem of estimat-
ing the Fujisaki-model parameters automatically from a raw F0

contour.
However, this problem has been a difficult task. Several

techniques have already been developed ([2–4], to name just
a few), but so far with limited success due to the difficulty in
searching for optimal parameters under the constraints imposed
in the Fujisaki model. To overcome this difficulty, we have
been concerned with translating the Fujisaki model into a prob-
abilistic model such that one can make the best use of powerful
methods in statistical estimation theory (such as expectation-
maximization algorithm and Viterbi algorithm) for the parame-
ter estimation. The other important motivation for this formu-
lation is to construct an automatically trainable version of the
Fujisaki model so that in future it can be used to develop a sta-
tistical speaking style conversion system or incorporated into
existing text-to-speech synthesis systems to improve the natu-
ralness and intelligibility of computer-generated speech. This
paper introduces our ongoing work along with some new ideas
on generative modeling of speech fundamental frequency (F0)
contours based on a probabilistic reformulation of the Fujisaki
model [5–8]. We also briefly introduce our recent work on gen-
erative modeling of F0 contours of singing voice [9] developed
under the same spirit.

2. Original Fujisaki Model
The Fujisaki model [1], shown in Fig. 1, assumes that an F0

contour on a logarithmic scale, y(t), where t is time, is the su-
perposition of three components: a phrase component xp(t), an
accent component xa(t), and a base component xb:

y(t) =xp(t) + xa(t) + xb. (1)

The phrase component xp(t) consists of the major-scale pitch
variations over the duration of the prosodic units, and the accent
component xa(t) consists of the smaller-scale pitch variations
in accented syllables. These two components are modeled as
the outputs of second-order critically damped filters, one be-
ing excited with a command function up(t) consisting of Dirac
deltas (phrase commands), and the other with ua(t) consisting
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Figure 1: Original Fujisaki model [1].

of rectangular pulses (accent commands):

xp(t) =Gp(t) ∗ up(t), (2)

Gp(t) =

(

α2te−αt (t ≥ 0)

0 (t < 0)
, (3)

xa(t) =Ga(t) ∗ ua(t), (4)

Ga(t) =

(

β2te−βt (t ≥ 0)

0 (t < 0)
, (5)

where ∗ denotes convolution over time. The baseline compo-
nent xb is a constant value related to the lower bound of the
speaker’s F0, below which no regular vocal fold vibration can
be maintained. α and β are natural angular frequencies of the
two second-order systems, which are known to be almost con-
stant within an utterance as well as across utterances for a par-
ticular speaker. It has been shown that α = 3 rad/s and β = 20
rad/s can be used as default values.

3. Discretized Fujisaki model
In this section, we apply a backward difference s-to-z trans-
form to the phrase and accent control mechanisms described
as continuous-time linear systems in order to obtain a discrete-
time version of the Fujisaki model [5]. The reason for the dis-
cretization will be made apparent later. The transfer function
(Laplace transform) of the impulse response of the phrase con-
trol mechanism is given in the s-domain as

Gp(s) = L
ˆ

Gp(t)
˜

=
α2

(s + α)2
. (6)

The backward difference transform approximates the time dif-
ferential operator s by the backward difference operator in the
z-domain such that s ≃ (1 − z−1)/t0, where t0 is the sampling
period of the discrete-time representation. By undertaking this
transform, the transfer function of the inverse system G−1

p (s)
can be written in the z-domain as

G−1
p (z) = a2z

−2 + a1z
−1 + a0, (7)

with a2 = (ψ − 1)2, a1 = −2ψ(ψ − 1), and a0 = ψ2,
where ψ = 1 + 1/(αt0). Let us use up[k] and xp[k] to de-
note the discrete-time version of the phrase command function
and phrase component, respectively, where k is the discrete-
time index. Then, xp[k] can thus be regarded as the output of a
constrained all-pole system whose characteristics are governed
by a single parameter ψ (or α), such that

up[k] = a0xp[k] + a1xp[k − 1] + a2xp[k − 2]. (8)

In the same way, the relationship between the accent command
function ua[k] and the accent component xa[k] is described as

ua[k] = b0xa[k] + b1xa[k − 1] + b2xa[k − 2], (9)

with b2 = (φ − 1)2, b1 = −2φ(φ − 1), and b0 = φ2, where
φ = 1 + 1/(βt0). Altogether, the discrete-time version of
the Fujisaki model can be expressed as the superposition of the
three components: xp[k] + xa[k] + xb.

Figure 2: Command function modeling with HMM[5]. In state r0,
µp[k] and µa[k] are both constrained to be zero. In state p1, µp[k]
can take a non-zero value, Ap[k], whereas µa[k] is still restricted to
zero. In state p1, no self-transitions are allowed. In state r1, µp[k]
and µa[k] become zero again. This path constraint restricts µp[k] to
consisting of isolated deltas. State a0 leads to states a1, . . . , aN , in
each of which µa[k] can take a different non-zero value A

(n)
a , whereas

µp[k] is forced to be zero. Direct state transitions from state an to state
an′ without passing through state r1 are not allowed. This constraint
restricts µa[k] to consisting of rectangular pulses.

Figure 3: Duration-explicit representation of the hidden states [6].
The splitting of state an into substates an,0, an,1, an,2, and an,3 al-
lows us to parametrize the duration of each hidden state. For example,
ϕan,0,an,1 corresponds to the probability of staying at state an with 4
consecutive times.

4. Generative model of speech F0 contours
Here, we model the generative process of a speech F0 contour
based on the discrete-time version of the Fujisaki model.

We first describe the process for generating the phrase and
accent command functions, up[k] and ua[k]. In the original
Fujisaki model, it is required that the phrase commands must
consist of Dirac deltas and the accent commands must con-
sist of rectangular pulses. In addition, they are not allowed
to overlap each other. To incorporate these requirements, we
proposed in [5] to model the up[k] and ua[k] pair, i.e., o[k] =
(up[k], ua[k])T, using a hidden Markov model (HMM) with the
specific topology illustrated in Fig. 2. The output distribution of
each state is a Gaussian distribution

o[k] ∼N (o[k]; ‌[k],Υ[k]) , (10)

‌[k] =

"

µp[k]

µa[k]

#

, Υ[k] =

"

υ2
p[k] 0

0 υ2
a [k]

#

. (11)

where the mean vector ‌[k] and covariance matrix Υ[k] evolve
in time as a result of the state transition. To parameterize the
durations of the self transitions, we proposed in [6] to split each
state into a certain number of substates such that they all have
exactly the same emission densities. Fig. 3 shows an example of
the splitting of state an. The number of substates is set at a suf-
ficiently large value and the transition probability from substate
an,m to substate an,m+1 is set at 1 for m ̸= 0. This state split-
ting allows us to flexibly control the durations for which the pro-
cess stays in state an through the settings of the transition prob-
ability. The transition probability from substate an,0 to substate
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an,m (m ≥ 1) corresponds to the probability of the present
HMM generating a rectangular pulse that has a particular dura-
tion. In the same way, we split states r0 and r1 to parameterize
the probability of the spacing between phrase and accent com-
mands. Henceforth, we use the notation r0 = {r0,0, r0,1, . . .},
r1 = {r1,0, r1,1, . . .}, and an = {an,0, an,1, . . .}. The HMM
is defined as follows:

Output sequence: {o[k]}K
k=1

Set of states: S = {r0, p1, r1, a1, . . . , aN}
State sequence: {sk}K

k=1

Output distribution: P (o[k]|sk) = N (o[k]; ‌[k],Υ[k])

‌[k]=

8

>

<

>

:

`

0, 0
´T

(sk ∈r0, r1)
`

Ap[k], 0
´T

(sk =p1)
`

0, A
(n)
a

´T
(sk ∈an)

Υ[k]=

"

σ2
p,sk

0

0 σ2
a,sk

#

Transition probability: ϕi′,i = log P (sk = i|sk−1 = i′)

In [8], we further proposed designing the transition network
of the HMM under the hypothesis that phrase and accent com-
mand sequences are governed by a vocabulary model. Refer to
[8] for more details.

Given the state sequence s = {sk}K
k=1, the above HMM

generates the up[k] and ua[k] pair. From Eq. (8) and Eq. (9),
up[k] and ua[k] are then fed through different all-pole sys-
tems to generate the phrase and accent components, xp[k] and
xa[k]. It should be noted that in non-tonal languages such as
standard Japanese, the phrase and accent commands must be
non-negative. The treatment of the non-negativity constraint on
xp[k] and xa[k] is discussed in [6, 7].

For real speech F0 contours, observed F0s should not al-
ways be considered reliable. For example, F0 estimates ob-
tained with a pitch extractor in unvoiced regions would be to-
tally unreliable. When performing parameter inference, we
would want to trust only reliable observations and neglect unre-
liable ones. To incorporate the degree of uncertainty of F0 ob-
servations, we consider modeling an observed F0 contour y[k]
as a superposition of the “ideal” F0 contour, i.e., xp[k]+xa[k]+
xb, and a noise component xn[k] ∼ N

`

0, υ2
n[k]

´

, where υ2
n[k]

represents the degree of uncertainty of the F0 observation at
time k, which is assumed to be given. The entire F0 contour is
thus given by

y[k] = xp[k] + xa[k] + xb + xn[k], (12)

where xb denotes the baseline component.
Now, let us define

up= (up[1], . . . , up[K])T, ua= (ua[1], . . . , ua[K])T,
—p= (µp[1], . . . , µp[K])T, —a= (µa[1], . . . , µa[K])T,
xp= (xp[1], . . . , xp[K])T, xa= (xa[1], . . . , xa[K])T,
xn= (xn[1], . . . , xn[K])T, y = (y[1], · · · , y[K])T.

Then, we can write up and ua as

up = Axp, (13)
ua = Bxa, (14)

where

A=

2

6

6

6

6

6

4

a0 O
a1 a0

a2 a1 a0

. . .
. . .

. . .
O a2 a1 a0

3

7

7

7

7

7

5

, B =

2

6

6

6

6

6

4

b0 O
b1 b0

b2 b1 a0

. . .
. . .

. . .
O b2 b1 b0

3

7

7

7

7

7

5

. (15)

s and „ = {{Ap[k]}K
k=1, {A(n)

a }N
n=1} are the free parameters

to be estimated. Obviously, estimating s and „ corresponds
to estimating the command sequences, i.e., the Fujisaki model
parameters. To sum up, the likelihood function of the Fujisaki
model parameters s and „ given y is given as

P (y|s, „) =
|Σ−1|1/2

(2π)K/2
exp

ȷ

−1

2
(y − —)TΣ−1(y − —)

ff

,

— = A−1—p + B−1—a + xb1, (16)

Σ = A−1Σp

`

AT´−1
+ B−1Σa

`

BT´−1
+ Σn,

where

Σp = diag(υ2
p[1], . . . , υ2

p[K]), (17)

Σa = diag(υ2
a [1], . . . , υ2

a [K]), (18)

Σn = diag(υ2
n[1], . . . , υ2

n[K]). (19)

P (s) is given by the product of the state transition probabilities:
P (s) = ϕs1

QK
k=2 ϕsk,sk−1 .

Readers are referred to [5–8] for detailed derivations of
the parameter inference algorithms: [5, 6] describe an iterative
algorithm for maximizing the posterior density P (s, „|y) ∝
P (y, s, „) with respect to s and „. The deviced algorithm is
based on an expectation-maximization (EM) algorithm consist-
ing in performing a Viterbi algorithm in the M-step. [7] de-
scribes a parameter estimation algorithm under non-negativity
constraints on the phrase and accent components.

5. Singing voice F0 contour modeling
So far, we have focused on the modeling of F0 contours in nor-
mal speech. Here, we briefly introduce our recent work on the
generative modeling of singing voice F0 contours.

The F0 contours of a singing voice consist of two types of
dynamic components. One is called a note component, which is
influenced by the physical constraints of the vocal folds, such as
overshoot, preparation and fine fluctuations [12, 13]. The other
is called an expression component, which corresponds to a mix-
ture of singer’s musical expressive intentions, such as vibrato
and portamento [14]. Most previous papers have reported that
these dynamic components strongly affect singing-voice per-
ception, and that the former relates to the naturalness and in-
dividuality of a singing voice while the latter relates to singing
styles and skills [15]. Hence, automatic decomposition of a raw
F0 contour into these components can be potentially beneficial
for many applications such as singer identification, singing skill
evaluation, singing voice synthesis and singer style conversion.

Motivated by the above, we have been concerned with mod-
ifying the aforementioned F0 contour model so as to adapt to
singing voice F0 contours. The proposed model assumes that
the process of generating singing voice F0 contours is struc-
turally similar to the Fujisaki model (Fig. 4). The note and ex-
pression components are assumed to be the outputs of second-
order linear systems driven by the note and expression com-
mands, corresponding to the musical note sequence and the
musical expressive intentions, respectively. The note compo-
nent contains the note transition and overshoot, whereas the ex-
pression component contains vibrato and portamento. The F0

contour is then modeled as a superposition of these two com-
ponents. With the same strategy described in Sec. 4, we can
translate this model into a probabilistic model and derive a pa-
rameter inference algorithm. For further details, refer to [9].
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Figure 4: The proposed model of a singing voice F0 contour [9].

6. Experimental evaluation
We quantitatively evaluated the parameter estimation accuracy
of the present algorithm using real speech data, excerpted from
the ATR Japanese speech database B-set [10]. This database
consists of 503 phonetically balanced sentences. We selected
speech samples of one male speaker. We used Fujisaki model
parameters that had been manually annotated by an expert in
the field of speech prosody as the ground truth data, where
the baseline component was set at log 60 Hz. F0 contours
were extracted using a method we had previously developed
[11], from which the Fujisaki model parameters were estimated
using the present algorithm. The number of substates in the
HMM and the transition probability ϕi′,i were determined ac-
cording to the manually annotated data of the first 200 sen-
tences. The parameter estimation algorithm was then tested
on the remaining 303 sentences. We evaluated the accuracy of
the parameter estimation based on the following two criteria:
log F0 RMSE (root mean squared error) and detection rates.
Our aim was to confirm whether the present model and algo-
rithm can achieve high model reconstruction accuracy while
keeping the meaningfulness of the model parameters. log F0

RMSE was used to evaluate the reconstruction accuracy, which
measures the root mean squared error between an observed F0

contour and the estimated F0 contour. The detection rate was
calculated by performing matching between the estimated and
ground truth command sequences on a command-by-command
basis by using a dynamic programming algorithm, where the
time difference between the estimated and ground truth com-
mands shorter than 0.3 seconds was considered “matched” and
the local distance was set at zero (otherwise the local distance
was set at 1). Let NE, NA be the total numbers of commands
in the estimated and ground truth command sequences, NM

be the number of the matched commands between the two se-
quences, NEsum, NAsum, and NMsum be the sum of NE, NA,
NM for all 303 sentences. We defined the insertion error rate
EI as (NEsum − NMsum)/NAsum, the deletion error rate ED

as (NAsum − NMsum)/NAsum, and the detection rate D as
1 − EI − ED.

We chose Narusawa’s method [4] as a baseline method.
The present method obtained a detection rate of 69.5% while
the baseline method obtained 68.8%. This result confirms that
our method was comparable to a state-of-the-art Fujisaki model
parameter extractor in terms of the detection rate. As for the
log F0 RMSE, on the other hand, the present method obtained
0.0611, while the baseline method obtained 0.1719. This re-
sult confirms that our method was superior to the conventional
method in terms of the goodness-of-fit property. Fig. 5 shows an
example of the estimated phrase and accent commands obtained
from a raw F0 contour.

To evaluate the pure behavior of the present parameter es-
timation algorithm, we also conducted a command estimation
experiment using a synthetic F0 contours. The synthetic F0

Figure 5: An example of estimated phrase and accent commands (in
blue and green, respectively), along with an observed F0 contour in
solid red line and the optimized F0 contour model in dotted line [7].

Figure 6: Estimation of note and expression commands [9].

contours were artificially created using the original Fujisaki
model with the abovementioned, manually annotated command
sequences. All other experimental conditions were the same as
above. The present method obtained a detection rate of 83.4%
while Narusawa’s method only obtained 72.6%. With this ex-
periment, the present method was shown to be significantly su-
perior to the conventional method in terms of the detection rate
of the command sequences.

Fig. 6 shows some examples of the decompositions of
singing voice F0 contours into note and expression components
by the method desribed in Sec. 5. As can be seen from these ex-
amples, pitch variations related to portamento and vibrato were
successfully separated from an observed F0 contour.

7. Conclusion
This paper introduced our ongoing work on generative model-
ing of F0 contours in speech and singing voice based on the
Fujisaki model. One important contribution of our work is that
the Fujisaki model has successfully been translated into an au-
tomatically trainable model. We believe that this will open the
door to applying the present model to many speech applica-
tions such as speech synthesis, speaker identification, speech
conversion, and dialogue systems, in which prosodic informa-
tion plays a significant role. Future work includes incorporating
the present model into the HMM-based speech synthesis system
(HTS) [16] in such a way that the Fujisaki-model parameters
can be learned from a speech corpus in a unified manner.
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