
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2014, REIMS, FRANCE

TRAINING RESTRICTED BOLTZMANN MACHINES WITH
AUXILIARY FUNCTION APPROACH

Hirokazu Kameoka1),2) and Norihiro Takamune1)

1) Graduate School of Information Science and Technology, The University of Tokyo
2) NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation

ABSTRACT

Restricted Boltzmann Machines (RBMs) are neural network
models for unsupervised learning, but have recently found a
wide range of applications as feature extractors for supervised
learning algorithms. They have also received a lot of attention
recently after being proposed as building blocks for deep be-
lief networks. The success of these models raises the issue
of how best to train them. At present, the most popular train-
ing algorithm for RBMs is the Contrastive Divergence (CD)
learning algorithm. The aim of this paper is to seek for a new
optimization algorithm tailored for training RBMs in the hope
of obtaining a faster algorithm than the CD algorithm. We
propose deriving a new training algorithm for RBMs based
on an auxiliary function approach. Through an experiment on
parameter training of an RBM, we confirmed that the present
algorithm converged faster and to a better solution than the
CD algorithm.

Index Terms— Restricted Boltzmann machines, deep be-
lief networks, contrastive divergence learning algorithm, aux-
iliary function, minorization-maximization

1. INTRODUCTION

Restricted Boltzmann machines (RBMs) [1] are probabilistic
generative models that can be interpreted as stochastic neu-
ral networks. They have found applications in dimensionality
reduction, classification, feature learning, etc., and have re-
cently attracted considerable attention after being proposed as
building blocks for deep belief networks (DBNs)[2]. Over the
last few years, DBNs have been applied with notable success
to a wide range of applications including image recognition
and speech recognition [3].

A DBN can be constructed by stacking multiple RBMs
so that the hidden layer of one RBM becomes the visible
layer of another RBM. DBNs can be efficiently trained us-
ing greedy layerwise training, in which the RBMs are trained
one at a time in a bottom-up fashion. Furthermore, a discrim-
inative neural network for classification or regression can be
obtained by adding an output layer on top of the trained RBM
or DBN where the additional units represent labels (e.g., class
labels) corresponding to the observed data. The initialization
obtained with the layer-wise pretraining of RBMs facilitates

the optimization problem of training the discriminative neural
network, a procedure known as the global fine-tuning.

As their name implies, RBMs are a special case of Boltz-
mann machines. As with Boltzmann machines, RBMs consist
of visible units and hidden units. The visible units constitute
the first layer, which correspond to the components of an ob-
servation. The hidden units constitute the second layer, which
model dependencies between the components of observations
and can be interpreted as non-linear feature detectors. In the
RBMs network graph, each unit is connected to all the units
in the other layer. However, there are no connections between
units in the same layer. This restriction allows for more effi-
cient training algorithms than those applicable for the general
class of Boltzmann machines, in particular the gradient-based
contrastive divergence (CD) algorithm [4]. The aim of this
paper is to seek for a new optimization algorithm tailored for
training RBMs in the hope of obtaining a faster algorithm than
the CD algorithm.

For many nonlinear optimization problems, parameter es-
timation algorithms constructed using an auxiliary function
have proven to be very effective. The general principle for
the parameter estimation scheme using an auxiliary function
is referred to as the “auxiliary function approach” (or alterna-
tively the “minorization-maximiation (MM) approach” [5]).
Note that the auxiliary function approach itself is not an algo-
rithm, but a description of how to construct an optimization
algorithm. When applying the auxiliary function approach to
a certain optimization problem, the first step is to design an
auxiliary function that upper-bounds or lower-bounds the ob-
jective function. A parameter estimation algorithm can then
be derived using the auxiliary function. An algorithm that
consists of iteratively minimizing/maximizing the auxiliary
function is guaranteed to converge to a stationary point of
the objective function. It should be noted that this concept
is adopted in many existing algorithms. For example, the
expectation-maximization (EM) algorithm [6] builds a sur-
rogate for a likelihood function of latent variable models by
using Jensen’s inequality. It is also well known for its use in
devising an algorithm for non-negative matrix factorization
[7, 8]. In general, if we can build a tight upper/lower bound
function for the objective function of a specific optimization
problem, we expect to obtain a fast-converging algorithm.
In fact, the authors and colleagues have thus far proposed
deriving parameter estimation algorithms based on the aux-

978-1-4799-3694-6/14/$31.00 c⃝2014 IEEE

Fig. 1. Graph structure of RBM.

iliary function approach for various optimization problems,
some of which have been proven to be significantly faster than
gradient-based methods (e.g., [8–15]). Motivated by these ex-
periences, we propose deriving a new training algorithm for
RBMs based on the auxiliary function approach.

2. RESTRICTED BOLTZMANN MACHINES

2.1. Likelihood function of RBMs

RBMs are undirected generative models that use a layer of
hidden variables to model a distribution over visible variables.
As depicted in Fig. 1, RBMs can be viewed as a variant of
Boltzmann Machines, with the restriction that their neurons
must form a bipartite graph structure. This restriction gives
the RBM its name.

The standard type of RBM has binary-valued hidden and
visible units. A binary RBM with J hidden units is a paramet-
ric model of the joint distribution between a layer of hidden
variables h = (h1, . . . , hJ)T ∈ {0, 1}J and the visible vari-
ables v = (v1, . . . , vI)T ∈ {0, 1}I , that is given by

p(v,h|Θ) =
exp(−E(v,h;Θ))

Z(Θ)
, (1)

where E(v,h;Θ) denotes a bilinear energy function given by

E(v, h;Θ) = −aTv − bTh − vTWh (2)

= −
∑

i

aivi −
∑

j

bjhj −
∑
i,j

viwi,jhj , (3)

with parameters Θ = {W , a, b}. W = (wi,j)I×J is a
weight matrix whose element wi,j is associated with the con-
nection between hidden unit hj and visible unit vi, and a =
(a1, . . . , aI)T and b = (b1, . . . , bJ)T are bias weight vectors
(offsets) associated with the visible units and the hidden units,
respectively. Z is called the “partition function” and is given
by the sum of exp(−E(v, h;Θ)) over all possible pairs of
visible and hidden vectors:

Z(Θ) =
∑

v

∑
h

e−E(v,h;Θ). (4)

The marginal distribution of v is given by summing over all
possible hidden vectors:

p(v|Θ) =
∑
h

p(v, h|Θ) =
1

Z(Θ)

∑
h

e−E(v,h;Θ). (5)

For a model of the form (5) with parameters Θ, the mean
log-likelihood given N training examples v(1), . . . , v(N) is
thus given by

L(Θ) =
1
N

∑
n

log p(v(n)|Θ). (6)

Maximum likelihood training of an RBM can be formulated
as the problem of maximizing L(Θ) with respect to Θ.

2.2. Contrastive divergence learning algorithm [2, 4]

Since it is not possible to find the parameters maximizing the
mean log-likelihood analytically, one convenient way would
be to apply a gradient ascent approach. Although here we
consider only the update rule for wi,j , the update rule for the
biases ai, bj can be defined analogously.

The partial derivative of the mean log-likelihood with re-
spect to wi,j is given by

∂L(Θ)
∂wi,j

= − 1
N

∑
n

∑
h

p(h|v(n),Θ)v(n)
i hj

+
∑

v

∑
h

p(v, h|Θ)vihj . (7)

This leads to a simple update rule based on steepest ascent in
the log-likelihood:

wi,j ← wi,j + ϵ
∂L(Θ)
∂wi,j

, (8)

where ϵ is a learning rate. As can be seen from (7), the gra-
dient ∂L(Θ)/∂wi,j is given by the difference between two
expectations: the expectation of the energy gradient under the
RBM distribution p(v,h|Θ) and under the conditional distri-
bution of the hidden variables p(h|v,Θ) given a set of the
training samples. To perform gradient ascent, we need to
compute these two terms.

Since there are no direct connections between hidden
units as well as between visible units in an RBM, hidden
units are conditionally independent given the state of the
visible variables and vice versa:

p(h|v,Θ) =
∏
j

p(hj |v,Θ), (9)

p(v|h,Θ) =
∏

i

p(vi|h,Θ). (10)

The conditional distributions p(hj |v,Θ) and p(vi|h,Θ) can
be interpreted as the firing rate of each neuron, given by

p(hj = 1|v,Θ) = σ
(
bi +

∑
i

viwi,j

)
, (11)

p(vi = 1|h,Θ) = σ
(
ai +

∑
j

wi,jhj

)
, (12)

where σ denotes the logistic sigmoid: σ(x) = 1/(1 + e−x).
By using these facts, the first term of (7) can be rewritten as

1
N

∑
n

p(hi = 1|v(n),Θ)v(n)
j , (13)

which is easy to compute. As for the second term, however,
directly calculating the sums that run over all values of v and
h leads to a computational complexity which is in general
exponential in the number of variables. To avoid this expo-
nential complexity, one convenient way is to approximate the
expectation by samples from the RBM distribution. These
samples can be obtained with Gibbs sampling using the con-
ditional distributions (11) and (12). It has been shown that
estimates obtained after running the Gibbs chain for just a
few steps can be sufficient in practice.

This way of updating the parameters belongs to the fam-
ily of the contrastive divergence (CD) learning algorithm [4],
which has become a standard way of training RBMs.

3. AUXILIARY FUNCTION APPROACH FOR
TRAINING RBM

3.1. Auxiliary function approach

Here we introduce the general principle of the auxiliary func-
tion approach (a.k.a the MM approach).

Let us use G(θ) to denote an objective function that we
want to maximize with respect to θ. G+(θ, θ̃) is defined as an
auxiliary function for G(θ) if it satisfies

G(θ) = max
θ̃

G+(θ, θ̃). (14)

We call θ̃ an auxiliary variable. By using G+(θ, θ̃), G(θ) can
be iteratively increased according to the following theorem:

Theorem 1. G(θ) is non-decreasing under the updates, θ ←
argmaxθ G+(θ, θ̃) and θ̃ ← argmaxθ̃ G+(θ, θ̃).

Proof: Let us set θ at an arbitrary value θℓ and define θ̃ℓ+1 =
argmaxθ̃ G+(θℓ, θ̃) and θℓ+1 =argmaxθ G+(θ, θ̃ℓ+1). First,
it is obvious that G(θℓ) = G+(θℓ, θ̃ℓ+1). Next, we can con-
firm that G+(θℓ, θ̃ℓ+1) ≤ G+(θℓ+1, θ̃ℓ+1) since θℓ+1 is the
maximizer of G+(θ, θ̃ℓ+1) with respect to θ. By definition,
it is obvious that G+(θℓ+1, θ̃ℓ+1) ≤ G(θℓ+1) and so we can
finally show that G(θℓ) ≤ G(θℓ+1).

We propose applying this principle for the problem of
maximizing the mean log-likelihood L(Θ) of RBM.

3.2. Designing auxiliary function

When applying the auxiliary function approach to a certain
maximization problem, the first step is to design an auxil-
iary function that lower-bounds the objective function. The
difficulty in solving the optimization problem of maximizing
L(Θ) lies in the nonlinear interdependence of the parameters
due to the sums inside the logarithm function that run over v

and h, and the sums inside the exponential function that run
over i and j. Since it is preferable to use a function that can
be maximized analytically as an auxiliary function, we would
like to design an auxiliary function such that the parameters
are separated into individual terms.

First, let us focus on the sum over h inside the logarithm
function in L(Θ). We can invoke the following inequality to
construct a lower bound function of L(Θ).

Lemma 1 (Jensen’s inequality for concave functions with
non-negative arguments). For any concave function f , any
non-negative values x1, . . . , xK ∈ [0,∞) and any posi-
tive weights λ1, . . . , λK ∈ (0, 1) that sums to unity (i.e.,∑

k λk = 1), we have

f
(∑

k

xk

)
≥

∑
k

λkf
(xk

λk

)
, (15)

where equality holds if and only if

λk =
xk∑
m xm

. (16)

Since the logarithm function is a concave function, and of
course the value of p(v(n), h|Θ) is always non-negative, we
can use the above inequality:

L(Θ) =
1
N

∑
n

log
∑
h

p(v(n), h|Θ)

≥ 1
N

∑
n

∑
h

λn(h) log
p(v(n), h|Θ)

λn(h)
, (17)

where λn(h) is a positive weight that sums to unity, such that∑
h λn(h) = 1. Here, equality holds when

λn(h) =
p(v(n),h|Θ)∑
h′ p(v(n), h′|Θ)

= p(h|v(n),Θ). (18)

Thus, (17) can be rewritten as

L(Θ) ≥− 1
N

∑
n

∑
h

λn(h)E(v(n), h;Θ)

− log Z(Θ) −
∑
h

λn(h) log λn(h). (19)

It is still impossible to obtain a closed-form update rule for Θ
from this lower bound function because of the second term.
In the second term, we notice that the sum is taken over v
and h inside the negative logarithm function. We can use the
following inequality to construct a looser lower bound.

Lemma 2. For any differentiable convex function f and any
real numbers x and ζ, we have

f(x) ≥ f(ζ) + f ′(ζ)(x − ζ), (20)

where equality holds if and only if x = ζ.

Since the negative logarithm function is a differentiable
convex function, we can apply this inequality to − log Z(Θ):

− log Z(Θ) ≥ − log ζ − 1
ζ
(Z(Θ) − ζ), (21)

where ζ is a positive number. Here, equality holds when

ζ = Z(Θ). (22)

A lower bound function can thus be constructed by replac-
ing − log Z(Θ) with the right-hand side of (21). However, it
is still impossible to obtain a closed-form update rule for Θ
from this lower bound function because of the sums that run
over i and j inside the negative exponential function in Z(Θ).
Since the negative exponential function is a concave function,
it may appear that Lemma 1 can be applied in a similar way
that we obtain the first inequality. However, since the argu-
ment of the negative exponential function, i.e., −E(v, h;Θ),
can possibly take on negative values, the inequality given in
Lemma 1 cannot be applied in this case. Instead, here we in-
troduce the following inequality (which we have previously
employed for a different optimization problem [11]).

Lemma 3 (Jensen’s inequality for concave functions with real
arguments). For any concave function f , any real numbers
x1, . . . , xK ∈ R, any positive weights β1, . . . , βK ∈ (0, 1)
that sums to unity (i.e.,

∑
k βk = 1), and any real numbers

α1, . . . , αK ∈ R that sums to zero (i.e.,
∑

k αk = 0), we have

f
(∑

k

xk

)
≥

∑
k

βkf
(xk − αk

βk

)
, (23)

where equality holds if and only if

αk = xk − βk

∑
m

xm. (24)

By using this inequality, we obtain

− exp
(∑

i

aivi +
∑

j

bjhj +
∑
i,j

viwi,jhj

)
(25)

≥−
∑

i

βa
i exp

(
aivi − αa

i (v, h)
βa

i

)

−
∑

j

βb
j exp

(
bjhj − αb

j(v, h)
βb

j

)

−
∑
i,j

βw
i,j exp

(
viwi,jhj − αw

i,j(v,h)
βw

i,j

)
, (26)

where αa
i (v, h), αb

j(v, h) and αw
i,j(v, h) are arbitrary real

numbers that sum to zero, i.e.,
∑

i αa
i (v, h)+

∑
j αb

j(v, h)+∑
i,j αi,j(v, h) = 0, and βa

i,j , βb
i,j and βw

i,j are arbitrary
positive numbers that sum to one, i.e.,

∑
i βa

i +
∑

j βb
j +∑

i,j βw
i,j = 1. Here, equality holds when

αa
i (v,h) = aivi + βa

i E(v,h;Θ),

αb
j(v, h) = bjhj + βb

jE(v, h;Θ), (27)

αw
i (v, h) = viwi,jhj + βw

i,jE(v, h;Θ).

We can obtain a slightly looser lower bound function for
L(Θ) by further replacing −e−E(v,h;Θ) with the right-hand
side of (26). It is important to note that this lower bound func-
tion is given in such a way that the parameters are separated
in individual terms, thus allowing us to derive closed-form
update equations for the parameters.

To sum up, we obtain the following theorem:

Theorem 2 (Auxiliary function for RBMs). Define L+ as

L+(Θ, Θ̃) = − 1
N

∑
n

∑
h

λn(h)E(v(n), h;Θ)

− 1
ζ

∑
v

∑
h

G(v, h;Θ)

− log ζ + 1 −
∑
h

λn(h) log λn(h), (28)

where

G(v,h;Θ) =
∑

i

βa
i exp

(
aivi − αa

i (v,h)
βa

i

)

+
∑

j

βb
j exp

(
bjhj − αb

j(v,h)
βb

j

)

+
∑
i,j

βw
i,j exp

(
viwi,jhj − αw

i,j(v, h)
βw

i,j

)
, (29)

with Θ̃ = {λ, ζ, α}, λ = {λn(h)|n=1, . . . , N, h∈{0, 1}J}
and α = {αa

i (v, h), αb
j(v, h), αw

i,j(v, h)|i = 1, . . . , I, j =
1, . . . , J, v ∈ {0, 1}I ,h ∈ {0, 1}J}. Then, L+(Θ, Θ̃) is an
auxiliary function for L(Θ).

3.3. Update equations

Now we can derive the update equations for the model param-
eters by using the auxiliary function defined above. As stated
in Theorem 1, we can iteratively increase the value of L(Θ)
by performing the updates

Θ̃ ← argmax
Θ̃

L+(Θ, Θ̃), (30)

Θ ← argmax
Θ

L+(Θ, Θ̃). (31)

(30) is given explicitly as (18), (22) and (27), respectively.
(31) can be obtained by solving ∂L+/∂ai =0, ∂L+/∂bj =0
and ∂L+/∂wi,j =0. For example, ∂L+/∂wi,j is given by

∂L+(Θ)
∂wi,j

=
1
N

∑
n

∑
h

λn(h)v(n)
i hj (32)

− 1
ζ

∑
v

∑
h

vihj exp
(viwi,jhj − αi,j(v,h)

βw
i,j

)
.

Now, by substituting (30) into (32), ∂L+/∂wi,j becomes

∂L+(Θ)
∂wi,j

=
1
N

∑
n

∑
h

p(h|v(n),Θ′)v(n)
i hj (33)

−
∑

v

∑
h

p(v, h|Θ′)vihj exp
(

vihj(wi,j − w′
i,j)

βw
i,j

)
,

where w′
i,j and Θ′ denote the estimates of wi,j and Θ updated

at the previous iteration. Since vihj ∈ {0, 1}, we can write
the second term of (33) as

∑
v

∑
h

p(v, h|Θ′)vihj exp
(

vihj(wi,j − w′
i,j)

βw
i,j

)
= exp

(
wi,j − w′

i,j

βw
i,j

)∑
v

∑
h

p(v,h|Θ′)vihj . (34)

This eventually allows us to solve ∂L+/∂wi,j =0:

wi,j = w′
i,j + βw

i,j log

1
N

∑
n

∑
h

p(h|v(n),Θ′)v(n)
i hj∑

v

∑
h

p(v,h|Θ′)vihj

.

(35)

Similarly to the CD approach, the numerator inside the loga-
rithm function of (35) can be easily computed since it can be
written as (13). However, the denominator involves the sums
that run over all values of v and h. To avoid directly calcu-
lating these sums, one convenient way is to approximate the
expectation by samples from the RBM distribution, as with
the CD approach. As mentioned in 2.2, these samples can be
obtained with Gibbs sampling using the conditional distribu-
tions (11) and (12). The update rule for the biases ai, bj can
be derived analogously.

It is interesting to compare the proposed update rule (35)
with the update rule (8) of the CD algorithm. While each
step of the CD algorithm moves the parameters in the direc-
tion given by the difference of the two expectations, the pro-
posed update rule moves the parameters in the direction given
by the difference of the logarithms of the two expectations.
From this perspective, βw

i,j can be thought of as the learn-
ing rate. Since βw

i,j must satisfy the sum-to-unity constraint,
the larger the number of the hidden and visible variables be-
comes, the smaller βw

i,j becomes in average, thus slowing the
convergence speed of the algorithm. We can thus expect to ac-
celerate the algorithm by replacing βw

i,j with βw
i,j

γ , setting γ
at a reasonably small value at the early stage of the algorithm
and moving it towards 1 as the iteration proceeds.

4. EXPERIMENTS

We conducted an experiment to compare the convergence
speeds of the present algorithm and the CD algorithm. In
order to evaluate the values of the likelihoods, We used a
small scale RBM with I = 10 visible units and J = 8 hidden

0 100 200 300 400 500
−1.6

−1.55

−1.5

−1.45

−1.4

−1.35

−1.3

−1.25

−1.2x 10
4

loop count

lo
g−

lik
el

ih
oo

d

Contrastive Divergence
Auxiliary Function 1
Auxiliary Function 1 with gamma
Auxiliary Function 2
Auxiliary Function 2 with gamma

0 100 200 300 400 500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

loop count

re
co

ns
tr

uc
t e

rr
or

 r
at

e

Contrastive Divergence
Auxiliary Function 1
Auxiliary Function 1 with gamma
Auxiliary Function 2
Auxiliary Function 2 with gamma

Fig. 2. Evolution of the mean log-likelihood (top) and the recon-
struction error (bottom) during training of a small scale RBM using
the CD algorithm (black solid line) and the proposed algorithms (red
and blue) with and without the γ scheduling (solid and dashed line),
respectively. “Auxiliary 1” refers to the the present algorithm and
“Auxiliary 2” refers to the algorithm proposed in [16].

units. We also compared the present algorithm with another
algorithm we proposed in [16] (“auxiliary function 1” and
“auxiliary function 2” hereafter).

The experimental conditions were as follows: 2000
randomly-generated binary data were used as the training
examples. All the algorithms were run for T = 500 itera-
tions. The Gibbs sampling was run for 1 iteration at each
iterative step. β = {βa

i , βb
j , β

w
i,j |i = 1, . . . , I, j = 1, . . . , J}

was set uniformly, i.e.,

βa
i = βb

j = βw
i,j =

1
I + J + IJ

, (36)

for all i and j. The learning rate ϵ of the CD algorithm and
the value of γ were scheduled in the following way: At step t
of the algorithms, we updated ϵ and γ at

ϵt = ϵinit

(
ϵend

ϵinit

) t−1
T−1

, (37)

γt = γinit

(
γend

γinit

) t−1
T−1

, (38)

respectively, where we set ϵinit = 1, ϵend = 0.1, γinit = 0.1
and γend = 1. In addition to the log-likelihood given by (6),
we used the reconstruction error rate E for the measure for
comparisons:

E =
1

NI

∑
n

∑
i

(v(n)
i − v̂

(n)
i)2, (39)

where

v̂(n) = argmax
v

p(v|ĥ
(n)

,Θ), (40)

ĥ
(n)

= argmax
h

p(h|v(n),Θ). (41)

Fig. 2 shows the evolution of the log-likelihoods (6) and
the reconstruction error rate (39) obtained with all the algo-
rithms. With the MATLAB implementation, the execution
time per iteration for the CD algorithm and the proposed al-
gorithms was almost the same. For the present algorithm, the
log-likelihood converged faster when updating γ than when
fixing it at 1, as expected. As Fig. 2 shows, the present algo-
rithm increased the log-likelihood and decreased the recon-
struction error rate of the RBM faster than the CD algorithm.
It is interesting to note that the present algorithm converged
to a greater value of the log-likelihood than the CD algorithm.
This implies that the present algorithm had a higher ability to
avoid getting trapped into local maxima.

5. CONCLUSIONS

This paper proposed deriving a new training algorithm for
RBMs based on the auxiliary function concept. While each
step of the CD algorithm moves the parameters in the direc-
tion given by the difference of the two expectations, the pro-
posed update rule moves the parameters in the direction given
by the difference of the logarithms of the two expectations.
Through an experiment on parameter training of an RBM, we
confirmed that the present algorithm converged faster and to
a better solution than the CD algorithm.

6. ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Numbers
26730100.

7. REFERENCES

[1] P. Smolensky, “Information processing in dynamical systems:
Foundations of harmony theory,” in Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, D.E.
Rumelhart and J.L McClelland, Eds. MIT Press, 1986.

[2] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
no. 7, 2006.

[3] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
and B. Kingsbury, “Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
82–97, 2012.

[4] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,” Neural Computation, vol. 14, no. 8,
2002.

[5] J. De Leeuw and W. J. Heiser, “Convergence of correction
matrix algorithms for multidimensional scaling,” in Geometric
representations of relational data, J. C. Lingoes, E. E. Roskam,
and I. Borg, Eds. Ann Arbor, MI: Mathesis Press, 1977.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” J. of
Royal Statistical Society Series B, vol. 39, 1977.

[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative ma-
trix factorization,” in Adv. Neural Information and Processing
Systems (NIPS). 2001, pp. 556–562, MIT Press.

[8] M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono,
and S. Sagayama, “Convergence-guaranteed multiplicative
algorithms for non-negative matrix factorization with beta-
divergence,” in Proc. 2010 IEEE International Workshop on
Machine Learning for Signal Processing (MLSP 2010), 2010,
pp. 283–288.

[9] H. Kameoka, Statistical Approach to Multipitch Analysis,
Ph.D. thesis, The University of Tokyo, 2007.

[10] H. Kameoka, N. Ono, and S. Sagayama, “Auxiliary function
approach to parameter estimation of constrained sinusoidal
model for monaural speech separation,” in Proc. 2008 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP2008), 2008, pp. 29–32.

[11] H. Kameoka, N. Ono, K. Kashino, and S. Sagayama, “Com-
plex NMF: A new sparse representation for acoustic signals,”
in Proc. 2009 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP2009), 2009, pp. 3437–
3440.

[12] H. Kameoka, T. Nakatani, and T. Yoshioka, “Robust speech
dereverberation based on non-negativity and sparse nature
of speech spectrograms,” in Proc. 2009 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP2009), 2009, pp. 45–48.

[13] N. Ono, “Stable and fast update rules for independent vector
analysis based on auxiliary function technique,” in Proc. 2011
IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA2011), 2011, pp. 261–264.

[14] N. Yasuraoka, H. Kameoka, T. Yoshioka, and H. G. Okuno, “I-
divergence-based dereverberation method with auxiliary func-
tion approach,” in Proc. 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP2011),
2011, pp. 369–372.

[15] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Efficient
algorithms for multichannel extensions of Itakura-Saito non-
negative matrix factorization,” in Proc. 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP2012), 2012, pp. 261–264.

[16] N. Takamune and H. Kameoka, “Maximum reconstruction
probability training of restricted Boltzmann machines with
auxiliary function approach,” in Proc. 2014 IEEE International
Workshop on Machine Learning for Signal Processing (MLSP
2014), 2014, submitted.

