
Speech Parameter Sequence Modeling with
Latent Trajectory Hidden Markov Model ∗

Hirokazu Kameoka
NTT Communication Science Laboratories / The University of Tokyo

1 Introduction
The weakness of hidden Markov models (HMMs)

is that they have difficulty in modeling and cap-
turing the local dynamics of feature sequences due
to the piecewise stationarity assumption and the
conditional independence assumption on feature se-
quences. Traditionally, in speech recognition sys-
tems, this limitation has been circumvented by ap-
pending dynamic (delta and delta-delta) compo-
nents to the feature vectors. HMM-based speech
synthesis systems [1] also use the joint vector of
static and dynamic features as an observed vector
in the training process. In the synthesis process,
on the other hand, a sequence of static features is
generated according to the output probabilities of
the trained HMM given an input sentence by taking
account of the explicit constraint between the static
and dynamic features [2]. Although the HMM-based
speech synthesis framework has many attractive fea-
tures, one drawback is that the criteria used for
training and synthesis are inconsistent. While the
joint likelihood of static and dynamic features is
maximized during the training process, the likeli-
hood of only the static features is maximized during
the synthesis process. This implies that the model
parameters are not trained in such a way that the
generated parameter sequences become optimal. To
address this problem, Zen [3] introduced a variant
of HMM called the “trajectory HMM,” which was
obtained by incorporating the explicit relationship
between static and dynamic features into the tradi-
tional HMM. This has made it possible to provide
a unified framework for the training and synthesis
of speech parameter sequences, however, it causes
difficulty as regards parameter inference. Since the
conditional independence assumption on the fea-
ture vectors is lost, efficient algorithms for training
and decoding regular HMMs such as the Viterbi al-
gorithm and the Forward-Backward algorithm are
no longer applicable to the trajectory HMM. Thus,
some approximations and brute-force methods are
usually necessary to obtain training and decoding
algorithms [3, 4].
In this paper, we propose formulating a new model

called the “latent trajectory HMM.” In contrast
with the conventional trajectory HMM, the present
model splits the generative process of an observed
feature sequence into two processes, one for a se-
quence of the joint vectors of static and dynamic
features given HMM states and the other for an ob-
served feature sequence given the sequence of the
joint vectors. By treating the joint vector of static
and dynamic features as a latent variable to be
marginalized out, we obtain a probability density
function of an observed feature sequence with a dif-
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ferent form from the likelihood function of the tra-
jectory HMM. As described below, this new formu-
lation naturally allows the combined use of pow-
erful inference techniques such as the expectation-
maximization (EM) algorithm, Viterbi algorithm
and Forward-Backward algorithm for training and
decoding, while still retaining the spirit of the orig-
inal trajectory HMM.
This work is not only directed towards speech syn-

thesis applications but also towards several different
applications such as voice conversion and acoustic-
to-articulatory mapping, in which trajectory model-
ing has proven to be effective [5–7]. Another inter-
esting application we have in mind is audio source
separation. Recently, we proposed methods for
single- and multi-channel audio source separation
based on factorial HMMs [8–11], where the spectro-
gram of a mixture signal is modeled as the sum of
the outputs emitted from multiple HMMs, each rep-
resenting the spectrogram of an underlying source.
One promising way to improve this approach would
be to incorporate the dynamics of source spectra.
This can be accomplished by plugging the present
model into the factorial HMM formulation. The
present formulation will play a key role in making
this possible.

2 Trajectory Hidden Markov Model

We start by briefly reviewing the original formu-
lation of the trajectory HMM [3]. Let us use ct to
denote aD-dimensional static feature vector and de-
fine the joint vector of ct and its velocity and accel-
eration components ot := [cTt ,ΔcTt ,Δ

2cTt ]
T ∈ R

3D

as the observed vector at time t. We write the se-
quences of the static features and the observed vec-
tors as c = [cT1 , . . . , c

T
T ]

T and o = [oT
1 , . . . ,o

T
T ]

T,
respectively. Thus, the dimensions of c and o be-
come DT and 3DT . The relationship between c and
o can be described explicitly using a constant 3DT
by DT matrix W as

o = W c, (1)

where W is a sparse matrix that appends first and
second order time derivatives to the static feature
vector sequence.
Within the traditional HMM framework, a se-

quence of observed vectors, o, is simply assumed to
be generated from an HMM. Here, if we assume the
emission probability density to be a single Gaussian
distribution, the probability density function of o
given a state sequence s = [s1, . . . , sT ] and an HMM
parameter set λ = {μ,U ,π}, with μ = {μi}1≤i≤I ,
U = {Ui}1≤i≤I , and π = {πi,j}1≤i≤I,1≤j≤J , is
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given as

p(o|s,λ) = N (o;μs,Us) =

T∏
t=1

N (ot;μst ,Ust),

(2)

where N (x;μ,Σ) denotes a Gaussian distribution
with mean μ and covariance Σ:

N (x;μ,Σ) ∝ 1

|Σ| 12 e
− 1

2 (x−μ)TΣ−1(x−μ). (3)

μs and Us denote the mean sequence and a block
diagonal matrix whose diagonal elements are given
by the sequence of the covariance matrices of the
emission densities over time:

μs = [μT
s1 , . . . ,μ

T
sT ]

T, (4)

Us = diag(Us1 , . . . ,UsT ). (5)

In HMM-based speech synthesis systems, the pa-
rameter set is typically trained by solving the max-
imum likelihood estimation problem

λ̂ = argmax
λ

log
∑
s

p(o|s,λ)p(s), (6)

where p(s) is given by the product of the state tran-
sition probabilities. At the synthesis stage, given a
state sequence s and with the trained parameter λ,
a static feature sequence c is generated according to

ĉ = argmax
c

p(c|s,λ), (7)

where p(c|s,λ) is defined as

p(c|s,λ) ∝ N (W c;μs,Us) (8)

∝ e−
1
2 (c

TW TU−1
s W c−2cTW TU−1

s μs) (9)

= N (c; c̄s,Vs). (10)

By completing the square in the exponent of (9) with
respect to c, we obtain c̄s and Vs as

c̄s = (W TU−1
s W )−1W TU−1

s μs, (11)

Vs = (W TU−1
s W )−1. (12)

Thus, the solution to (7) is c̄s. Geometrically, (10)
can be viewed as a cutting plane of the density
p(o|s,λ) at o = W c.
As shown above, the traditional HMM-based

framework uses different criteria for training and
synthesis: While p(o|s,λ) is used for training,

p(c|s,λ) is used for synthesis. This implies that λ̂
is not necessarily optimal for generating optimal c.
To address this inconsistency between the training
and synthesis criteria, Zen [3] proposed introducing
a framework called the “trajectory HMM”, which
also uses (10) as the training criterion. Instead of
solving (6), the parameter set λ is trained by solving

{λ̂, ŝ} = argmax
λ,s

log p(c|s,λ)p(s), (13)

where c is treated as the observed data.

Fig. 1 Illustrations that show the difference be-
tween HMM and trajectory HMM.

Unlike the regular HMM, the conditional indepen-
dence assumption on observed vectors does not hold
in the trajectory HMM: While the regular HMM as-
sumes that each observed vector depends only on the
current state, (10) indicates that the observed vec-
tor ct at each frame depends on the entire state se-
quence. This implies that it is difficult to apply the
efficient decoding and training algorithms used in
the HMM framework (such as the Viterbi algorithm)
and so some approximations and brute-force meth-
ods are necessary to perform training and decoding
[3]. Thus, the decoding algorithm is not guaranteed
to find the optimal state sequence and the training
algorithm is not guaranteed to converge to a local
optimal solution. Note that this also applies to the
minimum generation error (MGE) training frame-
work [4], which uses (10) in which Vs is replaced by
an identity matrix as the training criterion.

3 Latent Trajectory HMM
3.1 Model

While the HMM is only capable of describing
piecewise stationary sequences of data vectors, the
trajectory HMM is capable of describing continu-
ously varying sequences of data vectors, governed
by discrete hidden states (Fig. 1). This feature
is notable in that it can be used to model many
kinds of time series data that are continuous in na-
ture. However, the weakness of this model is that
it causes a difficulty as regards parameter inference.
To remedy this weakness, we propose introducing a
conceptually similar framework based on a different
formulation, which is advantageous in that it allevi-
ates the difficulty related to parameter inference.
Instead of treating o as a function of c, we treat

o as a latent variable that is related to c through a
soft constraint o � W c. The relationship o � W c
can be expressed through the conditional distribu-
tion p(c|o). For example, we can define p(c|o) as

p(c|o) ∝ exp

{
−1

2
(W c− o)TΛ(W c− o)

}
, (14)

where Λ is a constant positive definite matrix that
can be set arbitrarily. Indeed, this probability den-
sity function becomes larger as o approaches W c.
By completing the square in the exponent of (14)
with respect to c, we can write p(c|o) as

p(c|o) = N (c;mc|o,Λ
−1
c|o), (15)
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where

mc|o = Ho, (16)

H = (W TΛW )−1W TΛ, (17)

Λc|o = W TΛW . (18)

By using this and p(o|s,λ) defined in (2), we can
write p(c|s,λ) as

p(c|s,λ) =
∫

p(c|o)p(o|s,λ)do, (19)

in a different way from (10). Geometrically, this can
be viewed as a marginal distribution of the set of the
projected values of o onto the subspace o = W c.
From (2) and (15), the joint likelihood p(c,o|s,λ)
can be written as

p(c,o|s,λ) = p(c|o)p(o|s,λ) (20)

∝ exp

{
− 1

2

([
c
o

]
−mx

)T

Λx

([
c
o

]
−mx

)}
,

where

mx = Λ−1
x

[
0

U−1
s μs

]
, (21)

Λx =

[
Λc|o −W TΛ
−ΛW HTΛc|oH +U−1

s

]
. (22)

Thus, p(x|s,λ) = N (x;mx,Λ
−1
x ) where x =

[cT,oT]T. By using the blockwise matrix inversion
formula, Λ−1

x is given as

Σx = Λ−1
x =

[
Σcc Σco
Σoc Σoo

]
, (23)

where

Σcc = Λ−1
c|o +HUsH

T, (24)

Σco = HUs, (25)

Σoc = UsH
T, (26)

Σoo = Us. (27)

Hence, (19) can be written as

p(c|s,λ) = N (c;Hμs,Σcc). (28)

We call this model the “latent trajectory HMM.”
With this framework, given a state sequence s and
a parameter set λ, c is generated according to

ĉ = argmax
c

p(c|s,λ). (29)

Obviously, the solution to this is Hμs.

3.2 Decoding and training algorithms

As with the trajectory HMM framework, the
present framework uses p(c|s,λ) for feature se-
quence generation, state decoding and parameter
training in a consistent manner. The problems of
state decoding and parameter training can be for-
mulated as the following optimization problems:

ŝ = argmax
s

log p(c|s,λ)p(s) (30)

{λ̂, ŝ} = argmax
λ,s

log p(c|s,λ)p(s). (31)

Since the decoding problem (30) is a subproblem of
the training problem (31), here we only derive an
algorithm for solving (31).
By regarding the set consisting of c and o as the

complete data, this problem can be viewed as an in-
complete data problem, which can be dealt with us-
ing the Expectation-Maximization (EM) algorithm.
The likelihood of s and λ given the complete data
is given by (20). By taking the conditional expec-
tation of log p(c,o|s,λ) with respect to o given c,
s = s′ and λ = λ′, and then adding log p(q), we
obtain an auxiliary function

Q(s,λ) := Eo|c,s′,λ′ [log p(c,o|s,λ)] + log p(s).
(32)

By leaving only the terms that depend on s and λ,
Q(s,λ) can be written as

Q(s,λ)
s,λ
= Eo|c,s′,λ′ [log p(o|s,λ)] + log p(s)

= −1

2

{
log |Us|+Tr

(
U−1

s R
)

(33)

− 2μT
sU

−1
s ō+ μT

sU
−1
s μs

}
+ log p(s),

where

ō = μ′
s′ +Σ′

ocΣ
′−1
cc (c−Hμ′

s′), (34)

R = Σ′
oo −Σ′

ocΣ
′−1
cc Σ′

co + ōōT. (35)

Here, the prime mark indicates the values obtained
using the model parameters updated at the previous
iteration. Since Us is a block diagonal matrix, as
given in (5), (33) can be decomposed into the sum
of T individual terms:

Q(s,λ)
s,λ
= −1

2

T∑
t=1

{log |Ust |+Tr[U−1
st Rt]

− 2μT
stU

−1
st ōt + μT

stU
−1
st μst}+

T∑
t=1

log πst−1,st ,

where

ō =

⎡
⎣ ō1

...
ōT

⎤
⎦ , R =

⎡
⎣R1 ∗

. . .
∗ RT

⎤
⎦ . (36)

With fixed λ, Q(s,λ) can be maximized with re-
spect to s by employing the Viterbi algorithm. With
fixed s,Q(s,λ) is maximized with respect to λ when

μi =

∑
t
1[st = i]ōt∑

t
1[st = i]

, (37)

Ui =

∑
t
1[st = i](ōt − μi)(ōt − μi)

T

∑
t
1[st = i]

, (38)

πi,j =

∑
t
1[st−1 = i, st = j]

∑
t
1[st−1 = i]

, (39)
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if
∑

t 1[st = i] �= 0 where i and j denote state indices
and 1[·] denotes an indicator function that takes the
value 1 if its argument is true and 0 otherwise.
Overall, the parameter training algorithm can be

summarized as follows:

(E-step) Substitute s and λ into s′ and λ′ and re-
compute ō and R using (34) and (35).

(M-step) Update λ using (37)–(39) and find s =
argmaxs Q(s,λ) using the Viterbi algorithm.

Note that if λ is fixed, the above algorithm re-
duces to a state decoding algorithm. One rea-
sonable way to initialize s would be to search for
s = argmaxs p(o|s,λ) using the Viterbi algorithm.

4 Experiments

To confirm the generalization ability of the present
model and the convergence speed of the present
training algorithm, we conducted parameter train-
ing experiments using mel-cepstrum sequences of
25 speech data excerpted from the ATR speech
database as experimental data. We chose the pa-
rameter training algorithm for the original trajec-
tory HMM [3] as the baseline method, which uses
the method of steepest ascent for updating λ and
the “delayed decision Viterbi algorithm” for updat-
ing s. Since the degrees of freedom of the conven-
tional and present models are exactly the same when
the numbers of hidden states are the same, the dif-
ference of the log-likelihood scores would reflect the
difference in their generalization abilities. For both
the proposed and conventional models, the numbers
of hidden states were set at 14.
Fig. 2 shows the evolution of the log-likelihoods

during the parameter training of the proposed and
conventional models. As Fig. 2 shows, the present
algorithm converged faster than the conventional al-
gorithm. This reveals the effectiveness of the com-
bined use of efficient statistical inference techniques
such as the EM algorithm and the dynamic pro-
gramming principle by the proposed algorithm. It
is also worth noting that the converged value of the
log-likelihood obtained with the proposed algorithm
was greater than that obtained with the conven-
tional algorithm. This implies the possibility that,
compared with the conventional model, the pro-
posed model has a higher ability to fit an arbitrary
set of feature sequences, given that the degrees-of-
freedom of the two models were the same. Fig. 3
shows an example of parameter generation using the
proposed model. After training λ using 25 speech
data, a feature sequence ĉ was generated according
to (29) given a state sequence s. The graph shows
the spectrogram constructed using ĉ obtained using
the trained λ and the state sequence s labeled from
the speech sample. As Fig. 3 shows, the proposed
model was able to represent the continuously time-
varying nature of speech spectrograms reasonably
well, showing that it has a similar property to the
trajectory HMM.

5 Conclusions

Inspired by the trajectory HMM framework pro-
posed by Zen et al., this paper proposed a proba-
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Fig. 3 Example of parameter generation.

bilistic generative model for describing continuously
time-varying sequences of data vectors governed by
discrete hidden states. The proposed model is ad-
vantageous over the conventional trajectory HMM
in that it makes it possible to derive convergence-
guaranteed and efficient algorithms for parameter
training and state decoding. Interesting future
work involves incorporating the proposed model into
the factorial HMM formulation to develop a new
method for audio source separation.
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