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Generative Modeling of Voice Fundamental
Frequency Contours

Hirokazu Kameoka, Kota Yoshizato, Tatsuma Ishihara, Kento Kadowaki, Yasunori Ohishi, and Kunio Kashino

Abstract—This paper introduces a generative model of voice
fundamental frequency ( ) contours that allows us to extract
prosodic features from raw speech data. The present con-
tour model is formulated by translating the Fujisaki model, a
well-founded mathematical model representing the control mech-
anism of vocal fold vibration, into a probabilistic model described
as a discrete-time stochastic process. There are two motivations
behind this formulation. One is to derive a general parameter
estimation framework for the Fujisaki model that allows the intro-
duction of powerful statistical methods. The other is to construct
an automatically trainable version of the Fujisaki model that
we can incorporate into statistical-model-based text-to-speech
synthesizers in such a way that the Fujisaki-model parameters
can be learned from a speech corpus in a unified manner. It could
also be useful for other speech applications such as emotion recog-
nition, speaker identification, speech conversion and dialogue
systems, in which prosodic information plays a significant role. We
quantitatively evaluated the performance of the proposed Fujisaki
model parameter extractor using real speech data. Experimental
results revealed that our method was superior to a state-of-the-art
Fujisaki model parameter extractor.

Index Terms—Expectation-maximization algorithm, Fujisaki
model, prosody, voice fundamental frequency contour.

I. INTRODUCTION

P ROSODY assists the listener to interpret an utterance by
grouping words into larger information units and drawing

attention to specific words. It also plays an important role in
conveying various types of non-linguistic information such as
the identity, intention, attitude and mood of the speaker. Since
the voice fundamental frequency ( ) contour is an important
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acoustic correlate of many prosodic constructs, modeling and
analyzing contours is potentially useful for many speech
applications such as speech synthesis, speaker identification,
speech conversion and dialogue systems, in which prosodic in-
formation plays a significant role. It is also important to note
that contours indicate intonation in pitch accent languages.
An contour consists of long-term pitch variations over

the duration of prosodic units and short-term pitch variations in
accented syllables. The former usually contribute to phrasing
while the latter contribute to accentuation during an utterance.
These two types of pitch variations can be interpreted as the
manifestations of two independent movements by the thyroid
cartilage. The Fujisaki model [5], [6] is a well-founded math-
ematical model that describes an contour as the sum of
these two contributions. This model approximates actual
contours of speech fairly well when the model parameters are
appropriately chosen, and its validity has been demonstrated
for many typologically diverse languages [6]–[13]. Since
prosodic features in speech are predominantly characterized by
the levels and timings of the phrase and accent components,
one important challenge is to solve the inverse problem of
estimating the Fujisaki-model parameters automatically from a
raw contour.
However, this problem has proved difficult to solve. Several

techniques have already been developed [6], [14]–[18], but so
far with limited success due to the difficulty of finding optimal
parameters under the constraints imposed in the Fujisaki model.
While the Fujisaki model describes a deterministic process for
generating voice contours, this paper proposes formulating a
stochastic counterpart of the Fujisaki model. As will be shown
in the subsequent sections, this makes it possible to use powerful
statistical inference techniques for estimating the underlying pa-
rameters of the Fujisaki model. Another important motivation
for this formulation is to construct an automatically trainable
version of the Fujisaki model that we can smoothly incorporate
into text-to-speech synthesis systems or speech conversion sys-
tems so as to guarantee the naturalness of computer-generated
speech.
The rest of this paper is organized as follows.

Section II briefly reviews the original Fujisaki model.
Section III describes a discrete-time version of the Fujisaki
model, on which basis Section IV formulates a generative
model of voice contours. Section V presents two iterative
algorithms, which locally maximize the posterior density of
the Fujisaki model parameters given an observed contour.
Section VI presents experimental evaluations of the present
method in terms of its ability as a Fujisaki model parameter
extractor.
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Fig. 1. Original Fujisaki model [5].

II. ORIGINAL FUJISAKI MODEL

The Fujisaki model [5], shown in Fig. 1, assumes that an
contour on a logarithmic scale, , where is time, is the su-
perposition of three components: a phrase component , an
accent component , and a base value :

(1)

The phrase and accent components are considered to be associ-
ated with mutually independent types of movement of the thy-
roid cartilage with different degrees of freedom andmuscular re-
action times. The phrase component consists of the large-
scale pitch variations over the duration of the prosodic units,
and the accent component consists of the smaller-scale
pitch variations in accented syllables. These two components
are modeled as the outputs of second-order critically damped
filters; one being excited with a command function con-
sisting of Dirac deltas (phrase commands), and the other with

consisting of rectangular pulses (accent commands):

(2)
(3)

where denotes convolution over time and

(4)

(5)

is a constant value related to the lower bound of the
speaker’s , below which no regular vocal fold vibration
can be maintained. and are natural angular frequencies of
the two second-order systems, which are known to be almost
constant within an utterance as well as across utterances for a
particular speaker. It has been shown that rad/s and

rad/s can be used as default values [6], [15].

III. DISCRETIZED FUJISAKI MODEL

In this section, we apply a backward difference -to- trans-
form to the phrase and accent control mechanisms described as
continuous-time linear systems in order to obtain a discrete-time
version of the Fujisaki model. The reason for the discretization
will be made apparent later. The transfer function (the Laplace
transform of the impulse response) of the phrase control mech-
anism is given in the -domain as

(6)

The backward difference transform approximates the time dif-
ferential operator by the backward difference operator in the
-domain such that

(7)

where is the sampling period of the discrete-time representa-
tion. By undertaking this transform, the transfer function of the
inverse system can be written in the -domain as

(8)

where

(9)
(10)
(11)
(12)

Let us use and to denote the discrete-time version
of the phrase command function and phrase component, respec-
tively, where is the discrete-time index. can thus be
regarded as the output of a constrained all-pole system whose
characteristics are governed by a single parameter (or )

(13)

In the same way, the relationship between the accent command
function and the accent component is described as

(14)

where

(15)
(16)
(17)
(18)

Altogether, the discrete-time version of the Fujisaki model can
be expressed as the superposition of the three components:

.

IV. GENERATIVE MODEL OF VOICE CONTOURS
Here, we model the probabilistic generative process of a

speech contour based on the discrete-time version of the
Fujisaki model.

A. Modeling Phrase and Accent Command Pair
We first describe the process for generating the phrase and

accent command functions, and . In the original Fu-
jisaki model, they must satisfy the following requirements:
1) Phrase commands are a set of impulses and accent com-

mands are a set of step-wise functions.
2) A phrase command occurs at the start of an utterance or

after the offset of an accent command in the preceding
phrase, and is followed by the onset of the next accent com-
mand. This means that a phrase command will not occur
while an accent command is being activated.

3) The onset of an accent command is followed by its offset.
This means that neighboring accent commands will not
overlap each other.

According to assumption 2, and are reciprocally
constrained and so they should not simply be modeled sepa-
rately. One challenge as regards the estimation of the Fujisaki
model parameters has been how to deal with the optimization
problem under these constraints. As a convenient way of
incorporating these requirements into the command functions,
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Fig. 2. Command function modeling with HMM.

we propose modeling the and pair using a hidden
Markov model (HMM).
We denote the and pair by and assume that

it is normally distributed:

(19)

where

Eq. (19) can be viewed as an HMM in which the output distribu-
tion of each state is a Gaussian distribution and the mean vector

evolves over time as a result of the state transition. The
mean vector consists of the means of the phrase and ac-
cent command functions, and . The use of an HMM
allows us to incorporate assumptions 1–3 into and
by constraining the path of the state transitions as illustrated in
Fig. 2.
The present HMM consists of distinct states, , ,
and . is the number of possible values that

the magnitude of each accent command can take. It can thus be
understood as the resolution of magnitude “quantization”: the
larger it becomes, the more finely the model is able to express
the accent command function. In state , and are
both restricted to zero. In state , can take a non-zero
value, , whereas is still restricted to zero. In state
, no self-transitions are allowed. In state , and

become zero again. This path constraint restricts to con-
sisting of isolated deltas. State leads to states ,
in each of which can take a different non-zero value ,
whereas is forced to be zero. Direct state transitions from
state to state ( ) without passing through state are
not allowed. This constraint restricts to consisting of rect-
angular pulses. It should also be noted that this HMM ensures
that no more than one command will be active at each point in
time. The use of the HMM described above for modeling the
command functions has been our primary reason for translating
the Fujisaki model into its discrete-time counterpart.
The state segments correspond to the timings and durations

of phrase and accent commands. If the statistical distributions
of the state durations can be trained a priori, they can be useful

Fig. 3. A duration-explicit representation of the hidden states. Splitting state
into substates , , , and allows us to parametrize the duration
of each hidden state. For example, corresponds to the probability of
staying at state with 4 consecutive times.

for estimating the timings of phrase and accent commands.
While an ordinary HMM assumes the state durations to be
geometrically distributed, it would be more convenient if we
were allowed to assume arbitrary distributions. To allow arbi-
trary distributions, we propose splitting each state into a certain
number of substates such that they all have exactly the same
emission densities. Fig. 3 shows an example of the splitting
of state . The number of substates is set at a sufficiently
large value and the transition probability from substate
to substate is set at 1 for . This state splitting
allows us to assume arbitrary distributions over the durations
for which the process stays in state through the settings
of the transition probability. The transition probability from
substate to substate corresponds to the
probability of the present HMM generating a rectangular pulse
that has a particular duration. In the same way, we split states
and to parameterize the probability of the spacing between
phrase and accent commands. Note that this is equivalent to
the explicit-duration HMM proposed by Ferguson [19]. Alter-
natively, the use of a hidden semi-Markov model [20], [21]
would also be appropriate for the same purpose. Henceforth,
we use the notation , ,
and . Let be the logarithm of the
transition probability from state and . To sum up, the present
HMM is defined as follows:

Output sequence:
Set of states:

State sequence:
Output distribution:

Transition probability:

The free parameters to be estimated in our command function
model consist of the state sequence, , and the mean and
variance of the output distribution of each state, ,

, , . Hereafter, we use to denote
and to denote the rest of the parameters:
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The generating process for the phrase and accent components
is summarized as follows: First, the state sequence
is generated according to a Markov chain. Given the state
sequence , the mean sequences and

are determined by

(20)

Given and the present HMM generates the and
pair according to Eq. (19). From Eq. (13) and Eq. (14),
and are then fed through different all-pole systems

to generate the phrase and accent components, and .

B. Uncertainty of Observations
In the following, we assume that contours and voiced/un-

voiced (V/UV) segments are obtained in advance by using a
pitch extractor and a V/UV detector. For real speech, values
should not always be considered reliable. For example, esti-
mates obtained with a pitch extractor in unvoiced regions would
be totally unreliable. When performing parameter inference, we
should trust only reliable observations and neglect unreliable
ones. To incorporate the degree of uncertainty of observa-
tions, we consider modeling an observed contour as a
superposition of the “ideal” contour, i.e., ,
and a normally distributed noise component

(21)

where represents the degree of uncertainty of the ob-
servation at time , which is assumed to be given. For example,
one simple way would be to set at a small value near 0
for voiced regions and a sufficiently large value for unvoiced
regions. By denoting

(22)

the entire contour is given by

(23)

C. Likelihood Function and Prior Probabilities
In this subsection, we derive the probability density function

of an observed contour, , based on the
probabilistic modeling of the command functions and the re-
liability modeling presented in the previous subsections. From
Eq. (19),

(24)
(25)

If we let and be

(26)
(27)

we can write Eqs. (24) and (25) in vector notation:

(28)
(29)

where

(30)
(31)
(32)
(33)

By using the linear equation given by Eqs. (13) and (14), the
vectors consisting of the phrase and accent components

(34)
(35)

can be written in terms of and ,

(36)
(37)

where

. . . . . . . . .
(38)

. . . . . . . . .
(39)

Hence, it follows from Eqs. (28), (29), (36) and (37) that

(40)
(41)

We refer to as the base component and let be

(42)

It follows from Eqs. (21) and (22) that is normally distributed

(43)

where

(44)
(45)

Let us define a vector consisting of observed as

(46)

Hence,

(47)

We can conclude from Eqs. (47), (40), (41) and (43) that is
normally distributed such that

(48)
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where , , , , . Overall, the likelihood function
of the Fujisaki model parameters given can be written as

(49)

As for the prior probability of , we assume that the phrase
control parameter , accent control parameter and state se-
quence are independent of each other. Recall that we
assumed in IV-A that is a first-order Markov chain.
We further assume that all other parameters are uniformly dis-
tributed. Thus,

(50)

(51)

V. PARAMETER OPTIMIZATION ALGORITHM

A. Expectation-Maximization (EM) approach
Here we describe an iterative algorithm, which lo-

cally maximizes the posterior density of given ,
. By regarding the set consisting of

the phrase, accent and base components, ,
as the complete data, this problem can be viewed as an in-
complete data problem, which can be dealt with using the
Expectation-Maximization (EM) algorithm [22], [23].
The log-likelihood of given the complete data is given as

(52)

where denotes equality up to a term independent of . Taking
the conditional expectation of Eq. (52) with respect to given
and , and then adding to both sides, we obtain
an auxiliary function

(53)

Because the relationship between the incomplete data and the
complete data can be written as where ,

and are given explicitly as

(54)

(55)

It can be shown that an iterative procedure consisting of maxi-
mizing with respect to (the maximization step) and
substituting into (the expectation step) locally maximizes
the posterior density . The expectation step computes

and according to Eqs. (54) and (55) by
substituting the current parameter estimate into .
Now, if we partition into three blocks and

into nine blocks such that

(56)
where stands for blocks that we can ignore hereafter, the aux-
iliary function can be rewritten in a more convenient form:

(57)

The update formula for each parameter in the maximization step
can be derived using Eq. (57).
1) State sequence : Leaving only the terms in

that depend on , we have

(58)

where . Here the notation
is used to denote the -th element of a vector. The state
sequence maximizing can be solved
efficiently using the Viterbi algorithm as follows. We first
set at

(59)

for all the hidden states . If we consider state to be the
starting state, we shall set at

(60)

We can compute for recursively
via

(61)

The most likely transition for each state should be reg-
istered at each recursion

, so that the most likely state sequence can be traced
at the end of the recursion with

, where . Substituting



KAMEOKA et al.: GENERATIVE MODELING OF VOICE FUNDAMENTAL FREQUENCY CONTOURS 1047

the updated state sequence into Eq. (20), we finally
obtain the updated and .

2) Magnitude of phrase command : is
maximized with respect to when

(62)

3) Magnitude of accent command : is maxi-
mized with respect to when

(63)

4) Phrase control parameter : Let us assume a Gaussian
prior distribution over such that

(64)

Leaving only the terms in that depend on , we
have

(65)

Now, let

. . . . . . . . . . . . . . . . . .

. . . . . . . . .
(66)

then from Eqs. (9)–(11), can be written as

(67)

The partial derivative of (or ) with respect
to is a quartic function, equal up to a constant factor to

(68)

and its roots, namely the stationary points of , can
be solved algebraically, fromwhich we can find the optimal
.

5) Accent control parameter : Let us again as-
sume a Gaussian prior distribution over such that

. As the derivation follows in exactly
the same manner as above, we shall omit it.

6) Baseline value : is maximized with respect to
when

(69)

7) Variances of state emission densities , : is
maximized with respect to and when

(70)
(71)

To summarize, we obtain the following iterative algorithm
that guarantees monotonic convergence to a local maximum of
the posterior density :
a) (E-step) Update , , , , and via Eqs. (54)

and (55).
b) (M-step) Increase w.r.t. through the fol-

lowing updates:
a) Update by using the Viterbi algorithm.
b) Update via Eqs. (62), (63), (70) and (71).
c) Update (and ) by solving the root of Eq. (68)
d) Update via Eq. (69).
Return to 1) until convergence.

The complexity of this algorithm is , where is
the number of hidden states.

B. Parameter Inference Under Non-negativity Constraints
It has been shown that phrase and accent commands must

be non-negative in many non-tonal languages such as Japanese,
English, German and Spanish [6]–[9]. In V-A, we treated
and as latent variables (i.e., parameters to be marginalized
out), and did not explicitly take the non-negativity constraints
on and into consideration. While the method de-
scribed in V-A can be generally applied even for such languages
as Scandinavian, Portuguese and Chinese in which phrase and
accent commands can be negative [10]–[13], this subsection fo-
cuses on parameter estimation under the non-negativity con-
straint. To impose the non-negativity constraint explicitly, it is
convenient to treat and as model parameters instead
of latent variables.
Throughout this subsection, let us assume for simplicity that
and are constants. Now, we first describe an expanded ver-

sion of the generative process of :

(72)
(73)
(74)

Note that it can be readily verified that marginalizing out
and reduces Eqs. (72)–(74) to Eq. (48). Hereafter,

we use to denote the set consisting of and . Instead
of , we consider treating as a latent variable. Namely,
we are concerned with maximizing the posterior density

. We can obtain the joint proba-
bility density by marginalizing

(75)
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with respect to . We notice that the only difference from the
joint probability density that we wanted to maximize
in V-A is that is replaced with . For convenience of notation,
we use to denote the set consisting of , and . Hence,

.
Here we describe an iterative algorithm that searches for the

maximum a posteriori estimates of by locally maximizing
given , using the generalized EM algorithm. An auxil-

iary function for the posterior density of interest can be written
as

(76)

where

and

Note that and stand for the discrete-time versions of
and , respectively. It can be shown that an iterative

algorithm that consists of computing
where (via the Forward-Backward
algorithm), increasing with respect to , and then
substituting into locally maximizes the posterior .
Here, we must ensure that increasing with respect to
is performed subject to non-negativity. This can be accom-

plished by invoking the idea described in [24] as follows.
By using Jensen’s inequality we obtain

(77)

where are auxiliary variables satisfying

(78)

We can verify that the equality in this inequality holds when
and are given by

(79)

(80)

We can use this inequality to construct a lower bound function
for :

(81)

where

(82)

Note that we have used to denote .
We can use this lower bound function to derive an update equa-
tion for each element of that guarantees a certain increase of

.
As mentioned above, the maximization of this lower bound

function with respect to can be achieved when it is given
by Eqs. (79) and (80). With fixed, the maximization of

with respect to other parameters can be achieved
analytically as follows. First, is maximized with
respect to when

(83)

(84)

where

(85)

Next, is maximized with respect to when

(86)
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Finally, is maximizedwith respect to , ,
and when

(87)

(88)

(89)

(90)

The above equations can be obtained by setting the partial
derivatives of with respect to , , ,

and at zero, respectively. Here, it is important
to note that when Eq. (83) (or Eq. (84)) becomes negative,

(or ) is the maximizer of subject to
non-negativity, since is a quadratic (strictly convex) function
of (or ). Thus, under the non-negativity constraint,
the update rules of and shall be written as

(91)
(92)

It can be shown that is non-decreasing under the up-
dates of and with the above update equations since

(93)

To summarize, we obtain the following algorithm that guaran-
tees the convergence to a local maximum of the posterior den-
sity of interest and the non-negativity of and :
1) Update using the Forward-Backward algorithm.
2) Increase w.r.t. through the following updates:

a) Update via Eqs. (79) and (80).
b) Update via Eqs. (91) and (92).
c) Update via Eqs. (87)–(90).
d) Update via Eq. (86).
Return to 1) until convergence.

As with the algorithm in V-A, the complexity of this algo-
rithm is . After convergence, we search for the op-
timal state sequence from the output sequence
by using the Viterbi algorithm.

VI. EVALUATION OF PARAMETER ESTIMATION ACCURACY

A. Parameter Estimation Using Real Speech Data
To evaluate the parameter estimation accuracy of the algo-

rithms proposed in V-A and V-B, we conducted an experiment
using real speech data, excerpted from the ATR Japanese speech
database B-set [25]. This database consists of 503 phonetically
balanced sentences. We selected speech samples of one male
speaker (MHT). The ground truth data of the Fujisaki model
parameters had been manually annotated by an expert in the
speech prosody field. In these ground truth data, the baseline
values were all set at Hz. We chose the Fujisaki model

Fig. 4. Overview of the experiment in VI-A.

parameter extractor developed by Narusawa [15] as a baseline
method for comparison.
Fig. 4 shows the experimental scheme of the evaluation.

contours were extracted using a method we had previously de-
veloped [26], from which the Fujisaki model parameters were
estimated using the present algorithm. V/UV segments were
obtained by simple energy thresholding. The constant param-
eters were fixed at , ms, rad s,

rad s, , , for unvoiced
regions and for voiced regions. was set at the
minimum value in the voiced regions. The initial values
of were set at the values obtained with Narusawa’s method
[15]. The EM algorithm was then run for 20 iterations. The
number of substates in the HMM and the transition probability

were determined according to the manually annotated data
of the first 200 sentences. The parameter estimation algorithm
was then tested on the remaining 303 sentences.
We evaluated the accuracy of the parameter estimation based

on the following two criteria: (1) the detection rate of the phrase
and accent commands, and (2) the root mean squared error
(RMSE) between an observed log contour, , and an esti-
mated model, over the voiced
regions. The aim of this experiment was to confirm whether
the present method is able to achieve accurate model fitting
while ensuring that the estimated parameters are linguistically
reasonable. The log RMSE indicates how well the estimated
Fujisaki model fits an observed contour. The detection rate
of the phrase and accent commands indicates how linguistically
reasonable the estimated parameters are. The detection rate of
the phrase and accent commands was calculated by matching
the estimated and ground truth command sequences on a
command-by-command basis using a dynamic programming
algorithm. If the time difference between the estimated and
ground truth phrase commands was shorter than seconds,
the estimated phrase command was considered “matched” and
the local distance was set at zero. Otherwise the local distance
was set at 1. As for the accent commands, we took the average
of the time difference between the onsets of the estimated and
ground truth accent commands and the time difference between
their offsets. In the same way, when the average time difference
was shorter than seconds, the estimated accent command was
considered matched. The magnitudes of the phrase and accent
commands were not taken into account in our evaluation. This
is because the magnitude estimation was very sensitive to the
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Fig. 5. Example of command detection (1 of 4). (1) An observed contour
in voiced regions (solid line) and the estimated contours (dotted line) along
with (2) the estimated phrase and accent commands. (a) Narusawa's method
[15]. (b) Algorithm proposed in V-A. (c) Algorithm proposed in V-B.

baseline value, which was set differently in the present
method and in the manual annotation. Let be the number
of commands in the ground truth command sequences and

be the sum of for all 303 sentences. We defined the
detection rate as

(94)

where , and are the total numbers of inser-
tion, substitution and deletion errors, respectively.
Table I shows the detection rate results for phrase and accent

commands with . “C,” “P1” and “P2” refer
to Narusawa’s method [15], and the algorithms proposed in V-A
and V-B, respectively. The results showed that the proposed
algorithms “P1” and “P2” were superior to Narusawa’s method,
and “P2” was slightly superior to “P1” in terms of detection
rate. The left graph of Fig. 9 shows the log RMSEs. As the

Fig. 6. Example of command detection (2 of 4). (1) An observed contour
in voiced regions (solid line) and the estimated contours (dotted line) along
with (2) the estimated phrase and accent commands. (a) Narusawa's method
[15]. (b) Algorithm proposed in V-A. (c) Algorithm proposed in V-B.

results show, “P2” yielded the highest model fitting accuracy.
Figs. 5–8 show some examples of observed contours and
the estimated contours obtained with the conventional and
present methods, from which we can confirm that the present
methods (especially “P2”) were able to fit the Fujisaki model to
observed contours fairly well.
It should be noted that the detection rate tended to drop sig-

nificantly when . Considering the fact that average
syllable durations are typically about 0.2 [s], deviations longer
than 0.1 [s] from the true positions are not negligible. This im-
plies that the proposed methods still have plenty of room for
improvement.

B. Parameter Estimation Using Synthetic Contours

To evaluate the pure behavior of the present parameter esti-
mation algorithms, we also conducted a command estimation
experiment using synthetic contours. The synthetic
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Fig. 7. Example of command detection (3 of 4). (1) An observed contour
in voiced regions (solid line) and the estimated contours (dotted line) along
with (2) the estimated phrase and accent commands. (a) Narusawa's method
[15]. (b) Algorithm proposed in V-A. (c) Algorithm proposed in V-B.

contours were artificially created using the original Fujisaki
model with the abovementioned, manually annotated command
sequences. All other experimental conditions were the same as
above. Fig. 10 provides an overview of this experiment.
Table II shows detection rate results for command sequences

with different settings. The log RMSEs are shown in the
right graph of Fig. 9. As the results show, the proposed al-
gorithms were again significantly superior to the conventional
method in terms of both the detection rate of the command se-
quences and the model fitting accuracy. However, as regards
the accent command detection rate, the proposed methods were
outperformed by the conventional method. The conventional
method uses the fact that the maxima and minima of the first
derivative of the contour of the Fujisaki model correspond
to the onsets and offsets of accent commands with a constant
delay of if the contributions of the phrase components can
be disregarded. One reason why the conventional method was

Fig. 8. Example of command detection (4 of 4). (1) An observed contour
in voiced regions (solid line) and the estimated contours (dotted line) along
with (2) the estimated phrase and accent commands. (a) Narusawa's method
[15]. (b) Algorithm proposed in V-A. (c) Algorithm proposed in V-B.

Fig. 9. The root mean squared errors (RMSEs) between observed log con-
tours and estimated models.

able to accurately detect accent commands might be that this ex-
periment used synthetic contours created using the Fujisaki
model as the test data, which agrees particularly well with the
above assumption.
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TABLE I
DETECTION RATE (%) OF PHRASE AND ACCENT COMMANDS WITH DIFFERENT SETTINGS EVALUATED ON REAL SPEECH DATA

TABLE II
DETECTION RATE (%) OF PHRASE AND ACCENT COMMANDS WITH DIFFERENT SETTINGS EVALUATED ON SYNTHETIC CONTOURS

Fig. 10. Overview of the experiment described in VI-B.

VII. CONCLUSION
This paper proposed introducing a generative model of voice
contours for estimating prosodic features from raw speech

data. We formulated the present contour model by trans-
lating the Fujisaki model, a well-founded mathematical model
representing the control mechanism of vocal fold vibration, into
a probabilistic model described as a discrete-time stochastic
process. There were two motivations behind this formulation.
Onewas to derive a general parameter estimation framework for
the Fujisaki model that allows the introduction of powerful al-
gorithms such as the Viterbi algorithm, forward-backward algo-
rithm and EM algorithm. The other was to construct an automat-
ically trainable version of the Fujisaki model that we can natu-
rally incorporate into statistical speech synthesis and conversion
frameworks.We quantitatively evaluated the performance of the
proposed Fujisaki model parameter extractor using real speech
data. Experimental results revealed that our method was supe-
rior to a state-of-the-art Fujisaki model parameter extractor. The
application of the present contour model to prosody genera-
tion for text-to-speech synthesis is one of our ongoing projects.
A preliminary study is presented in [27].
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